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Genome-wide association analysis on five isolated
populations identifies variants of the HLA-DOA gene
associated with white wine liking

Nicola Pirastu*,1,2, Maarten Kooyman3, Michela Traglia4, Antonietta Robino1, Sara M Willems3, Giorgio Pistis4,
Najaf Amin3, Cinzia Sala4, Lennart C Karssen3, Cornelia M van Duijn3,5, Daniela Toniolo4 and Paolo Gasparini1,2

Wine is the most popular alcoholic beverage around the world and because of its importance in society has been widely studied.

Understanding what drives its flavor has been a quest for decades but much is still unknown and will be determined at least in

part by individual taste preferences. Recently studies in the genetics of taste have uncovered the role of different genes in the

determination of food preferences giving new insight on its physiology. In this context we have performed a genome-wide

association study on red and white wine liking using three isolated populations collected in Italy, and replicated our results on

two additional populations coming from the Netherland and Central Asia for a total of 3885 samples. We have found a

significant association (P=2.1×10−8) between white wine liking and rs9276975:C4T a polymorphism in the HLA-DOA gene

encoding a non-canonical MHC II molecule, which regulates other MHC II molecules. The same association was also found with

red wine liking (P=8.3×10−6). Sex-separated analysis have also revealed that the effect of HLA-DOA is twice as large in

women as compared to men suggesting an interaction between this polymorphism and gender. Our results are one of the first

examples of genome-wide association between liking of a commonly consumed food and gene variants. Moreover, our results

suggest a role of the MHC system in the determination of food preferences opening new insight in this field in general.
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INTRODUCTION

Wine is probably the oldest produced beverage in human history
dating its first apparition in Georgia 7000 BC. It is extremely
important for many cultures not only for its economy but also from
the social and religious point of view. For these reasons it is also the
most common and consumed type of alcoholic beverage throughout
the world.1,2 In addition, several studies indicate that modest wine
consumption can have some beneficial health effects, including
protection against cardiovascular and Alzheimer’s disease.3–6

There has been extensive research aiming to improve both its
production and its flavor. The taste of wine depends on many different
sensory perceptions ranging from taste and olfaction to texture.7 Wine
is a mixture of thousands of molecules that can contribute to its final
taste,8 and its composition varies greatly depending on the grapes
used, climate and production method.9 Although the flavor of some of
these compounds is very well known, it is really difficult to understand
what their role in final taste is.7,10,11

The relevant role of genetic factors both on alcohol consumption
and dependence has been clearly demonstrated by genome-wide
association study (GWAS) studies.12–16 Moreover, studies on the
genetic variations in bitter taste receptors have also shown that
variations in TAS2R16 and TAS2R38 genes can influence alcohol
intake17–19 but not dependence.19

On the contrary, very little is known about the possible contribution
of genetic factors to alcohol preferences in humans. Recently, it has

been demonstrated that ethanol flavor perception (but not taste) is
associated to variants in the olfactory receptor (OR) OR7D4 gene and
to the SCNN1D, a gene encoding a subunit of the salt taste receptor.20

Moreover, Mc Rae et al have demonstrated that a non-synonymous
variant of OR2J3, an OR gene, impairs the ability to detect cis-3-
hexen-1-ol, a key component in many different foods including
wine.21 Finally, we conducted a study on numerous taste-related
genes, which allowed us to associate white wine and vodka liking to
variations on the TAS1R2 gene in Central Asia populations, suggesting
a general role in ethanol perception for this sweet receptor gene.22

Nevertheless, the molecular bases underlying food liking in general
and more specifically to wine is still poorly understood. For these
reasons, we have conducted the first GWAS on red and white
wine liking on five isolated populations coming from different
geographic areas.

MATERIALS AND METHODS

Study populations
Samples have been collected in various populations from Europe and Central
Asia. More specifically, our study includes 381 individuals come from INGI-
CARL a population coming from Carlantino, a small village located in Puglia
(Southern Italy); 744 from INGI-FVG which refers to six villages all situated in
the Friuli Venezia Region in Northern-Eastern Italy; and finally 1115 from
INGI-VB a population coming from the Val Borbera Valley in Northern-
Western Italy. In total, 1261 samples were from the Erasmus Rucphen Family
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(ERF) study, a cross-sectional cohort including 3000 living descendants of 22
couples who had at least six children baptized in the community church around
1850–1900. Finally, Silk Road (SR) is a cohort of ~ 1000 individuals resulting
from the sampling of 20 communities coming from five nations (Armenia,
Azerbaijan, Georgia, Uzbekistan, Tajikistan and Kazakhstan) located along the
silk road, in particular, 335 have been used for this study.

Wine-liking ascertainment
Red and white wine liking was ascertained through a questionnaire where each
participant was asked to rate his liking for each type of wine on a scale from 1
(dislike extremely) to 9 (like extremely).23 To assess individual liking in the SR
population a five-point scale coupled with smiley faces was used. This scale is
commonly used in case of linguistic barriers or when working with illiterate
people as was the case of the SR population.24 Given the differences in the two
scales data have been standardized by dividing each score for the number of
categories of the used scale, so 9 for the European populations and 5 for the SR
study. This approach is the same as the ‘Simple proportion method’ described
in Colman et al (1977)25 and similar to the formulas used in Preston and
Colman (2000)26 and Dawes (2002).27 The only difference in a regression
would be noticed on the intercept; however, as, to perform meta-analysis, we
are interested only in betas and association is performed within each group, this
difference is negligible.

Genotyping and Imputation
Genotyping was carried out as previously described.28–30 In brief, INGI-CARL,
INGI-FVG and INGI-VB have been genotyped with Illumina 370 k high-
density SNP array, whereas SR has been genotyped with Illumina 700 k high-
density SNP arrays. Genotype imputation on the INGI cohorts and SR was
conducted after standard QC using SHAPEIT231 for the phasing step and
IMPUTE232 for the imputation using the 1000 Genomes phase I v3 reference
set.33 ERF has been genotyped with different genotyping platform: Illumina
318 k, 350 k, 610 k and Affymetrics 200 k. Genotypes were pooled together after
QC, phased and imputed to the 1000Genomes data set phase I v333 using
MaCH and minimac.34 After imputation, we excluded from the statistical
analyses SNPs with MAFo0.01 or Infoo0.4 for all populations but ERF for
which R2o0.3 was used instead.

Association analysis
Association analysis was conducted using mixed model linear regression,
whereas the standardized wine liking was used as the dependent variable and
the SNP dosages as the independent variable. Sex and age were used as
covariates. The kinship matrix based on all available genotyped SNPs was used
as the random effect. For ERF the kinship matrix was estimated on 14.4 k SNPs
common to all different genotyping platform used.35 The GenABEL R package
was used to eliminate the effect of relatedness from the trait. Corrected
environmental residuals were estimated according to the formula: trait ~ sex
+age+genomic kinship using the GRAMMAR+ method36 as implemented in the
GenABEL 1.7–2. MixABEL35 was used for running the linear regressions
between the estimated residuals and all the imputed SNPs. Only SNPs that
passed post imputation quality control were used for the association analysis.
SNPs that did not pass quality control for more than one population were
discarded as well. For the association analysis we used a two-step approach.37

For the genome-wide discovery step, association analysis was conducted
separately for each INGI cohort and results have been pooled together using

the inverse-variance weighting method. After association analysis all SNPs,
which showed Po1× 10− 5, were selected to be used for the replication step
using ERF and SR. We considered SNPs with Po5×10− 8 as significant at the
replication step. All meta-analysis have been conducted using in house R scripts.
Power analysis was conducted using the ‘Genetic Power Calculator’ software.38

Data availability
Genotypes for the cohorts used in this study have been deposited in the
EGA database https://www.ebi.ac.uk/ega/home. In particular, under the
following accession numbers: INGI-CARL EGAS00001001005, INGI-FVG
EGAS00001001006, INGI-VB EGAS00001001007, ERF EGAS00001001134
and SR EGAS00001001008.

RESULTS

Table 1 describes the each cohort’s characteristics and trait distribu-
tion. The mean liking rating was very similar across the Italian
populations, whereas lower liking was observed in SR and ERF. In
particular, ERF shows the lowest liking as compared with the other
populations. Although means were different, SDs were consistent
across all populations showing that the standardization procedure was
effective in making the measures comparable.
For the discovery step we performed genome-wide association

analysis on red wine liking and white wine liking on the three Italian
populations (2271 samples) and then pulled the results together using
the inverse-variance weighting method. We then chose all SNPs with
Po1× 10− 5 to use for the second step joint analysis.
Figure 1 represents the Manhattan plot for the discovery step that

formed the basis SNPs selected for replication. The selected SNPs were
42 for white wine and 72 for red wine. The selected variants were
tested for association to wine preference in two additional cohorts:
ERF using 1261 samples and SR using 335 samples. Joint analysis
revealed a genome-wide significant association between white wine
and rs9276975 (NC_000006.12:g.33005822C4T) (P= 2.1× 10− 8)
a SNP in the 3′-UTR region of the HLA-DOA gene. Given that the
inverse-variance method for meta-analysis is sensible to differences in
trait distributions and that we had to transform the SR scale to adapt it
to the other populations, we performed also z-score based meta-
analysis. The results were almost identical to the ones obtained with
the inverse-variance method (regression coefficient 0.98), with the
P-value for rs9276975:C4T equal to 1.5 × 10− 8. This result shows
that the transformation applied to the traits did not influence the final
result. To verify that we did not have residual stratification in the
replication step, we performed genome-wide meta-analysis on both
analyzed traits. Lambda was 1.01 for red wine and 1.002 for
white wine, QQ-plots are reported in the additional materials
(Supplementary Figures S2 and S3). Finally, power analysis using
the Genetic Power Calculator revealed that we have 0.54 power to
detect association at α= 5× 10− 8 under the same conditions of the
described association (MAF= 0.15 β= 0.053). We also estimated that
we have 0.8 power to detect association at α= 5× 10− 8 at 0.01
explained variance regardless of the MAF.

Table 1 Cohort demographics and trait distribution

Population Number of samples red/white wine Mean age (SD) Percentage of women Red wine liking (SD) White wine liking (SD)

INGI-CARL 398/381 52.56 (17.26) 58% 0.76 (0.27) 0.69 (0.29)

INGI-FVG 751/744 50.85 (15.80) 59% 0.68 (0.25) 0.63 (0.26)

INGI-VB 1122/1115 53.23 (16.62) 63% 0.73 (0.25) 0.63 (0.26)

ERF 1246/1261 47.4 (13.23) 55% 0.53 (0.26) 0.58 (0.26)

SR 353/335 39.12 (15.86) 59% 0.64 (0.30) 0.59 (0.30)

For all cohorts, numerosity of the sample for the red and white wine, age and sex distribution and mean liking with SD for red and white wine is reported.
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Figure 2 shows the regional association plot around rs9276975:
C4T for white and red wine, whereas Supplementary Figure S1 shows
a similar plot for the whole HLA locus. The association signal is clearly
confined to the HLA-DOA locus not affecting the wider HLA region,
which is in strong linkage disequilibrium. This is probably due to the
fact that HLA-DOA is within two recombination hotspots that isolate
it from the rest of the HLA locus.
Table 2 reports the results for the significant SNP, whereas

Supplementary Table S2 contains the results for all the SNPs selected
in step one.
To verify whether the associated SNP had an effect on food likings

in general or only on wine, we ran association analysis between the
two SNPs and 40 more food likings, which were available on the
studied cohorts and collected similar to the collection of data for wine
liking. This analysis did not show significant or close to significant
results (Supplementary Table S4), suggesting that the described
associations are specific to wine liking.
No significant association was found for any of the 72 SNPs used

for the replication step of red wine as shown in Supplementary Table
S3. Supplementary materials Supplementary Table S1 report the
descriptive statistics for all GWAS and meta-analysis, whereas
Supplementary Figures S2 and S3 show QQ-plots for the same
analyses.
Given the possible genetic differences between man and women, the

analyses have been conducted also on man and women separately
limited to the rs9276975:C4T SNP. This analysis revealed that the
association between white wine and HLA-DOA was much stronger in

women than man (P= 1× 10− 7 in women vs P= 0.01 in man).
Looking at the effect size, women exhibited twice the effect as
compared with man (0.067 vs 0.033). Table 3 shows the results for
the sex-specific analysis of white wine and red wine, which showed
again a similar effect.
Annotating the rs9276975:C4T with HaploReg v2,39 SNPNexus

and Regulome DB did not give any insight on what might be its role in
the observed association. Also, extending the annotation to the all the
SNPs in strong LD (r240.8) with rs9276975:C4T in the CEU 1000 G
population. Only rs1367731 (NC_000006.12:g.33017422C4T) and
rs9276981 (NC_000006.12:g.33007922G4C) are suggested to have a
possible functional role by Regulome DB with a score of 5 and 6,
respectively, which corresponds to the lowest possible scores and to
very weak evidence.

DISCUSSION

In this study we present the first GWAS on wine liking showing a
significant association with HLA-DOA, a non-canonical class II MHC
molecule, in particular with white wine. Although it is true that in the
MHC locus there are at least two clusters of OR, HLA-DOA is situated
in between two recombination hotspots (Figure 2), which makes it
independent from the main MHC locus containing the OR genes. The
most associated SNP, rs9276975:C4T, is located in the 3′-UTR region
of the gene, which would suggest more a regulatory role than a
functional one. This fits particularly well if we consider HLA-DOA
function in the general MHC class II system. In fact its role is to
inhibit HLA-DM another non-canonical MHC class II molecule who

Figure 1 Manhattan Plot for the meta-analysis on the Italian Populations. The red line is set at P=1×10−5, whereas the red points represent the SNPs
selected for replication. The top figure refers to red wine, whereas the lower one to white wine.
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has the double role of activating all other MHC class II proteins by
de-coupling from the CLIP protein and then, by binding to them, is
responsible for the specificity of their binding to the correct antigens.40

In other words HLA-DO by inhibiting HLA-DM prevents the
activation of the MHC class II molecules in general. Unfortunately
the bioinformatics analysis was not able to give us any insights on
possible regulatory elements modified by SNPs in LD with rs9276975;
however, we must consider that given the particular nature of our
traits not much information is available on the interested tissues such
as the olfactory epithelium for example.

MHC could be linked to wine liking directly through the olfactory
epithelium cells. In fact numerous studies have linked MHC molecules
to mate choice through scent in various species including
humans.41–43 In mice, non-canonical MHC class I molecules are
specifically expressed in a particular section of the vomeronasal organ
(VNO),44 which are thought to modulate the response to MHC
antigens.45 Given that humans do not have a VNO, it is unclear how
they could be able to distinguish different HLA types. However,
studies on VNO sham mice show that they can recognize MHC class II
antigens as well as non-sham mice suggesting that, at least for this

Figure 2 Regional association plot of the locus containing the HLA-DOA gene. The top figure refers to white wine, whereas the bottom one to red wine.
Clearly, the two figures look alike, although in the case of red wine the association signal is much weaker. Different colors refer to the r2 with rs9276975 in
the CEU population. Squares represent coding SNPs, whereas circles represent non-coding SNPs.
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type of molecules, the VNO is not necessary.46 Another recent study
conducted on monogamous birds with highly developed olfaction
shows that it is MHC class II molecules and not class I, which
determine mate recognition.47 In humans it has been demonstrated
that different HLA types show preference or dislike for specific scents,
suggesting that some volatile molecules responsible for these odors are
mimicking some HLA-specific scent.48,49 MHC class II molecules are
responsible for immune response to external stimuli and it is thus a
more suitable candidate than class I MHC for a possible olfactory
function. One of the main theories behind MHC recognition is that
people with different HLA profile have different composition in
bacterial flora, which affects body odor and thus generates the HLA-
specific scent.50 Extending this view to our findings, the association we
detect seems to be specific to wine in which bacteria are an important
part of the production process and could be responsible to the
difference in liking. It is thus possible that HLA-DOA, by regulating
MHC class II molecules, modulate also the perception of specific
volatile compounds present in wine, which are produced by the
bacteria used in wine production. It is also very suggestive that this
effect is much stronger in white wine than in red wine in which the
mouth-feel component of its flavor is more accentuated owing to the
presence of more tannins.51 The fact that the effect of rs9276975:C4T
on wine liking is twice as large in women than in men seems to

support the olfactory hypothesis. Women have in fact been described
as being more sensitive than men to specific odors52,53 also in the
specific case of MHC driven body odor recognition.54,55

The precise mechanism of how MHC class II molecules actually
interact with the olfactory epithelium and how the signal is then
transferred to the brain is still unknown and further studies are needed
to clarify this point.
We have previously reported rs4920566 (NC_000001.11:

g.18853330 A4G) in the TAS1R2 gene as being associated to white
wine liking. Checking in the results from the combined meta-analysis,
this SNP resulted to be non significant (P-value= 0.83). This lack of
replication could be due to allelic heterogeneity between the SR
populations and the European ones, and further studies are needed to
clarify this point.
In conclusion, this study is one of the first that examines the genetics

of liking for a commonly consumed food on a genome-wide scale. Our
findings suggest that at least in the case of wine MHC has an important
role in defining its liking probably through olfaction. This opens a new
prospective not only in food liking and thus choice but also in
understanding the mechanisms that link flavor to olfaction in general.
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Table 2 Results for the association analyses for rs9276975 for white

wine and red wine

rs9276975

effect allele T Population β P

Effect

allele

frequency Info/R2

White wine INGI-CARL 0.0764 1.05×10−02 0.15 0.98

INGI-FVG 0.0503 9.29×10−03 0.15 0.97

INGI-VB 0.0751 2.23×10−04 0.09 0.97

Discovery 0.0647 3.47×10−07

ERF 0.0425 1.18×10−02 0.15 0.79

SR 0.0286 3.55×10−01 0.17 Typed
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quality of the imputation of the SNP measured as Info for INGI populations and SR and R2

for ERF.

Table 3 Summary of results for the sex-separated analysis

rs9276975 effect allele T Numerosity Direction β P

White Wine
Man 1681 ++++− 0.03 1.48×10−2

Women 2193 +++++ 0.07 4.50×10−7

Red Wine
Man 1656 ++++− 0.03 3.54×10−2

Women 2183 +++++ 0.05 6.08×10−5

Direction represents the direction of the effect in INGI-CARL, INGI-FVG, INGI-VB, ERF and SR
populations.
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