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Abstract

Modern scientific inquiries require significant data-driven evidence and trans-disciplinary 

expertise to extract valuable information and gain actionable knowledge about natural processes. 

Effective evidence-based decisions require collection, processing and interpretation of vast 

amounts of complex data. The Moore's and Kryder's laws of exponential increase of 

computational power and information storage, respectively, dictate the need rapid trans-

disciplinary advances, technological innovation and effective mechanisms for managing and 

interrogating Big Healthcare Data. In this article, we review important aspects of Big Data 

analytics and discuss important questions like: What are the challenges and opportunities 

associated with this biomedical, social, and healthcare data avalanche? Are there innovative 

statistical computing strategies to represent, model, analyze and interpret Big heterogeneous data? 

We present the foundation of a new compressive big data analytics (CBDA) framework for 

representation, modeling and inference of large, complex and heterogeneous datasets. Finally, we 

consider specific directions likely to impact the process of extracting information from Big 

healthcare data, translating that information to knowledge, and deriving appropriate actions.

In 1798, Henry Cavendish estimated the mean density of the Earth by studying the attraction 

of 2-inch diameter pendulous balls to larger 10-inch diameter ones and comparing that to the 

Earth's gravitational pull [1]. Just like many scientists before him, he used less than 30 

observations to provide a robust estimate of a parameter of great interest, in this case, the 

mean density of the Earth (5.483±0.1904 g/cm3). Nowadays, using modern physics 

techniques, we know that the Earth's real mean density is 5.513 g/cm3, which is within 

Cavendish’ margin of error, but requires powerful instruments, millions of observations, and 

advanced data analytics to compute.

Big Data vs. Big Hardware

It is accepted that all contemporary scientific claims need to be supported by significant 

evidence, allow independent verification and agree with other scientific principles. In many 

cases, this translates into collecting, processing and interpreting vast amounts of 

heterogeneous and complementary observations (data) that are transformed into quantitative 

or qualitative information ultimately leading to new knowledge. The Moore's and Kryder's 
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laws of exponential increase of computational power (transistors) and information storage, 

respectively [2], are driven by rapid trans-disciplinary advances, technological innovation 

and the intrinsic quest for more efficient, dynamic and improved human experiences. For 

instance, the size and complexity of healthcare, biomedical and social research information 

collected by scientists in academia, government, insurance agencies and industry doubles 

every 12-14 months [3]. By the end of 2014, about 1 in 2 people across the Globe will have 

Internet access and collectively humankind (7.4 billion people) may store more than 1023 

bytes (100 Zettabytes) of data.

Consider the following two examples of exponential increase of the size and complexity of 

neuroimaging and genetics data, Table 1. These rates accurately reflect the increase of 

computational power (Moore's law), however they are expected to significantly 

underestimate the actual rate of increase of data acquisition (as only limited resources exist 

to catalogue the plethora of biomedical imaging and genomics data collection) [2].

Neuroimaging Genetics

Figure 1 demonstrates the increase of data complexity and heterogeneity as new 

neuroimaging modalities, acquisition protocols, enhanced resolution and technological 

advances provide rapid and increasing amount of information (albeit not necessarily 

completely orthogonal to other modalities). In addition to the imaging data, most 

contemporary brain mapping studies include complex meta-data (e.g., subject demographics, 

study characteristics), clinical information (e.g., cognitive scores, health assessments), 

genetics data (e.g., single nucleotide polymorphisms, genotypes), biological specimens (e.g., 

tissue samples, blood tests), meta-data, and other auxiliary observations [4, 5]. Clearly there 

are four categories of challenges that arise in such studies. First is the significant complexity 

of the available information, beyond data size and source heterogeneity. Second, the 

efficient representation of the data, which needs to facilitate handling incompleteness and 

sampling incongruence in space, time and measurement. Third, the data modeling is 

complicated by various paradigm and biological constrains, difficulties with algorithmic 

optimization, and computing limitations. Forth, the ultimate scientific inference requires 

high-throughput, expeditive and adaptive joint processing, analysis and visualization, which 

are extremely difficult in Big Data explorations using all the available information, as 

opposed to relying on a smaller and cleaner sample of homologous elements.

Big Data Characteristics

Big healthcare data refers to complex datasets that have some unique characteristics, beyond 

their large size, that both facilitate and convolute the process of extraction of actionable 

knowledge about an observable phenomenon. Typically, Big healthcare data include 

heterogeneous, multi-spectral, incomplete and imprecise observations (e.g., diagnosis, 

demographics, treatment, prevention of disease, illness, injury, and physical and mental 

impairments) derived from different sources using incongruent sampling.

There are two important characteristics of Big healthcare data – their energy and life-span. 

Energy encapsulates the holistic information content included in the data, which, because of 

its size, may often represent a significant portion of the joint distribution of the underlying 
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healthcare process. That is, the instance of Big biomedical data may resemble extremely 

closely the unknown distribution of the clinical phenomenon of interest. This facilitates 

accurate exploration of the clinical state of patients or cohorts purely by empirically 

observed information, rather than by analytical or parametric models, which may be 

associated with specific assumptions limiting their applications.

As an example, consider a fusion of US healthcare, economics and demographic data 

collected by the Centers for Medicare & Medicaid Services (CMS), Bureau of Labor 

Statistics (BLS) and the Census Bureau. An instance mashing these heterogeneous and 

complex data (for 2012) is aggregated and distributed by the SOCR Data Dashboard (http://

socr.umich.edu/HTML5/Dashboard) [6]. The energy of the integrated data archive is more 

than the sum of the information content contained within each database individually. The 

potential to explore multivariate associations across the aggregated dataset make it more 

useful for both within discipline explorations, e.g., healthcare expenditures (CMS) may be 

affected by employment statistics (BLS), as well as across discipline studies, e.g., impact of 

race (Census) on physician reimbursement rates (CMS) accounting for labor force 

participation (BLS). Such mashed datasets poses many of the core Big Data characteristics, 

e.g., multiple source heterogeneities, high-dimensionality, large size, incongruences of 

sampling rates, and incompleteness.

Much like the observed exponential increase of the size and complexity of Big healthcare 

data, its life-span, in terms of its value past time of acquisition, also follows an exponential 

model. However, the lifespan and value of healthcare data rapidly decay at an exponential 

rate – this is known as information devaluation, see Figure 2. For instance, the power of the 

aggregated CMS, BLS and Census data archive rapidly decays as the relevance of the data 

to influence bio-social decision making (political, healthcare, demographic, economic, etc.) 

diminishes significantly over time. Although the 2012 statistics may be useful to predict 

2015 Medicare spending, relative to the changing population demographics and the state of 

the economy (e.g., unemployment, inflation), the most significant predictors would be the 

(observed or predicted) population size, healthcare costs and medical procedures 

reimbursement rates observed in years 2013-2017. Thus, rapid acquisition, aggregation, 

processing and democratization of data is critical to fully utilize their potential power, 

extract useful information, and derive actionable knowledge.

Big Data Analytics

There is currently no established analytical foundation for systematic representation of Big 

Data that facilitates the handling of data complexities and at the same time enables joint 

modeling, information extraction, high-throughput and adaptive scientific inference. One 

idea is to explore the core principles of distribution-free and model-agnostic methods for 

scientific inference. Classical examples of these include non-parametric techniques that 

enable data-driven decision making, without making specific assumptions about the process 

distribution, and calculation or estimation of statistics as functions on a sample independent 

of parameter specifications [7, 8]. In these cases, scientific inference does not depend on 

fitting parametrized distributions but rather on ordering, comparing, ranking or stratifying 

statistics derived from the observed data [9]. Modern classification, prediction, and 
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machine-learning inference approaches differ from model-based parametric methods by 

their underlying assumptions and the number of parameters that need to be estimated to 

generate the framework supporting the decision making process, data analytics, and 

inference. Model-based techniques have a fixed number of parameters and postulate 

explicitly their probability distributions, whereas non-parametric methods relax the a priori 

beliefs of the parameter distributions and allow varying number of parameters, relative to 

the amount of training data [10, 11]. Bayesian inference plays a pivotal role in contemporary 

machine learning, data mining, supervised and unsupervised classification, and clustering 

[12-14]. The following example illustrates the importance of employing Bayesian principles 

in Big Data inference. Suppose a patient visits a primary care clinic and is seen by a male 

provider not wearing a badge or other insignia. Using only this information, to address the 

clinician appropriately, the patient is trying to figure out if he is more likely to be a doctor or 

a nurse (assuming these are the only options in this clinical setting). As a male provider, 

traditional stereotypes may suggest that he is more likely to be a doctor than a nurse. 

However, a deeper inspection shows exactly the opposite – the odds are that the male 

provider is a nurse. Why? Let's denote F = Female, D = (primary care) Doctor, and N = 

Nurse. We can use Bayesian rule [15] to compute the odds likelihood ratio, , which 

represents the data-driven evidence about the enigmatic credentials of the (male) healthcare 

provider:

Here, we use the current (2015) estimates of primary care physicians (435K in the US), 

practicing nurses (4.5M in the US), and the reported gender distributions in the 2 professions 

(F:M ratios are 1:2 for physicians and 12:1 for nurses), according to the Kaiser Family 

Foundation 1. An odds likelihood ratio bigger than 1 illustrates that there is higher chance 

the (male) healthcare provider is a nurse, rather than a physician, dispelling an initial 

stereotypic vision of females and males as predominantly nurses and physicians, 

respectively.

In general, understanding the underlying processes and extracting valuable information from 

complex heterogeneous data requires distribution-free techniques, as the real probability 

distributions of multivariate, incomplete, incongruent and large datasets may be out of reach. 

Joint distribution models for the complete datasets may be impractical, incomplete or 

inconsistent. Conditional or marginal probability distributions may be available for some 

variables or well-delineated strata of the data. As many classical statistical methods make 

assumptions about data distributions, the results from such analyses are valid only when 

these assumptions are approximately satisfied. For example, bivariate Pearson's correlation 

assumes normally distributed variables and no significant outliers, whereas Spearman's 

1http://kff.org/other/state-indicator/total-number-of-nurse-practitioners-by-gender
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correlation trades off sensitivity with the need for parametric assumptions, and employs 

distribution-free rank-ordering, to quantify the strength of bivariate correlation. Typically, 

distribution-free inference is not completely parameter free. Albeit there may not be 

distribution model parameters to be estimated, there are still parameters that need to be 

determined using the training data that can subsequently be used to classify prospective data, 

predict process behavior, forecast trends or identify associations in testing data [16].

Compressive Sensing Motivation

Another approach to Big Data representation and analytics is Compressive Big Data 

Analytics (CBDA), which borrows some of the compelling ideas for representation, 

reconstruction, recovery and data denoising recently developed for compressive sensing [17, 

18]. In compressive sensing, a sparse (incomplete) data is observed and one looks for a high-

fidelity estimation of the complete dataset. Sparse data (or signals) can be described as 

observations with a small support, i.e., small magnitude according to the zero-norm. Let's 

define the nested sets

where the data x, as a vector or tensor, has at most k non-trivial elements. Note that if x, z ∈ 

Sk, then

If Φn×n = (φ1, φ2, φ3, ... ,φn) represents an orthonormal basis, the data may be expressed as x 

= Φc, where ci = 〈x, φi〉, i.e., c = ΦTx, and ∥c∥o ≤ k. Even if x is not strictly sparse, its 

representation c is sparse. For each dataset, we can assess and quantify the error of 

approximating x by an optimal estimate x̂ ∈ Sk by computing

In compressive sensing, if x ∈ Rn, and we have a data stream generating m linear 

measurements, we can represently = Ax, where Am×n is a dimensionality reducing matrix (m 

<< n), i.e., Am×n:Rn → Rm. The null space of A is N(A) = {z ∈ Rn: Az = 0 ∈ Rm} and A 

uniquely represents all x ∈ Sk ⇔ N(A) contains no vectors in S2k. The spark of a matrix A 

represents the smallest number of columns of A that are linearly dependent. If Am×n is a 

random matrix whose entires are independent and identically distributed, then spark(A) = m 

+ 1, with probability 1. Taking this a step further, if the entries of A are chosen according to 

a sub-Gaussian distribution, then with high probability, for each k, there exists δ2k ∈ (0,1) 

such that

(1)
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for all x ∈ S2k [19]. When we know that the original signal is sparse, to reconstruct x given 

the observed measurements y, we can solve the optimization problem:

Linear programming may be used to solve this optimization problem if we replace the zero-

norm by its more tractable convex approximation, the l1-norm, x̂ = arg minz:Az=y∥z∥1. Given 

that Am×n has the above property (1) and , if we observe y = Ax, then the 

solution x̂ satisfies . Thus, in compressive sensing applications, if x ∈ Sk 

and A satisfies condition (1), we can recover any k-sparse signal x exactly (as σk(x)1 = 0) 

using only O(k log(n/k)) observations, since . Finally, if Am×n is random 

(e.g., chosen according to a Gaussian distribution) and Φn×n is an orthonormal basis, then 

Am×n × Φn×n will also have a Gaussian distribution, and if m is large, A′ = A × Φ will also 

satisfy condition (1) with high probability. Image acquisition in the Fourier domain (e.g., 

magnetic resonance imaging) presents a motivational example illustrating the components of 

the model (Ym×1 = Am×n × Φn×n × Xn×1) [20, 21], Figure 3.

Compressive Big Data Analytics (CBDA)

To develop a similar foundation for Compressive Big Data Analytics, one may start by 

iteratively generating random (sub)samples from the Big Data collection. Using classical 

techniques we can obtain model-based or non-parametric inference based on the sample. 

Next, likelihood estimates (e.g., probability values quantifying effects, relations, sizes) can 

be obtained and the process can continue iteratively. This amounts to repeating the 

(re)sampling and inference steps many times (with or without using the results of previous 

iterations as priors for subsequent steps). Finally, bootstrapping techniques may be 

employed to quantify joint probabilities, estimate likelihoods, predict associations, identify 

trends, forecast future outcomes, or assess accuracy of findings. The goals of compressive 

sensing and compressive big data analytics are somewhat different. The former aims to 

obtain a stochastic estimate of a complete dataset using sparsely sampled incomplete 

observations. The latter attempts to obtain a quantitative joint inference characterizing 

likelihoods, tendencies, prognoses, or relationships. However, a common objective of both 

problem formulations is the optimality (e.g., reliability, consistency) of their corresponding 

estimates.

As an example, suppose we represent (observed) Big Data as a large matrix Y ∈ Rn×t, where 

n=sample size (instances) and t = elements (e.g., time, space, measurements, etc.) To 

formulate the problem in an analytical framework, let's assume L ∈ Rn×t is a low rank matrix 

representing the mean or background data features, D ∈ Rn×m is a (known or unknown) 

design or dictionary matrix, S ∈ Rm×t is a sparse parameter matrix with small support 

(supp(S) << m × t), E ∈ Rn×t denote the model error term, and ΛΩ(·) be a sampling operator 

generating incomplete data over the indexing pairs of instances and data elements 

. In this generalized model setting, the problem formulation 
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involves estimation of L, S (and D, if it is unknown), according to this model representation 

[22]:

(2)

Having quick, reliable and efficient estimates of L, S and D would allow us to make 

inference, compute likelihoods (e.g., p-values), predict trends, forecast outcomes, and adapt 

the model to obtain revised inference using new data. When D is known, the model in 

equation (2) is jointly convex for L and S, and there exist iterative solvers based on sub-

gradient recursion (e.g., alternating direction method of multipliers) [23]. However, in 

practice, the size of Big Datasets presents significant computational problems, related to 

slow algorithm convergence, for estimating these components that are critical for the final 

study inference. One strategy for tackling this optimization problem is to use a random 

Gaussian sub-sampling matrix Am×n (much like in the compressive sensing protocol) to 

reduce the rank of the observed data (Ym×l, where (m, l) ∈ Ω) and then solve the 

minimization using least squares. This partitioning of the difficult general problem into 

smaller chunks has several advantages. It reduces the hardware and computational burden, 

enables algorithmic parallelization of the global solution, and ensures feasibility of the 

analytical results. Because of the stochastic nature of the index sampling, this approach may 

have desirable analytical properties like predictable asymptotic behavior, limited error 

bounds, estimates’ optimality and consistency characteristics. One can design an algorithm 

that searches and keeps only the most informative data elements by requiring that the 

derived estimates represent optimal approximations to y within a specific sampling index 

subspace . It would be interesting to investigate if CBDA inference estimates 

can be shown to obey error bounds similar to the upper bound results of point imbedding's in 

high-dimensions (e.g., Johnson-Lindenstrauss lemma [24]) or the compressive sensing 

restricted isometry property. The Johnson-Lindenstrauss lemma guarantees that for any 0 < ε 

1, a set of points  can be linearly embedded  into 

, for all , almost preserving their pairwise distances, 

i.e., . The restricted isometry 

property ensures that if  and the estimate x̂ = arg minz:Az=y∥z∥1, where Am×n 

satisfies property (1), then the data reconstruction is reasonable, i.e., . 

Ideally, we can develop iterative space-partitioning CBDA algorithms that either converge 

to a fix pointor or generate estimates that are close to their corresponding inferential 

parameters.

The CBDA approach may provide a scalable solution addressing some of the Big Data 

management and analytics challenges. Random CBDA sampling may be conducted on the 

data-element level, not only the case level, and the sampled values may not be necessarily 

homologous across all data elements (e.g., high-throughput random sampling from cases and 

variables within cases). An alternative approach may be to use Bayesian methods to 

investigate the theoretical properties (e.g., asymptotics as sample sizes increase where the 
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data has sparse conditions) of model-free inference entirely based on the complete dataset 

without any parametric or model-dependent restrictions.

Discussion

Big healthcare data is not a panacea and its promises may not be fully realized without 

significant R&D investments, broad commitment to open-science, and enormous 

technological advances. An information-theoretic interpretation of Gödel's incompleteness 

principle [25] suggests the intrinsic limitations of information derived from Big healthcare 

data. Healthcare data cannot be consistent and complete at the same time. In other words, 

any computational inference, or decision making, based on Big healthcare data would be 

expected to either be reliable within a restricted domain (e.g., time, space) or be more 

broadly applicable (e.g., cohort or population studies) but less consistent; certainly not both. 

This dichotomy is also supported by our general scientific experience where statistical 

inference on small or large sample sizes depends on corresponding large or small variances 

of parameter estimations, respectively. Yet, in the case of enormous samples, the estimation 

accuracy is inversely proportional to the sample-size of the data, due to lack of control and 

expected violations of core parametric assumptions. For example, from a statistical 

perspective exploring genetic association of Autism, a complete census surveying the entire 

population would be desirable. However, such study would be impractical because of the 

enormous amount of time and resources necessary to compile the data, complete the 

information extraction, ensure data reliability and consistency, prior to taking an appropriate 

action. Using classical data analytics, these problems may be exacerbated by the 

unavoidable errors expected to creep in due to lack of control, uniformity and technological 

reliability for interrogating huge samples. The end result may diminish the value of the 

acquired health data and negatively impact the resulting scientific inference. Big healthcare 

data analytics aim to address some of these holistic information-processing challenges and 

provide rapid and effective estimation and prediction based on dynamic and heterogeneous 

data.

Collectively, US industry and government organizations are spending over $200B annually 

to provide open access to Cloud resources (storage, computing, social networking, etc.) The 

services-oriented Cloud is a very decentralized, rapidly evolving and powerful infrastructure 

engineered to manage Big Data, including human health data. Such data can be mined, 

processed and interrogated to extract specific human traits, biological dynamics and social 

interaction information, which ultimately may lead to tremendous benefits (social, 

biomedical, financial, environmental, or political).

Decisively, there are specific directions that could significantly impact the process of 

extracting information from Big healthcare data, translating that information to knowledge, 

and deriving appropriate actions: (1) enforce open-science principles in healthcare research; 

(2) engage and actively participate (e.g., fund) in non-traditional high-risk/high-potential-

impact studies; (3) adapt to rapid, agile and continuous development, testing, redesign, 

productization and utilization of data, tools, services and architecture; (4) redesign the 

healthcare data science curricula (from high-school to doctoral level training). Big 

healthcare data is incredibly powerful, but its Achilles heel is time. Its value is in the 
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moment and its importance decreases exponentially with time, which makes critically 

important the rapid response and concerted effort to process collected clinical information.

Information hoarding (e.g., neighboring health care systems unwilling to share clinical data 

about patients they have in common, health insurers unwilling to reveal providers’ 

reimbursement rates, computational scientist limiting access to powerful new resources, etc.) 

only expedites the decay in value of many interesting Big healthcare datasets. Collaborative 

distribution of such information, paired with significant institutional commitment to open 

data science, holds a great potential to democratize the information universe and radically 

change our understanding of disease cause, comorbidity, progression and ultimately cure. 

There are two ways to deal with the influx of significant disruptive technologies – (passive) 

reactive response or proactive action. Government institutions and regulators, funding 

agencies, and organizations involved in generating, aggregating, processing, analyzing, 

interpreting, managing or managing large, incongruent, heterogeneous and complex data 

may choose to lead the wave or follow the wake of the Big healthcare data revolution.

Future innovations in Big healthcare data analytics are most likely going to come from 

disparate resources, small-group initiatives, open-source/open-science community and truly 

trans-disciplinary interactions, less so from Big-Business, Big-Academy, or Big-

Government. We need a concerted effort and efficient funding mechanisms to harness the 

ingenuity of the broader community using large-number of smaller-budget, rapid-

development, high-risk, and product-oriented health research projects. In the era of Big 

healthcare data analytics, continuous-development, rapid agile prototyping, and experience-

based (evidence-based) redesign represent the new innovation paradigm covering basic 

science, computational modeling, applied research and all aspects of system complexity 

studies.

In the 21st century to achieve the same scientific impact, matching the reliability and the 

precision of the prediction that Cavendish did in the 18th century, it will require a 

monumental community effort using massive and complex information perhaps on the order 

of 223 bytes, instead of just 23 observations like the ones used by Cavendish to estimate so 

accurately the mean density of the Earth.
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Figure 1. 
The expansion of new multi-channel imaging modalities in brain-mapping studies illustrates 

the rapid increase of data complexity. Image modality abbreviations: TSE=turbo spin echo; 

FLAIR=Fluid-attenuated inversion recovery (magnetic resonance imaging, MRI, pulse 

sequence); GRE=gradient-echo imaging; T2 Haste=T2-weighted half-Fourier acquisition 

single-shot turbo spin-echo; MP RAGE=magnetization-prepared rapid gradient-echo 

imaging; T2=spin-spin relaxation image magnetization allowing decay before measuring the 

MR signal by changing the echo time (TE); SWI=Susceptibility weighted imaging; 
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CT=computed tomography; FDG=fluorodeoxyglucose positron emission tomography (PET) 

imaging; FDG Maps=(various) derived volumetric statistical maps; FDD Dyn=dynamic 

Frequency Domain Decomposition; FDDNP=2-(1-{6-[(2-[fluorine-18]fluoroethyl)

(methyl)amino]-2-naphthyl}-ethylidene)malononitrile. The heterogeneity of these data is 

used to illustrate the data size, complexity, multiple scales, and source diversity of only one 

component of contemporary neurodegenerative studies – neuroimaging data.
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Figure 2. 
Parallels between the growth in size and decay in value of large heterogeneous datasets. The 

horizontal axis represents time, whereas the vertical axis shows the value of data. As we 

acquire more data at an ever faster rate, its size and value exponentially increase (black 

curve). The color curves indicate the exponential decay of the value of data from the point of 

its fixation (becoming static).
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Figure 3. 
Schematic representation of the unobservable (x) and observable (y) data, and the 

corresponding orthonormal basis (Φ) and random sampling matrix (A), describing the 

compressive sensing reconstruction of x using sparse observations y.

Dinov Page 14

J Med Stat Inform. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dinov Page 15

Table 1

Increase of Data Volume and Complexity relative to Computational Power.

Neuroimaging (annually) Genomics (BP/Yr) Moore's Law (transistor 
counts) Bandwidth (Edholm's Law) Years

Size Complexity Size Complexity

200 GB 1 10 MB 1 1×105 105 1985-1989

1 TB 2 100 MB 2 1×106 106 1990-1994

50 TB 5 10 GB 3 5×106 108 1995-1999

250 TB 6 1TB 4 1×107 109 2000-2004

1 PB 7 30TB 5 8×106 1010 2005-2009

5 PB 8 1 PB 7 1×109 1011 2010-2014

10+ PB 9 20+ PB 8 1×1011 1013 2015-2019 (estimated)

MB (megabyte) = 106, GB (gigabyte) = 109, TB (terabyte) = 1012, PB (petabyte) = 1015, BP=base pairs Complexity = measure of data 
heterogeneity (e.g., new imaging data acquisition modalities or sequence coverage depth; complexity of 5 indicates a 5-fold increase of the data 
diversity over 1985)
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