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Deciphering associations for lung cancer risk through
imputation and analysis of 12 316 cases and 16 831
controls

Yufei Wang1, Yongyue Wei2, Valerie Gaborieau3, Jianxin Shi4, Younghun Han5, Maria N Timofeeva3,6, Li Su2,
Yafang Li5, Timothy Eisen7, Christopher I Amos5, Maria Teresa Landi8, David C Christiani2, James D McKay3

and Richard S Houlston*,1

Recent genome-wide association studies have identified common variants at multiple loci influencing lung cancer risk. To

decipher the genetic basis of the association signals at 3q28, 5p15.33, 6p21.33, 9p21 and 12p13.33, we performed a meta-

analysis of data from five genome-wide association studies in populations of European ancestry totalling 12 316 lung cancer

cases and 16 831 controls using imputation to recover untyped genotypes. For four of the regions, it was possible to refine the

association signal identifying a smaller region of interest likely to harbour the functional variant. Our analysis did not provide

evidence that any of the associations at the loci being a consequence of synthetic associations rather than linkage disequilibrium

with a common risk variant at these risk loci.
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INTRODUCTION

Lung cancer causes over one million deaths each year worldwide.1,2

Although principally caused by tobacco smoking, inherited genetic
factors are increasingly being recognised to be important in the
aetiology of lung cancer; notably, genome-wide association studies
(GWAS) in Europeans have consistently identified polymor-
phic variation at 15q25.1 (CHRNA5-CHRNA3-CHRNB4), 5p15.33
(TERT-CLPTM1) and 6p21.33 (BAT3-MSH5) as determinants of lung
cancer risk.3–7 Additionally, susceptibility loci for lung cancer at 3q28,
6q22.2, 13q12.12, 10q25.2 and 22q12.2 in Asians have been identified
using GWAS.8–10 Recent studies have validated the 3q28 association
in Europeans.11,12

Non-small-cell lung cancer (NSCLC) is the most frequent histolo-
gical subtype of lung cancer, comprised primarily of adenocarcinoma
(AD) and squamous cell carcinoma (SQ). The various lung cancer
histologies have different clinical characteristics reflective of differences
in their carcinogenesis and molecular profile.13 Perhaps, not surprisingly,
there is variability in the genetic effects on lung cancer risk by
histology with subtype-specific associations at 5p15.33 (TERT-
CLPTM1) for AD14,15 and at 9p21 (CDKN2A/CDKN2B)16 and
12p13.33 (RAD52)17 for SQ.
The associations identified by GWAS provide novel insights into the

development of lung cancer. However, the tag single-nucleotide
polymorphisms (tagSNPs) genotyped are generally not strong
candidates for causality, and thus elucidating the functional basis of
association signals is challenging. One reason for this is that the
correlation matrix between tagSNP(s) and functional variant(s) at any

locus can be complex. For example, at least two independent risk loci
map to 5p15.33,14 and the 6p22.1–p21.31 locus is part of the human
leucocyte antigen (HLA) region, which is highly polymorphic.7

Furthermore, it has recently been proposed that many GWAS signals
can be a consequence of ‘synthetic associations’, resulting from the
combined effect of one or more rare causal variants rather than simply
linkage disequilibrium (LD) with a common risk variant.18

Although it can be hard to deconvolute association signals,
functional variant discovery is aided by a deeper examination of
genetic variation in the LD blocks in which the tagSNPs reside and this
benefits greatly from efforts such as the 1000 Genomes Project, which
afford discovery of novel variants.12

To decipher the allelic structure underscoring the associations for
lung cancer at nine of the previously reported lung cancer risk-
associated regions, 3q28, 5p15.33, 6p21.33, 6q22.2, 9p21, 10q25.2,
12p13.33, 13q12.12 and 22q12.2, we performed a meta-analysis of data
from five independent GWAS. To maximise recovery of all variants
contributing to lung cancer risk at these loci, we imputed untyped
variants using 1000 Genome Project data as the reference panel.

MATERIALS AND METHODS

Subjects and data sets
We used GWAS data from five non-overlapping case–control series of
Northern European ancestry, which have been previously reported
(Supplementary Table 1): the MD Anderson Cancer Center GWAS of NSCLC
comprising 1150 cases and 1134 controls;4 the Institute of Cancer Research
(ICR) GWAS comprising 1952 cases and 5200 controls;7 the National Cancer
Institute GWAS comprising 5713 cases and 5736 controls;15 the International
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Agency for Research on Cancer (IARC) GWAS comprising 2533 cases and 3791
controls6 and the Harvard GWAS based on 984 cases and 970 controls,19 which
were genotyped using either Illumina HumanHap 317, 317+240S, 370Duo, 550,
610 or 1M arrays (Illumina Inc., San Diego, CA, USA; Supplementary Table 1).

Ethics
All participants provided informed written consent. All studies were reviewed
and approved by institutional ethics review committees at the involved
institutions.

Quality control
Standard quality control was performed on all scans excluding individuals
with low call rate (o90%) and extremely high or low heterozygosity
(ie, Po1.0× 10− 4), as well as all individuals evaluated to be of non-
European ancestry (using the HapMap version 2 CEU, JPT/CHB and YRI
populations as a reference; Supplementary Table 1). For apparent first-degree
relative pairs, we removed the control from a case–control pair; otherwise, we
excluded the individual with the lower call rate. Quantile–quantile (Q–Q) plots
of genome-wide association test statistics showed that there was minimal
inflation rendering substantial cryptic population substructure or differential
genotype calling between cases and controls unlikely in each GWAS (genomic
control inflation factors, λ= 1.00–1.05; Supplementary Figure 1). To bring
genotype data obtained from different arrays into a common platform from the
five GWAS and to recover untyped genotypes, we imputed SNPs using 1000
Genomes Project data as the reference (Supplementary Table 1). Q–Q plots for
all SNPs and those restricted to rare SNPs (minor allele frequency (MAF)
o1%) after imputation did not show evidence of substantive overdispersion
introduced by imputation (λ= 0.99–1.06 and 0.82–1.05).

Statistical analysis
Data were imputed for each scan using 1000 Genome Project data (Phase 1
integrated release 3, March 2012) as the reference, using IMPUTE2 (v.2.1.1),20

MaCH (v.1.0)21 or minimac (v.2012.10.3)22 software (Supplementary Table 1).
Genotypes were aligned to the positive strand in both imputation and
genotyping. Imputation was conducted separately for each scan in which
before imputation each GWAS data set was pruned to a common set of SNPs
between cases and controls. As previously advocated, we set thresholds for
imputation quality to retain both potential common and rare variants
for validation.16,23 Specifically, poorly imputed SNPs defined by an RSQR
o0.30 with MaCH or an information measure Is o0.40 with IMPUTE2 were
excluded from the analyses. Tests of association between imputed SNPs and
lung cancer were performed using SNPTEST (v.2.5),24 ProbABEL,25 MaCH2dat
(v.124)21 or glm function in R. Principal components generated using common
SNPs were included in the analysis to limit the effects of cryptic population
stratification that might cause inflation of test statistics. Classical HLA alleles
were imputed using HLA*IMP2, which is a method for imputing classical HLA
alleles from SNP data.26,27

The association between each SNP and lung cancer risk was assessed by the
Cochran–Armitage trend test. The possibility of significant hidden population
substructure or differential genotype calling between cases and controls in each
GWAS was evaluated using Q–Q plots of test statistics. The inflation factor λ
was based on the 90% least significant directly typed SNPs.28 Meta-analysis was
undertaken using inverse-variance approaches. Odds ratios (ORs) and
associated 95% confidence intervals (CIs) were calculated by unconditional
logistic regression using R (v.2.6) and PLINK29 (v.1.06) software. Cochran’s
Q-statistic to test for heterogeneity and the I2 statistic to quantify the
proportion of the total variation due to heterogeneity were calculated.30 To
explore the variability in genetic associations according to tumour histology, we
derived ORs for all lung cancer, and AD and SQ cancers. Subset-based meta-
analyses of AD and SQ lung cancer, stratified by AD and SQ histology, were
conducted using the program ASSET.31 All statistical tests were two-sided.

Bioinformatics
LD metrics were calculated based on 5200 controls from Wellcome Trust Case
Control Consortium release 2 (WTCCCII) genotyped using Illumina 1.2M
arrays and plotted using SNAP.32 LD blocks were defined on the basis of

HapMap recombination rate (cM/Mb) as defined using the Oxford recombination
hotspots and on the basis of distribution of CIs defined by Gabriel et al.33 To
explore the epigenetic profile of association signals, we used chromatin state
segmentation data generated by the ENCODE project. We used HaploReg34 and
RegulomeDB35 to examine whether any of the SNPs or their proxies
(ie, r240.8 in the 1000 Genomes EUR reference panel) annotate putative
transcription factor (TF) binding or enhancer elements. We assessed sequence
conservation using GERP; GERP scores (−12 to 6, with 6 being indicative of
complete conservation) reflect the proportion of substitutions at that site that
are rejected by selection compared with the observed substitutions expected
under a neutral evolutionary model based on sequence alignment of 34
mammalian species.36

eQTL, meQTL and mutation analysis
To gain insight into the biological basis of each of the risk loci for lung cancer,
we firstly performed an expression quantitative trait loci (eQTL) analysis for
directly typed SNPs making use of expression data on over 1100 normal lung
tissue.37 To explore the relationship between SNP genotype and gene body
methylation made use of previously published methylation quantitative trait
loci (meQTL) data from the Tumor Cancer Genome Atlas (TCGA) and the
EAGLE study37 using sample size-weighted meta-analysis implemented in
METAL.38 To examine the somatic mutation frequency of specific genes, we
used data from the analysis of SQ and AD lung cancers generated by TCGA and
MutSigCV v.1.439 to determine if the gene harbours more non-synonymous
mutations than expected by chance given its size, sequence context and
mutation rate. As advocated, we imposed a false discovery rate (FDR) of 0.1 as
being statistically significant.39

RESULTS

Subjects and definition of genomic regions
We studied five lung cancer GWAS in populations of European
ancestry (Supplementary Table 1). After filtering on the basis of
prespecified quality-control measures, the five GWAS provided
genotypes on 12 316 lung cancer cases and 16 831 controls
(Supplementary Table 1).
To explore the possibility of fine mapping the risk loci for lung

cancer, which have been identified in Asians, we recovered the SNPs
that had been reported to define respective loci: specifically at
rs9387478 (6q22.2, hg19 chr6: g.117786180A4C), rs753955
(13q12.12, hg19 chr13: 24293859T4C), rs7086803 (10q25.2, hg19
chr10: g.114498476A4G) and rs17728461 (22q12.2, hg19 chr22:
g.30598552C4G). None of these SNPs displayed a significant
association with risk of all lung cancer (ie, P40.05). For rs9387478,
the previously reported risk allele showed an association with both AD
and SQ albeit at only P-values of 0.01 and 0.03, respectively. In view of
these findings, we did not proceed to formal integration of the regions
confining our analysis to loci implicated in Europeans.
We defined the haplotype blocks and recombination hotspots

containing the tagSNPs previously reported to be associated with lung
cancer risk at 3q28 (TP63, rs4488809, hg19 chr3: g.189356261T4C),
5p15.33 (TERT, rs2736100, hg19 chr5: g.1286516T4G and CLPTM1L,
rs402710, hg19 chr5: g.1320722C4T), 6p21.33 (rs3117582, hg19 chr6:
g.31620520A4C), 9p21 (CDKN2A/CDKN2B, rs1333040, hg19 chr9:
g.22083404C4T) and 12p13.33 (RAD52, rs10849605, hg19 chr12:
g.1064438T4C). To include the possibility of long-range synthetic
associations, we imputed the regions defined by at least 1Mb region
surrounding the tagSNP associated with lung cancer risk at each of the
nine loci. Collectively, the six European and three Asian lung cancer
risk loci were captured by 12.5Mb region of the genome.
For analysis of the 6p21.33 association, we considered the major

histocompatibility complex (MHC) to be defined by a 4.5Mb region
bordered by the RFP and MLN genes (rs209130, hg19 chr6:
g.28867800A4G and rs1547668, hg19 chr6: g.33775446A4G,
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respectively) at the telomeric and centromeric ends of 6p21.33. For
the HLA imputation, we made use of GWAS SNP data for an
extended region in 6p21.33 bounded by rs1165196 (hg19 chr6:
g.25813150T4C) and rs2772372 (hg19 chr6: g.33427350T4C).

Supplementary Table 1 shows the number of SNPs directly typed
and successfully imputed (INFO score ≥ 0.4) at each of the five loci.
Regional plots of association results and recombination rates for all
five regions imputed can be found in Figure 1.

Figure 1 Regional plots of association results and recombination rates for 5p15.33 in all lung cancer (a), 3q28 and 5p15.33 in AD (b and c), 6p21.33,
9p21 and 12p13.33 in SQ (d–f). All lung cancer-related panel (a) was based on 12 332 lung cancer cases and 16 831 controls; AD-related panels (b and c)
were based on 3930 AD and 15 864 controls; and SQ-related panel (c) was based on 3490 SQ and 16 008 controls. Association results of both genotyped
(circles) and imputed (diamonds) SNPs in the GWAS samples and recombination rates for each locus: for each plot, − log10P-values (y axis) of the SNPs are
shown according to their chromosomal positions (x axis). The top genotyped SNP in each combined analysis is a large diamond and is labelled by its rsID.
The colour intensity of each symbol reflects the extent of LD with the top genotyped SNP: white (r2=0) through to dark red (r2=1.0). Genetic recombination
rates (cM/Mb), estimated using HapMap CEU samples, are shown with a light blue line. Physical positions are based on NCBI build 37 of the human
genome. Also shown are the relative positions of genes and transcripts mapping to each region of association. Genes have been redrawn to show the relative
positions; therefore, maps are not to physical scale.
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Analysis of individual lung cancer risk loci
For four of the five regions, imputation provided refinement of the
association signal identifying a region of interest narrower than the
original LD block likely to harbour the functional variant. However,
for 6p21.33, the LD structure is large and complex. In all regions, in
silico functional annotation of the most associated variants, using
publically available data from ENCODE, revealed that many reside
within potential regulatory regions of DNA.
At 3q28 the association was driven by the relationship with risk for

AD (Table 1); the strongest association for this lung cancer histology
was provided by rs13314271 (hg19 chr3: g.189357602T4C;
P= 3.35× 10− 7), which localises to intron 2 of TP63. The strongest
eQTL within the region of association was shown by rs4488809 (hg19
chr3: g.189356261T4C) for TP63 (PeQTL= 6.77× 10− 14), which is in
perfect LD with rs13314271 (D′= 1.0, r2= 1.0) and resides within a
genomic region having epigenetic markers of enhancer function and
TF binding (Supplementary Table 3).
The 6p21.33 association is almost exclusively the consequence of an

increased risk for SQ lung cancer (Table 1 and Supplementary Table 2).
The best association for SQ was provided by rs115549526 (hg19 chr6:
g.189356261T4C, P= 3.80× 10− 9), which maps to 2.3 kb to 5′ of
apolipoprotein M transcript variant 2. In addition to rs115549526,
multiple other SNPs within the extended region of LD also show
strong associations (ie, within one order of magnitude), which reflect
the HLA haplotype structure and the extensive correlations over the
whole MHC region. Making use of HLA imputation data, the
strongest individual HLA− allelic association for SQ lung cancer
was shown by HLA-B*0801 (P= 1.09× 10− 9; Supplementary Table 4).
Taken together with HLA-A*0101 and DRB*0301, this allele forms the
ancestral 8.1 haplotype seen in Europeans. The strongest eQTLs seen
in normal lung tissue for the 6p21.33 risk SNPs are shown by
rs3131383 (hg19 chr6: g.31704294C4A) and rs497309 (hg19 chr6: g.
31892484T4G) for HLA-A (PeQTL= 9.48× 10− 18 and 2.13× 10− 18,
respectively) and between rs3117577 (hg19 chr6: g.31727474A4G)
and HLA-DQB1 (PeQTL= 3.76× 10− 17; Supplementary Table 5).
Rs115549526, rs3131383, rs497309 and rs3117577 are all highly
correlated SNPs (pairwise LD metrics D′≥ 0.9, r2≥ 0.8). The strongest
meQTL within the 6p21 risk locus has previously been documented37

to be rs3131379 (hg19 chr6: g.31721033C4T) for MSH5 (PmeQTL=
1.14× 10− 17; Supplementary Table 5). Perhaps, not unexpectedly,
rs3131379 is strongly correlated with rs115549526 (D′= 1.0, r2= 0.9).
Many of the risk-associated SNPs map to enhancers and have
documented TF binding motifs (Supplementary Table 3).
As documented previously,7 two independent associations were

shown at 5p15.33, annotating TERT and CLPTM1L genes. The
5p15.33 TERT locus that has been associated with risks of many
tumour types with several independent risk loci.40 These risk signals
are represented by SNPs in localised regions of LD, within the
promoter and within introns 2–4.41,42 Consistent with previously
published observations,15 the strongest 5p15.33–TERT association was
provided by rs2736100, which maps to intron 2 of TERT (Figure 1),
and is driven by the risk for AD (P= 2.51× 10− 18). In contrast, the
association defined by rs37004 (hg19 chr5: g.1356684G4A,
P= 6.91× 10− 16), which maps 12 kb telomeric to CLPTM1L
(Figure 1), influenced the risk of both AD and SQ lung cancer
histologies. Rs2736100 provided for the strongest meQTL with TERT
(PmeQTL= 5.28× 10− 19; Supplementary Table 5). For the other
5p15.33 region of association, the intron 13 SNP rs401681 provided
the strongest meQTL with CLPTM1L (PmeQTL= 7.74× 10− 17;
Supplementary Table 5) but was only partially correlated with
rs37004 (D′= 1.0, r2= 0.28).T
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The signal at 9p21 was primarily driven by risk for SQ, the
strongest association being provided by rs1333040 (hg19 chr9:
g.22083404C4T), which maps within intron 13 of CDKN2B
(P= 2.54× 10− 6; Figure 1). Rs1333040 and closely correlated SNPs
did not show any significant eQTL or meQTL associations, and did
not annotate enhancer or DNAase hypersensitivity elements
(Supplementary Table 3).
As expected from previously published data,17 the 12p13.33

association for lung cancer was principally driven by the association
with risk of SQ lung cancer; rs3748522 (hg19 chr12: g.1058688A4C)
providing the strongest association signal (P= 2.35× 10− 8).
Rs3748522 maps to intron 1 of the DNA double-strand repair gene
RAD52 (Figure 1) within a predicted promoter that features multiple
TF binding sites (Supplementary Table 3).

DISCUSSION

Characterizing all the genetic variation within each region of associa-
tion, as we have performed, is critical in deciphering the allelic
architecture responsible for GWAS risk loci and for nominating
specific variants for functional analyses. For four of the risk loci, we
have been able to refine the association signal identifying a smaller
region of interest that is the most likely a location of a functional
variant and/or identifying a good candidate.
It is increasingly apparent that multiple independent risk loci for

different cancers characterise the 5p15.33 locus. Telomere mainte-
nance is a universal requirement for oncogenic progression. Telomere
length (TL) shows substantial interindividual variability and genetically
defined TERT-mediated differences in TL represents a promising
epidemiological risk factor for cancer. In terms of the TERT risk locus,
our findings provide strong evidence that rs2736100 is likely to be
responsible for the 5p15.33 association for lung AD. Such an assertion
is supported by a recent study demonstrating that rs2736100 genotype
is associated with TL variation.43 In contrast, the genetic basis of the
CLPTM1L association and risk of all lung cancer is less well defined.
The strongest associations at 3q28 for AD were shown by SNPs

mapping to intron 2 of TP63. TP63 is a member of the tumour
suppressor TP53 gene family, pivotal to cellular differentiation and
responsiveness to cellular stress. High expression levels of TP63 are
shown in lung cancers with and without amplification of TP63.
Exposure of cells to DNA damage, through carcinogenic agents such
as tobacco smoke, leads to induction of TP63 and transactivation of
TP53 target genes. As a strong relationship between rs4488809
genotype and TP63 expression was demonstrable, it is entirely
plausible that genetically determined differential expression impacts
on the ability of impacts on cellular responsiveness to DNA damage.
As rs4488809 is one of the top-ranked SNPs and overlaps a predicted
enhancer element, it is likely that this SNP represents a tractable basis
for the 3q28 association.
As previously stated at 12p13.33, a number of SNPs that are

correlated with rs3748522 and map to functional elements could
account for this association a priori. In contrast, the 9p21 association is
more ill-defined reflecting the more moderate impact of the risk locus
in addition to considerations of LD structure. It also worth noting that
the Illumina Infinium Humamethylation450 Beadchip (Illumina Inc)
used in meQTL analysis has a very low coverage at this locus,
which also advocates the level of difficulty in identifying meQTLs in
the region.
The 6p21.33 risk locus is large, gene rich and complex. Because it

encompasses the major histocompatibility complex, it features many
highly correlated variants across a large region making the association
signal hard to refine. The meQTL data provides evidence for the role

of MSH5 as the basis of the 6p21.33 association. However, a
compelling case can be advanced to support HLA variation in defining
SQ lung cancer risk. Somatic loss-of-function alterations of HLA-A
have been reported previously in genomic studies of lung cancer.
Moreover HLA-A is significantly mutated in SQ (FDR= 0.07) but not
in AD lung cancers. Intriguingly, the observation that HLA-class II
variation influences squamous oesophageal cancer risk suggests a
wider role for the MHC region in development of solid tumours.
In our study, we found no evidence to support the existence of

‘synthetic associations’ underscoring the currently identified autosomal
GWAS signals for lung cancer. At all of the five loci, the variants
identified as most associated with lung cancer had an MAF 410%.
Although GWAS tagSNPs are unlikely themselves to be functional,
they appear much more likely to tag a functional variants of a similar
frequency than single or multiple rare causal variants. As some rare
variants can be poorly imputed in GWAS, there remains the possibility
that some low-frequency variants conferring moderate risks might
have been missed. Although inflammatory bowel disease provides
support for the existence of ‘synthetic associations’,18 most of the
‘evidence’ for such a model of disease association comes from
simulation studies. Indeed, if such a genetic model was present, such
associations would be highly tractable by linkage analysis. No putative
linkage signals have, however, been identified in these regions.44

Given the caveats in correctly imputing very rare variants, our
analysis did not provide evidence that any of the associations at the
loci were a consequence of synthetic associations rather than LD with
a common risk variant at these risk loci. This is not to say that rare
disease-causing variants with large effect do not contribute to the
heritable lung cancer risk in general. Evidence for this class of
susceptibility is provided by the recent observation that the subpoly-
morphic variants BRCA2-K3326X and CHEK2-I157T are associated
with substantive risk of squamous lung cancer in smokers.12

In summary, we have extensively characterized all genetic variation
across five regions that have been reported to be associated with lung
cancer in individuals of European decent. In addition to providing
insight into the allelic architecture of these association signals our
study findings provide a resource informing functional analyses aimed
at defining the biological basis of risk loci. Our analysis also reinforces
the observation that many of the associations are histology specific.
Identifying such histology specific SNPs ultimately should refine our
understanding of the origins of morphologic differences, and may
contribute to the ongoing search for personalised treatment for
subtype-specific lung cancer cases.
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