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Collapsed haplotype pattern method for linkage
analysis of next-generation sequence data

Gao T Wang1, Di Zhang1, Biao Li, Hang Dai and Suzanne M Leal*

Recent advances in next-generation sequencing (NGS) make it possible to directly sequence genomes and exomes of individuals

with Mendelian diseases and screen sequence data for causal variants. With the reduction in cost of NGS, DNA samples from

entire families can be sequenced and linkage analysis can be performed directly using NGS data. Inspired by ‘burden’ tests,

which are used for complex trait rare variant association studies, we developed the collapsed haplotype pattern (CHP) method

for linkage analysis. Using data from several deafness genes we demonstrate that the CHP method is substantially more powerful

than analyzing individual variants. Unlike applying NGS data filtering approaches, the CHP method provides statistical evidence

of a gene’s involvement in disease etiology and is also less likely to exclude causal variants in the presence of phenocopies

and/or reduced penetrance. The CHP method was implemented in the SEQLinkage software package, which can perform linkage

analysis on NGS data or can generate data compatible with many linkage analysis programs, reviving them for use in NGS era.
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INTRODUCTION

The advent and advance of next-generation sequencing (NGS) in
recent years has led to the identification of a large number of
Mendelian disease genes. The typical approach to identify Mendelian
disease causal variants using either whole genome sequence or whole
exome sequence (WES) data is to filter variants in an affected
individual or shared by affected family members, excluding those that
are found at higher frequencies, for example, 40.5% in variant
databases. Sometimes unaffected family member(s) are also used in
the filtering process. Although filtering is straightforward and has been
successful,1 such efforts rely on limited family information, for
example, mode of inheritance, sharing between a subset of family
members and information from external resources on variant func-
tional characterizations and frequencies. On the other hand, linkage
analysis, which incorporates information on mode of inheritance,
penetrance, allele frequencies and genetic map information, remains a
powerful tool to localize Mendelian disease loci. As a result, combined
SNP array-based linkage analysis and sequence-based filtering method
is becoming popular.2 There is also a great interest to directly perform
linkage analysis on rare variants obtained from NGS data. Although it
has been shown that analyzing rare single-nucleotide variants (SNVs),
usually designated as having a minor allele frequency (MAF) o0.5%
or 1%, from NGS data provides acceptable linkage results, due to low
heterozygosity of SNVs and allelic heterogeneity this approach can be
less powerful than analysis of SNPs from genotyping arrays.3

Here we describe the collapsed haplotype pattern (CHP) method,
which is motivated by rare variant association methods that analyze
multiple rare variants within a region, which is often a gene. The CHP
method was designed to analyze rare variants by constructing markers
that have a higher heterozygosity and are more informative for linkage
analysis than individual rare SNVs. Unlike multipoint linkage methods,
the CHP method does not require linkage disequilibrium (LD)

pruning to avoid spurious associations.4 The CHP method is
particularly powerful in the presence of intra- (eg, compound
heterozygotes) and inter-family allelic heterogeneity, a phenomenon
commonly observed for Mendelian diseases. When causal variants are
missing from samples, the CHP method can still detect linkage owing
to transmission information retained by other variants. We have
developed the SEQLinkage software package implementing the CHP
method. As SEQLinkage can calculate Heterogeneity LOD (HLOD)
scores the CHP method remains powerful when there is locus
heterogeneity, that is, the underlying genetic etiology is not due to
the same gene/region in all families.

MATERIALS AND METHODS
For the CHP method instead of analyzing each variant separately, multiple
variants which form haplotypes within a genetic region, for example gene, are
analyzed. This is done by constructing a marker, which reflects the transmission
pattern of the entire region and is numerically compatible with currently
available linkage analysis methods and software. These markers incorporate
allelic heterogeneity between and within families in a region and often have
higher heterozygosity than SNVs, making them more informative and powerful
to detect linkage.
To generate regional markers, haplotypes for the region must be obtained for

all samples with sequence data. NGS data from family members are first
checked for Mendelian errors and variants with Mendelian inconsistencies are
removed. An improved version of the Lander–Green algorithm for genetic
phasing is applied to reconstruct haplotypes in the pedigrees.5 For each
pedigree, we first cluster variants on regional haplotypes by ‘bins’, for example,
LD blocks, and collapse variants in a bin into an indicator variable with values 0
or 1 for having no minor allele or at least one minor allele within the bin,
which is similar to collapsing methods for rare variant association analysis.6 We
then assign each collapsed haplotype a single numeric value so that different
patterns of collapsed haplotypes in each pedigree are uniquely represented
(Figure 1). The choice of coding for patterns are arbitrary, although we use
continuous positive integers and assign a smaller value for collapsed haplotypes
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having more 0’s than 1’s. The sample haplotypes thus represented can be
directly used for parametric linkage analysis with many existing linkage software
packages.
For WES data, genes can be used as regional markers. Within each region,

commonly used bin size options for variants collapsing are (1) LD-based
collapsing, which uses estimated LD blocks as bins, (2) complete collapsing,
where the bin size equals gene/region length and (3) no collapsing, where the
bin size equals one. For regions where recombination events occur within a
family, the sub-unit that shows the strongest evidence of linkage among all sub-
units created by recombination breakpoints is used as the regional LOD score
for the family, so that results from multiple families can still be combined.
To reconstruct genotypes for family members missing sequence data, linkage

analysis requires marker allele frequencies. Frequencies of regional markers
generated by CHP method can be derived from MAFs of variants and pair-wise
LD between variants. For rare variants with MAF derived from large samples
(see Discussion), the minor allele counts can be approximated by a multivariate
Poisson distribution with joint probability mass function P(X)= f(λ,θ)(X) where
λM×1 is expected allele counts for M variants and θM×M is the variance–
covariance matrix.7 The covariance between variants Xi and Xj can be
computed by covðxi; xjÞ ¼ rijN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pipjð1� piÞð1� pjÞ

q
where r2ij is the LD

coefficient, p is population MAF and N is the sample size, based on which
population MAF are estimated. Therefore, for a given haplotype pattern
xH= [x1, x2,…,xM], xk∈ {0,1} the corresponding frequency f(λ,θ)(X= xH) can
be computed from the probability mass function. When collapsing is applied,
MAF for the collapsed unit is given as 1− f(λ,θ)(X= [0,0,0,…]) by definition.
CHP frequencies thus computed are then used as the allele frequencies for the
corresponding regional genotype markers.
To facilitate linkage analysis using sequence data in VCF format, we

developed the SEQLinkage software that uses the Elston–Stewart algorithm as
incorporated in FASTLINK.8 It provides results in text format and high-quality
graphical reports for both LOD and HLOD scores. In addition, SEQLinkage
supports output of regional genotype data into formats compatible with linkage
software such as LINKAGE9 and Merlin,10 with which two-point and multi-
point parametric linkage analysis can be performed. In addition, MEGA211

format is supported, which can be used to transform data to the required input
for a number of linkage programs.
To evaluate performance of our method we performed empirical type I error

and power calculations for two-point linkage analysis using data on four non-

syndromic hearing impairment (NSHI) genes: two autosomal recessive genes
GJB2 and SLC26A4, and two autosomal dominant genes MYO7A and MYH9.
Two-generation pedigrees were simulated, with three to eight offspring in the
last generation with the proportions determined by the distribution of number
of children per family in the United States in 2012, rescaled so that they sum to
100% (three children: 69.34%, four children: 20.52%, five children: 6.84%, six
children: 2.28%, seven children 0.76%, eight children 0.26%). Genotypes are
simulated for the four genes based on the variant sites and the corresponding
MAFs in European Americans recorded in the Exome Variant Server.
For type I error evaluations, we use the same gene sequences and

demographic data, yet simulate disease pedigrees under the null, that is,
affection status not due to any of the rare variants in the gene of interest. We
consider different genetic architectures under the null including situations
when (1) variants in the gene region are in linkage equilibrium, (2) there is
complete LD between variants and (3) there exist within a gene recombination
events in the sequence data of generated families. Recombination events
between variants are simulated based on rates obtained from Hapmap
Recombination Rates and Hotspots database (see Web Resources). In addition,
we simulate scenarios when parental genotypes are missing to evaluate type I
error when CHP marker frequencies have to be calculated using population
MAF and LD estimated from data. Type I errors are computed for cumulative
HLOD scores on gene SLC26A4 across 20 families using 2 000 000 replicates.
For power evaluations we annotate variants in these four NSHI genes using

Deafness Variation Database (DVD) and NCBI ClinVar, labeling variants as
‘causal’ if they are so deemed by both databases. Disease status for individuals
are determined by genotypes on those causal sites under dominant mode of
inheritance for MYO7A and MYH9, and recessive (compound heterozygotes
and homozygotes) for GJB2 and SLC26A4, assuming complete penetrance. In
addition, for each mode of inheritance we allow for allelic heterogeneity among
families, that is, the causal variant site in a gene may not be the same for
different families. We ‘ascertain’ simulated families having two or more affected
offspring for linkage analysis. To introduce locus heterogeneity we sample
families having causal variants in one gene but not the other, so that each
simulated gene contributes to etiology of only a proportion of families in the
entire data set. We simulate 500 replicates under each different setting of sample
size, mode of inheritance, presence of allelic heterogeneity and locus hetero-
geneity. For each replicate we compute LOD and HLOD scores using the CHP
method. For comparison purposes we also analyze SNV markers and perform
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Figure 1 Coding of regional markers using the Collapsed Haplotype Pattern (CHP) method. Three two-generational autosomal recessive pedigrees display the
coding for a regional marker using information from six variant sites. Panel a shows two families segregating the same autosomal recessive disease, which is
due to different causal variants. Treating the entire region as a bin to collapse the variants effectively captures transmission of disease variants and allows for
linkage information for a region to be summed across families. For regions with more diverse rare variant architecture as displayed in panel b, where for this
example disease etiology is caused by compound heterozygotes variants, coding which represents both rare variant haplotypes is used to ensure that all
meioses are informative. It should be noted that if coding as is shown in panel a is used in this situation there will be a loss of information because all
heterozygous offspring will be uninformative for linkage information, for example, the meioses to offspring II:1 and II:4.
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multipoint linkage analysis using GeneHunter.12 Power is estimated by P ¼
Nsuccess
N where the denominator is the total number of replicates and the

numerator is the number of tests that successfully detected the linkage signal,
that is, LOD score 43.3 or HLOD score 43.6, which provides a genome-wide
significance level of Po0.05.13

RESULTS

Empirical type I error for the CHP linkage statistic is α̂ ¼ 2:8 ´ 10�5

(95% CI: 2.11× 10− 5 ≤α≤ 3.63× 10− 5), demonstrating that type I
error is well controlled and even conservative at a required significance
level of 4.7 × 10− 5 for an HLOD of 3.6. Quantile–quantile plots are
generated to evaluate the null distribution of test statistic in the
presence of within-gene recombination, strong inter-marker LD and
missing genotype data; type I error is well controlled and no sign of

inflation is observed (Supplementary Figure S1). Empirical power
calculations for several known non-syndromic hearing impairment
genes using the CHP method as well as for individual SNVs are
summarized by contour plots (Figure 2). Power analysis based on
LOD and HLOD suggests that CHP is substantially more powerful for
all models in the presence of intra- (Figure 2c) and inter-family allelic
heterogeneity (Figures 2a–c). For example to detect linkage with the
SLC26A4 gene using an autosomal recessive model with allelic
heterogeneity, that is, compound heterozygotes, and also with locus
heterogeneity of 50%, 12 families are required for the CHP method to
achieve a power of 90%, while analyzing individual SNVs requires
450 families to achieve the same power at a genome-wide significance
level of 0.05. In addition, although multipoint linkage analysis is more

Figure 2 Power comparisons for LOD and HLOD statistics in two-point linkage analyses. This figure shows the power for collapsed haplotype pattern markers
(CHP) vs single-nucleotide variant (SNV) analysis under various modes of inheritance in the presence of intra- and inter-family allelic heterogeneity. X axis is
number of families, Y axis is proportion of locus heterogeneity, that is, the proportion of families with non-syndromic hearing impairment (NSHI) caused by
detrimental variants in the gene under investigation, that is, either MYO7A or MYH9 for dominant model, or GJB2 or SLC26A4 for recessive model. Contour
curves on the graphs are power estimates, dark orange lines for the CHP method and light blue lines for SNV analysis. Panel a displays the power for the
LOD and HLOD statistics under an autosomal dominant model; panel b displays the power for the LOD and HLOD statistics under an autosomal recessive
model; panel c displays the power for the LOD and HLOD statistics under an autosomal recessive model in the presence of intra-family allelic heterogeneity,
that is, affected individuals are compound heterozygous. CHP method is more powerful for both LOD and HLOD at a genome-wide significance level of
α=0.05, but the absolute power of HLOD is not significantly larger than LOD. This is due to the very low MAFs for the genes under study, and therefore, for
most families all variants in the non-causal gene are monomorphic and, therefore, are uninformative.
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powerful than analyzing SNVs, the CHP method is considerably more
powerful than multipoint linkage analysis (Supplementary Table S1).
For sequence data, variants are sometimes missing due to the

inability to call variants or during quality control, variant calls are
removed because of poor data quality. Therefore, we also estimated
sample size requirements for the CHP method when causal variants
are missing from sequence data in a large proportion of families, that
is, 75%. The CHP method can tolerate missing data and is also always
more powerful than the SNV method when there is missing data
(Table 1).

DISCUSSION

For linkage analysis, correct specification of marker allele frequency is
crucial for controlling type I error and reducing type II error.14 The
number of founders with available genotypes in data for linkage
analysis might often be too small to obtain a sufficiently accurate allele
frequency estimate, thus we recommend the input VCF file be
annotated with an external source of MAF information, for example,
1000 Genomes or Exome Variant Server. For some populations MAF
information may not be available and frequencies estimated from
founders have to be used.
In the context of Mendelian disease gene mapping it is often

reasonable to assume that common variants (variants having population
MAF41%) are not causal. Common variants will neither contribute to
nor reduce power when analyzed with rare variants. However, common
variants can be in strong LD with variants in neighboring regions, which
may contain causal variants; thus, when the CHP method is used to
construct the regional marker also using common variants, linkage can
be detected even though the region does not harbor any causal variants.
Although common variants should not be used when constructing
regional markers, we suggest analyzing common variants separately
because they can potentially capture additional information when rare
causal variants are missing from sequence data.
Analysis of rare variants using ‘burden’ methods are usually limited

to those variants, which are most likely to be causal, for example,
missense, nonsense and splice site variants, because inclusion of non-
causal variants can attenuate the association signal and reduce power.
For the CHP methods inclusion of non-causal rare variants will not
attenuate the linkage signal and therefore analysis does not need to be
restricted to variants that are most likely functional and causal.
Inclusion of non-causal rare variants to construct the regional marker

can provide additional linkage information if data for causal variants
are missing. If the goal is to detect a linkage signal from variants that
are potentially causal then linkage analysis using the CHP method can
be limited to those variants which are most likely functional.
In addition to being more powerful than performing multipoint

linkage analysis, the CHP method also controls type I error when there
is missing parental genotype data and inter-marker LD, which is not
the case for multipoint linkage analysis. Caution should be used when
performing multipoint linkage analysis on sequence data, as when
parental genotypes are missing for some samples (common for NGS-
based family data) variants in LD can lead to severe inflated type I
error when markers are assumed to be in linkage equilibrium.15,16 The
majority of multipoint linkage analysis programs, for example,
GeneHunter, SuperLink,17 Vitesse18 do not take into consideration
LD between marker loci. Even for linkage programs that can model
inter-marker LD, for example, LINKAGE/FASTLINK and Merlin, the
haplotype frequency estimates involving rare variants can be inaccu-
rate for studies with limited number of founders, leading to inflated
type I error.
The SEQLinkage package, freely available at URL http://bioinfor-

matics.org/seqlink, can efficiently extract genotypes from VCF files
and uses the CHP method described here to perform linkage analysis
as well as data format conversion on sequence data so that other
programs can also be used to perform linkage analysis if desired. It
provides a novel and effective approach that brings back well-
established linkage analysis techniques for use with the growing wealth
of genomic data of human pedigrees. Unlike filtering approaches that
are commonly used to analyze sequence data, SEQLinkage provides
statistical evidence of the involvement of variants in the etiology of
Mendelian diseases. In addition, because it incorporates mode of
inheritance information and penetrance models it is less likely than
filtering approaches to exclude causal variants in the presence of
phenocopies and/or reduced penetrance. For Mendelian traits for
which the penetrance model is not well established but the mode of
inheritance is known, an affected-only analysis can be performed
where all unaffected individuals are made unknown to avoid decreased
power due the use of an incorrect penetrance model. We recommend
the use of SEQLinkage in parallel with filtering methods on the same
sequence data to take full advantage of the power of NGS in families.

Table 1 Sample size estimates for the simulated non-syndromic hearing impairment study

Required power Gene MOI CHP a SNV b CHP-M75% c SNV-M75%

0.8 SLC26A4 Recessive 11 40 39 160

0.9 SLC26A4 Recessive 13 45 46 180

0.8 SLC26A4 Compound recessive 11 50 39 200

0.9 SLC26A4 Compound recessive 13 55 46 220

0.8 GJB2 Recessive 12 23 44 92

0.9 GJB2 Recessive 14 28 52 112

0.8 GJB2 Compound recessive 12 25 44 100

0.9 GJB2 Compound recessive 14 34 52 136

0.8 MYO7A Dominant 12 16 31 64

0.9 MYO7A Dominant 14 20 36 80

0.8 MYH9 Dominant 11 13 32 52

0.9 MYH9 Dominant 14 18 41 72

Note: 50% locus heterogeneity is assumed for all scenarios.
aNumber of families required for CHP method.
bNumber of families required for single variant method.
c‘M75%’: number of families required when causal variants in 75% participating families are missing.
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