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Abstract

Motivation: The de novo identification of the initiation and termination zones—regions that replicate

earlier or later than their upstream and downstream neighbours, respectively—remains a key chal-

lenge in DNA replication.

Results: Building on advances in deep learning, we developed a novel hybrid architecture

combining a pre-trained, deep neural network and a hidden Markov model (DNN-HMM) for

the de novo identification of replication domains using replication timing profiles. Our results dem-

onstrate that DNN-HMM can significantly outperform strong, discriminatively trained Gaussian

mixture model–HMM (GMM-HMM) systems and other six reported methods that can be applied to

this challenge. We applied our trained DNN-HMM to identify distinct replication domain types,

namely the early replication domain (ERD), the down transition zone (DTZ), the late replication do-

main (LRD) and the up transition zone (UTZ), using newly replicated DNA sequencing (Repli-Seq)

data across 15 human cells. A subsequent integrative analysis revealed that these replication do-

mains harbour unique genomic and epigenetic patterns, transcriptional activity and higher-order

chromosomal structure. Our findings support the ‘replication-domain’ model, which states (1)

that ERDs and LRDs, connected by UTZs and DTZs, are spatially compartmentalized structural and

functional units of higher-order chromosomal structure, (2) that the adjacent DTZ-UTZ pairs form

chromatin loops and (3) that intra-interactions within ERDs and LRDs tend to be short-range and

long-range, respectively. Our model reveals an important chromatin organizational principle of the

human genome and represents a critical step towards understanding the mechanisms regulating

replication timing.

Availability and implementation: Our DNN-HMM method and three additional algorithms can be

freely accessed at https://github.com/wenjiegroup/DNN-HMM. The replication domain regions

identified in this study are available in GEO under the accession ID GSE53984.

Contact: shuwj@bmi.ac.cn or boxc@bmi.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complete and accurate chromosomal DNA replication is crucial for

proper cell division and maintenance of the genetic integrity in all

organisms (Bell and Dutta, 2002). In eukaryotes, DNA replication

begins and ends at multiple genomic regions, designated the replica-

tion initiation and termination zones, respectively, according to a

tightly controlled spatiotemporal order (Masai et al., 2010; Sclafani

and Holzen, 2007). Dysregulation of initiation or termination may
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delay genomic replication, resulting in various diseases (Bicknell

et al., 2011a, b; Guernsey et al., 2011; Letessier et al., 2011) and

even cancer (Suzuki and Takahashi, 2013; Woo and Li, 2012).

The initiation and termination zones may be identified from the

replication timing profiles as regions that replicate earlier or later,

respectively, than their upstream and downstream neighbours

(Schwaiger et al., 2009). The timing of the replication of a given

DNA sequence is determined by its distance from the local active

replication origin and by the timing of the firing of that origin dur-

ing the S phase (Schwaiger et al., 2009). Genome-wide replication

timing profiles have been used to identify replication origins

throughout Saccharomyces cerevisiae (Raghuraman et al., 2001)

and in higher eukaryotes, including Drosophila (MacAlpine et al.,

2004; Schubeler et al., 2002; Schwaiger et al., 2009), mice (Farkash-

Amar et al., 2008) and human (Audit et al., 2007; Karnani et al.,

2007; Lucas et al., 2007; Woodfine et al., 2005). These studies re-

vealed that the timing of DNA replication is associated with tran-

scriptional activity, epigenetic patterns and higher-order nuclear

structures. However, the genomic, epigenetic and transcriptional

signatures that define the early late replication domain (ERDs) and

late replication domain (LRD) in the human genome have not been

fully elucidated. In particular, the strengths of the correlations be-

tween replication timing and the chromatin status within ERD and

LRD across diverse human cell types remain unclear. Furthermore,

the molecular mechanisms through which the chromatin patterns

are established and maintained within the ERD and LRD in the

human genome remain poorly understood. Resolving these ques-

tions completely depends on the precise identification of the ERD

and LRD in the human genome, which remains one of the greatest

challenges in bioinformatics research. To date, very few bioinfor-

matics methods have been proposed for the de novo identification of

replication domains using replication timing profiles.

Recently, deep learning approaches have surpassed the state-

of-the-art performance of previous methods for many tasks (Bengio

et al., 2013), due to their powerful capacity to automatically learn

features at multiple levels of abstraction directly from data without

using human-crafted features or rules (Bengio, 2009). The Deep

Neural Network (DNN) was developed from the Artificial Neural

Network (ANN) with the advent of the deep learning algorithm

(Bengio, 2009; Bengio et al., 2013). Compared with a shallow-

learning model that included an ANN and Gaussian mixture model

(GMM), the deep learning model, i.e. DNN, consists of multiple

hidden layers showing significantly greater power to representation

data than the shallow model and is widely applied in computer vi-

sion, dimensionality reduction and speech recognition. In addition,

hidden Markov models (HMMs) are well known for their effective-

ness in the modelling of sequential patterns of data and have been

extensively applied in computational biology, specifically in biolo-

gical sequence analysis, Copy Number Variation detection, motif

finding, breakpoints identification and chromatin state discovery.

These advances triggered our interest in developing a novel hybrid

architecture between a pre-trained DNN and an HMM for the de

novo identification of replication domains using replication timing

profiles.

In this study, we present the first DNN–HMM hybrid model,

which combines the representational power of DNNs and the sequen-

tial modelling capacity of HMMs to successfully resolve the challenge

of the de novo identification of replication domains using newly repli-

cated DNA sequencing (Repli-Seq) data. We demonstrate that DNN–

HMMs can significantly outperform strong discriminatively trained

GMM–HMM systems and other six reported methods that can be

applied to this challenge. We applied our trained DNN–HMM to the

identification of distinct types of replication domains, including

the ERD, the down transition zone (DTZ), the LRD, and the up tran-

sition zone (UTZ), using Repli-Seq data across 15 human cell types.

A subsequent integrative analysis based on ENCODE data revealed

that the replication domains of distinct types harbour unique genomic

and epigenetic patterns, transcriptional activity and higher-order

chromosomal structure. Our findings support the ‘replication-

domain’ model, which states that ERDs and LRDs, connected by UTZs

and DTZs, are spatially compartmentalized structural and functional

units of higher-order chromosomal structure. In our model, the adjacent

DTZ-UTZ pairs form a chromatin loop, and intra-interactions within

ERDs and LRDs tend to be short- and long-range, respectively. Our

model reveals an important chromatin organizational principle of the

human genome and represents a critical step towards increasing our

understanding of the mechanisms regulating replication timing.

2 Materials and methods

2.1 Deep belief networks
In contrast to the discriminative nature of traditional neutral nets,

deep belief networks (DBNs), initially introduced by Hinton et al.

(2006), are probabilistic generative models. DBNs consist of several

layers of Restricted Boltzmann Machines (RBMs) (Hinton, 2009),

which are a type of undirected bipartite graph constructed from a

bottom layer of binary stochastic hidden units h and a top layer of

stochastic visible units v. For an RBM, an energy function is as-

signed to the configurations of v and h, and this function is of the

following form

Eðv;hÞ ¼ �bTv� cTh� vTWh; (1)

where W is the symmetrical matrix of visible/hidden connection

weights and b and c are the biases of the visible and hidden units, re-

spectively. Thus, the probability distribution of any particular set-

ting of v and h is

Pðv; hÞ ¼ e�Eðv;hÞ

Z
; (2)

where the normalization factor Z ¼
X

v;h
e�Eðv;hÞ is known as the

partition function. The bipartite and binary natures of RBMs enable

us to derive simple exact expressions for PðvjhÞ and PðhjvÞ as

Pðh ¼ 1jvÞ ¼ r ðcþ vTWÞ (3)

and

Pðv ¼ 1jhÞ ¼ r ðbþ hTWTÞ; (4)

respectively, where r denotes the (elementwise) logistic sigmoid

and equals r ðxÞ ¼ ð1þ e�xÞ�1.

In our algorithm, RBMs were trained in a greedy layer-wise

manner with one-step contrastive divergence (CD-1). We used the

DBN weights resulting from RBMs to initialize DNNs generatively

in a purely unsupervised way and used the outputs of DBN as the in-

puts to train the Softmax output layer in a supervised manner. After

pre-training, we used a backpropagation algorithm to fine-tune all

of the weights in a supervised manner to improve the discriminative

performance of the entire network. Pre-training followed by sto-

chastic gradient descent is used to train DNN because it often out-

performs random initialization for the deeper architectures and

provides robust results to the initial random seed. Studies have illus-

trated that using DBN pre-training to initialize the weights of a

DNN helps prevent overfitting and can aid in subsequent
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optimization and can reduce generalization error (Erhan et al.,

2010; Hinton and Salakhutdinov, 2006). This semi-supervised ap-

proach using deep models has proved effective in a number of appli-

cations, including coding and classification for speech, audio, text

and image data.

2.2 DNN-HMM architecture
An HMM is a generative model in which the system is assumed to

be generated from a Markov process that transitions between states

S ¼ ½s1; . . . ; sK�. An HMM is a triple (p;A;BÞ, where p is the initial

state probability distribution, A is the state transition probability

distribution and B is the observation probability distribution. For an

HMM, B is defined as

bjðOtÞ ¼ PðOt j qt ¼ SjÞ ¼
pðqt ¼ Sj j OtÞpðOtÞ

pðqt ¼ SjÞ
; 1�j�N; (5)

where Ot is the observation at location t, qt is the state at location t

and Sj is the j th state of the N states in total, pðqt ¼ Sj j OtÞ is the

state posterior probability and pðqt ¼ SjÞ is the prior probability of

each state.

Figure 1A shows the architecture of our proposed DNN–HMMs,

which is trained using the embedded Viterbi algorithm. The main

steps involved are summarized in Figure 1B. The key difference be-

tween the DNN–HMM architecture and earlier ANN–HMM hybrid

architectures is that we model states as the DNN output units directly.

In our hybrid model, pðqt ¼ Sj j OtÞ is estimated from the DNN, pðqt

¼ SjÞ can be easily estimated from the training set, and pðOtÞ is inde-

pendent of the state and can thus be ignored without any influence on

the result when using the Viterbi algorithm to find the optimal state.

Notably, we found that the prior probability pðqt ¼ SjÞ is very import-

ant in alleviating the label bias problem.

2.3 Identification of replication domains using

DNN–HMM
We used Repli-Seq data to derive four different types of replication

domains, including the ERD, the DTZ, the LRD and the UTZ.

Inspired by the strategy used in the speech recognition field (Dahl

et al., 2012), we refined each of the four domain types into three

sub-domains. For example, we subdivided ERD into pre-ERD, mid-

ERD and post-ERD. In addition, we added two additional domain

types, the biphasic replication domain (BRD) and the dead zone

(DZ). The BRD is the genomic region associated with simultaneous

early and late replication, and the DZ is the zone without any Repli-

Seq signals of six cell cycle fractions and is mainly located near the

centromere. In total, we defined 14 states for replication domains.

According to the visualization of the Repli-Seq data through

UCSC Genome Browser (http://genome.ucsc.edu/), we independ-

ently constructed the training and test sets by manually labelling the

14 states on chr1 and chr20 of BJ cell line of Replicate 1, respect-

ively (Supplementary Fig. S1 and Table S1). Considering the rare-

ness of BRD on chr1 and chr20, we added several chromatin

fragments manually labelled as BRD on other chromosomes to the

training and test sets.

With the preparation of the training and test sets complete, we

used the percentage-normalized signals of Repli-Seq data from six

cell cycle fractions in BJ cells (Replicate 1) as input features to train

our DNN–HMM algorithm, which consists of an input layer with

six units, two hidden layers, both with 500 hidden units and an out-

put layer with 14 units. The DNN–HMM outputs both the learned

261 014 model parameters and the predicted replication states of the

training data. The learned model parameters were then used to as-

sess the performance of our DNN–HMM algorithm in the analysis

of the independent test data and in the prediction of the states of un-

labelled data. The training and test accuracies were calculated for

the training and test sets, respectively.

After assessing our DNN–HMM method, we merged the initially

identified 14 sub-states into six types of replication domains: the

ERD, the DTZ, the LRD, the UTZ, the BRD and the DZ. In the sub-

sequent analysis, we focus on the first four types of replication

domains.

2.4 Performance evaluation of the DNN–HMM
Although few bioinformatics methods have been specifically pro-

posed for the de novo identification of replication domains using

replication timing profiles, we identified six methods that have been

developed in similar fields. In a previous study, Hansen et al. (2010)

defined very ERD s with the G1 profile from Repli-Seq data. In an-

other study, Ryba et al. (2010) identified replication domains by cir-

cular binary segmentation (Venkatraman and Olshen, 2007) using

HD2 microarray data and identified timing transition regions

(TTRs) from loess-smoothed replication timing profiles. These

TTRs can be viewed similarly to our DTZs and UTZs, which con-

nect early and LRDs. In a recent study, Pope et al. (2014) subdivided

IMR90 topologically associated domains (TADs) into three classes

(‘early’, ‘TTR’ and ‘late’) depending on both the means and standard

A

C

F

D E

B

Fig. 1. Development and performance assessment of the DNN–HMM algo-

rithm. (A) Diagram of the DNN–HMM algorithm. In the DNN–HMM hybrid

architecture, the HMM models the sequential property of the replication tim-

ing signal obtained from Repli-Seq data, and the DNN models the scaled ob-

servation likelihood probability distribution. (B) Pseudocode of the main

steps to train the DNN–HMM. (C–E) Performance comparisons in terms of the

computation time (C), training accuracy (D) and test accuracy (E) between the

DNN–HMM algorithm and the three additional algorithms that we have im-

plemented. ‘n¼0’ means that we use the original six-dimensional Repli-Seq

data as inputs, ‘n¼5’ means that we concatenate five neighbours on both

sides of the original, and ‘n¼10’ means that we concatenate 10 neighbours

on both sides of the original. (F) Proportion of the replication domains of each

type that are reproduced from another independent biological replicate of the

Repli-Seq data in BJ cells by employing four algorithms
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deviations of the IMR90 replication timing within each TAD. We

extended the TADs to the whole human genome and identified the

early, TTR, and late domains strictly according to their definition.

During the pilot phase of the ENCODE project, Thurman et al.

combined an HMM with wavelet smoothing to produce a two-label

segmentation of the ENCODE pilot regions into ‘active’ and ‘re-

pressed’ regions (Birney et al., 2007; Thurman et al., 2007). This

method was later developed into a tool named HMMSeg (Day et al.,

2007). In the second phase of the ENCODE project, two research

groups within the consortium independently developed algorithms

for the annotation of the chromatin state, ChromHMM (Ernst and

Kellis, 2010, 2012) and Segway (Hoffman et al., 2012). For these

three unsupervised learning methods, we annotated the three states

with ‘ERD’, ‘LRD’ and ‘TTR’ with replication timing profiles.

Based on these six reported methods, we computed the following

performance indicators to compare the performance of these meth-

ods with that of our DNN–HMM.

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FNþ FPÞ (6)

GM ¼ sqrtðSensitivity � SpecificityÞ; (7)

where GM is the geometric mean of sensitivity and specificity,

Sensitivity¼TP/(TPþFN) and Specificity¼TN/(TNþFP), and

F1� score ¼ 2=
1

Recall
þ 1

Precision

� �
; (8)

where Recall¼ Sensitivity and Precision¼TP/(TPþFP).

2.5 Integrative analysis of distinct types of replication

domains
Detailed descriptions of the integrative analysis of distinct types of

replication domains, including genomic annotations, statistical ana-

lysis by genome structure correction, motif enrichment analysis,

density profiles surrounding the replication domains, enrichment

analysis of TFs and Hi-C data analysis can be found in the

Supplementary Methods.

3 Results

3.1 Development and performance assessment of the

DNN–HMM
To identify the replication domains with Repli-Seq data de novo, we

developed a hybrid architecture (DNN–HMM), integrating a DNN

and a multivariate HMM (Fig. 1A and B). In the DNN–HMM

architecture, the HMM models the sequential patterns of Repli-Seq

data, and the DNN models the observation probability distribution.

This approach combines the advantages of both HMM and DNN

and has excellent potential for de novo discovery of ‘chromatin

states’. To assess the performance of our DNN–HMM algorithm,

we additionally developed a basic DNN algorithm and two classical

GMM–HMM methods, including K-means GMM–HMM and EM

GMM–HMM, independently.

To train and assess these four algorithms, we first constructed

the training and test sets independently using UW Repli-Seq data in

BJ cells (Hansen et al., 2010) (see ‘Methods’ section). For the train-

ing and test process, we used six-dimensional normalized Repli-Seq

data in the training and test sets as input features and the manually

annotated 14 sub-states of replication domains as input labels to

train and test the four approaches. All of these algorithms were run

on a computer with four CPU cores, Intel Core i7-4770 3.4 GHz,

and 32 GB RAM. We repeated the training and test procedure 10

times with random initiation, independently. For each training and

test, we recorded the computing time and calculated the prediction

accuracies of the training set and test set (Fig. 1C–E, denoted by

‘n¼0’). As expected, the computing time of the two GMM–HMM

algorithms were much faster than those of the two DNN algorithms.

K-means GMM–HMM and EM GMM–HMM achieved much

higher training accuracy (83.1 and 86.9%); however, they obtained

much lower test accuracy (78.1 and 78.1%). These findings indicate

that both GMM–HMMs are likely to encounter over-fitting prob-

lems. In contrast, both basic DNN and DNN–HMM achieved con-

sistent training and test accuracies, suggesting that DNNs can

efficiently resolve the over-fitting problem. Importantly, compared

with the basic DNN algorithm, our DNN–HMM algorithm

achieved the second-highest training accuracy (85.1%) and the high-

est test accuracy (84.6%).

To further assess the performance of these four methods in deal-

ing with high-dimensional data, we increased the dimensionality of

the input data by concatenating five sets of neighbour data on both

sides of the original data. Thus, we used the (2�5þ1)�6¼66-

dimensional data as input data to train and test the four algorithms

(Fig. 1C–E, denoted by ‘n¼5’). We found that the training and test

accuracies of the two GMM–HMMs decreased rapidly and were

<50%. In contrast, the increase of the dimensionality of the input

data had almost no effect on both DNN algorithms, which have the

highest training and test accuracies. In addition, consistent results

were obtained when increasing the dimensionality of the input data

to (2�10þ1)�6¼126 by concatenating 10 neighbour data on

both sides of the original (Fig. 1C–E, denoted by ‘n¼10’).

To evaluate the reproducibility of these methods, we repeated

the de novo discoveries of distinct types of replication domains

for two biological replicates of Repli-Seq data (BR1 and BR2) in BJ

cells (Fig. 1F and Supplementary Table S2). Plotting distributions of

replication timing profiles across the genomes of two BJ replicates

shows a high correlation for these two replicates (Supplementary Fig.

S2, q2¼0.8983, P-value¼0). For distinct replication domains identi-

fied using DNN–HMM and another three approaches with Repli-Seq

data of BR1 and BR2 in BJ cells, we found that the latter three cannot

recover the de novo discoveries of replication domains from another

independent replicate of BJ cells very well. In contrast, our DNN–

HMM algorithm can recover the de novo discoveries of distinct types

of replication domains well. In total, over 82% of replication do-

mains of each type identified with DNN–HMM are shared and com-

mon between the two independent replicates in BJ cells.

Such a significant degree of overlap (empirical P-value<1.0�10�6)

indicates that the distinct replication domains identified using DNN–

HMM algorithms are reliable and robust. These performance assess-

ments demonstrated that our DNN–HMM algorithm illustrates its

superior robustness and greater representational power of data and

achieves substantial improvements over discriminatively trained

GMM–HMMs.

3.2 Comparison of the performance of the DNN–HMM

with that of existing methods
We compared our DNN–HMM with the six above-mentioned meth-

ods based on four performance indicators: accuracy, GM, F1-score

and reproducibility. Table 1 summarizes the comparative analysis

of the performance of our method with that of the existing methods.

For the identification of ERDs, our DNN–HMM method always per-

formed better than all of the other methods, as determined based

on the four performance indicators. For the identification of LRDs,

DNN–HMM and Segway shared the best results, followed by
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ChromHMM, the method proposed by Pope et al., HMMSeg, the

method proposed by Hansen et al. and the method proposed by Ryba

et al. For the identification of TTRs, DNN–HMM was ranked first

based on the GM, F1-score and reproducibility indicators and was

ranked second based on the accuracy indicator.

Because the different performance indicators demonstrate the dis-

tinct advantages and disadvantages of these studied methods, we

ranked their performance according to the four metrics. In total, we

performed 12 different tests, including seven methods, three types of

identification domains and four performance indicators. Based on the

ideas proposed by Bajic (2000), we obtained the average of the

ranked positions of each of the seven methods in all of the 12 tests.

Table 2 illustrates the overall score and average rank position of each

of the methods. A lower average rank indicates a better performance.

The analysis revealed that across the different performance tests, the

DNN–HMM was ranked first, followed by Segway, ChromHMM,

the method proposed by Pope et al., HMMSeg, the method proposed

by Ryba et al. and the method proposed by Hansen et al. This result

convincingly demonstrates that DNN–HMM performs well relative

to the existing methods for the identification of replication domains.

3.3 Identification and characterization of distinct

replication domains
We applied our trained DNN–HMM to the de novo identification of

genome-wide replication domains across 15 human cell types using

UW Repli-Seq data (Hansen et al., 2010) in the ENCODE project.

The four types of replication domains differ substantially in their gen-

ome coverage, genome location, numbers of domains, numbers of

genes, evolutionary conservation, cell type-specificity and replication

timing features (see Supplementary Material; Supplementary Fig. S3

and Table S3).

Table 1. Comparison of the performance of the DNN–HMM with that of existing methods

Method Domain type performance indicators

Accuracy (%) GM (%) F1-score (%) Reproducibility (%)

DNN-HMM ERD 84.62 88.22 79.93 83.47

LRD 76.59 81.64 48.53 89.57

TTR 87.26 74.76 49.67 79.04

Hansen et al. ERD 82.84 78.70 71.41 71.33

LRD Null Null Null Null

TTR Null Null Null Null

Ryba et al. ERD Null Null Null Null

LRD Null Null Null Null

TTR 89.67 62.56 44.66 56.78

Pope et al. ERD 82.23 83.72 75.19 65.29

LRD 78.23 79.62 48.12 79.58

TTR 75.64 62.18 29.04 41.25

HMMSeg ERD 82.79 84.08 75.73 59.32

LRD 76.22 78.02 45.61 46.29

TTR 73.40 66.26 30.83 47.53

ChromHMM ERD 81.24 81.83 73.14 75.33

LRD 79.12 81.40 50.08 63.54

TTR 68.78 59.82 24.70 64.08

Segway ERD 82.81 84.09 75.75 57.43

LRD 81.15 80.53 51.16 73.68

TTR 73.14 65.64 30.27 50.85

TTR is the union set of DTZ and UTZ. ‘Null’ indicates that the method cannot be used to identify the corresponding type of replication domain.

Table 2. Relative ranking of DNN–HMM and existing methods based on results of our comparison study

Performance indicators Domain type DNNHMM Hansen et al. Ryba et al. Pope et al. HMMSeg ChromHMM Segway

Accuracy ERD 1 2 7 5 4 6 3

LRD 4 6 6 3 5 2 1

TTR 2 7 1 3 4 6 5

GM ERD 1 6 7 4 3 5 2

LRD 1 6 6 4 5 2 3

TTR 1 7 4 5 2 6 3

F1-score ERD 1 6 7 4 3 5 2

LRD 3 6 6 4 5 2 1

TTR 1 7 2 5 3 6 4

Reproducibility ERD 1 3 7 4 5 2 6

LRD 1 6 6 2 5 4 3

TTR 1 7 3 6 5 2 4

Overall ranking 1st (18), 1.50 6th (69), 5.75 5th (62), 5.17 4th (49), 4.08 4th (49), 4.08 3rd (48), 4.00 2nd (37), 3.08

TTR is the union set of DTZ and UTZ. In the last line, we illustrate the relative ranking order of the method based on the results for the four performance indi-

cators analysed in our comparison study.
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To investigate the occupancy signatures of TFs within each type

of replication domain, we identified sequence features that charac-

terize distinct replication domains. We used a collection of in vitro

motifs that represent the binding preferences of 492 human TFs and

determined the relative enrichment significance of TF-binding elem-

ents within diverse replication domains (Supplementary Fig. S4 and

Table S4). We noticed that a vast majority of these TF-binding

motifs (469 of 492, 95.3%) were significantly enriched in at least

one type of replication domain. Among the 192 of 469 TFs (40.9%)

enriched within the ERDs, KLF4, MYC, SMAD3, TP53, E2F1,

EGR1, SP1 and YY1 have been explicitly reported to play important

roles in the control of the G1/S-phase transition of the cell cycle, and

others, such as MAZ and E4F1, have been reported to be closely

associated with cell cycle activity (Supplementary Table S5). Two

hundred and two (43.1%) TFs, including TBX18, CUX1, GATA6,

HNF1A, IK2F2, MSX2, POU5F1, SOX2, CDC5L, ALX1 and

ESX1, were specifically enriched within LRDs. It has been reported

that CDC5L, ESX1 and GATA6 play important roles in the control

of the G2 and M phases of the cell cycle and that CUX1 and ALX1

play important roles in cell cycle progression (Supplementary Table

S5). DTZs and UTZs demonstrate similar enrichment of TFs, which

are enriched in either ERDs or LRDs. We found that a small fraction

of TFs (75 of 469, 16.0%) were significantly enriched in all of these

types of replication domains. These factors include DDIT3,

NANOG and STAT1, which have also been reported to play im-

portant roles in the cell cycle (Supplementary Table S5).

To further quantify the occupancy relationship between distinct

replication domains and the regulatory factors, we compiled ChIP-Seq

data from ENCODE of 8, 13 and 5 different TFs and cofactors in

IMR90, GM12878 and K562 cells (Supplementary Fig. S5). We com-

pared their accumulated normalized intensities with those from regions

immediately outside the domains (to the left and to the right) and with

those determined from randomly shuffled domains. This analysis

showed that all of the examined TFs and cofactors, with the exception

of ZNF274, were significantly enriched in ERDs and differentially

depleted in LRDs, whereas ZNF274 were significantly enriched in

LRDs and differentially depleted in ERDs (Supplementary Fig. S6).

A further enrichment analysis of the TF and cofactor peaks with differ-

ent replication domains confirmed the enrichment and depletion pat-

terns of TFs and cofactors within each type of replication domain

(Supplementary Fig. S7). Among the TFs and cofactors enriched in

ERDs, studies have explicitly reported that RAD21, E2F4, BRCA1,

CJUN, GATA1, STAT3, CMYC, TP53, EGR1, SP1, YY1 and BACH1

play important roles in G1/S cell cycle progression (Supplementary

Table S5). In addition, a recent study has demonstrated that the zinc-

finger protein ZNF274 associates with the histone H3 lysine 9 (H3K9)

methyltransferase SETDB1, which is recruited by MDB1 to CAF-1 to

form an S phase-specific CAF-1/MDB1/SETDB1 complex during DNA

replication (Supplementary Table S5). Notably, we found that within

each type of replication domain, the enrichment and depletion patterns

obtained with motif scanning agree well with those obtained from

ChIP-Seq data for the TFs that have in vitro motifs (Supplementary

Fig. S4 and Table S4). These TFs include CTCF, EP300, MAZ,

CEBPB, TP53, YY1, BHLHE40, NRF1, MAX, ELK1, STAT3, USF2,

SP1, EGR1, BACH1, CMYC and ZNF263, which play essential roles

in the cell cycle. Furthermore, we found that CTCF and CEBPB were

both enriched in DTZs and UTZs (Supplementary Fig. S7 and Table

S4). Together, these findings suggest that distinct replication domains

possess unique sequence features.

To delineate the nature of each type of replication domain, we ana-

lysed the chromatin signatures in distinct replication domains. We

examined 10 histone modifications (H3K4me1/me2/me3, H3K36me3,

H3K27me3, H3K9me3, H3K79me2, H4K20me1, H3K9ac and

H3K27ac), one histone variant (H2A.Z), DNA methylation, RNA

polymerase II, RNA signals, DNase I hypersensitive sites (DHSs) and

nuclear lamina (see Supplementary Fig. S8). These data represent differ-

ent types of chromatin activities from human IMR90 cells. We com-

pared the aggregate normalized density profiles between distinct types

of replication domains as we did for TFs and cofactors. We found that

ERDs and LRDs showed unique enrichment and depletion patterns

within the replication domains and at the boundaries for each chroma-

tin marker, respectively (Supplementary Fig. S9). This finding is consist-

ent with those obtained in previous studies. A further colocalization

analysis and correlation analysis between ERDs and LRDs and chro-

matin markers demonstrated that the unique enrichment and depletion

patterns specifically dependent on the cell type (Supplementary Figs.

S10 and S11). Together, our findings demonstrate that early and late

replication are linked to active and repressive chromatin markers in a

cell type-specific manner, respectively. Notably, early-replicating re-

gions are more highly methylated than late-replicating regions.

3.4 Chromatin architecture of distinct replication

domains
Recent studies have revealed the association between replication tim-

ing and higher-order chromosomal structure (Pope et al., 2014; Ryba

et al., 2010). Our analysis further strengthens these tight associations

in distinct types of replication domains (see Supplementary Fig. S12).

We then investigated the chromatin interactions between intra- and

inter-replication domains (Supplementary Fig. S13A–C), and found

that interactions within each type of replication domain were en-

riched but that interactions between different types of replication do-

mains are depleted (Supplementary Figs. S13A–C). This finding

indicates that the entire genome can be partitioned into different types

of replication domains such that greater interaction occurs within

each type of replication domain rather than across distinct types of

replication domains. Furthermore, domains within each type of repli-

cation domain are more densely packed internally, with LRD being

the densest and ERD the loosest (Supplementary Fig. S13A). Notably,

we found that inter-interaction between DTZs and UTZs was higher

than the inter-interaction within DTZs and UTZs (Supplementary

Figs. S13B and C, P-value<1.0�10�19), implying that DTZs and

UTZs tend to colocalize. Thus, we hypothesized that the adjacent

DTZ–UTZ pairs separated by ERDs and LRDs contact much more

closely and may form a chromatin loop. To test this hypothesis, we

examined the interactions between adjacent DTZ–UTZ pairs on both

sides of ERDs or LRDs (Supplementary Fig. S13D). We found that

the inter-interactions between adjacent DTZ–UTZ pairs separated by

LRDs were significantly stronger than the inter-interaction between

adjacent DTZ–UTZ pairs separated by an ERD. Furthermore, the

interactions between adjacent DTZ–UTZ pairs separated by ERDs

were markedly stronger than the intra-interaction within ERDs, and

the interactions between adjacent DTZ–UTZ pairs separated by

LRDs were also comparable with the intra-interaction within LRDs

(Supplementary Fig. S13A and D), although the genomic distance be-

tween adjacent DTZ–UTZ pairs was much larger than those of in-

ternal loci within ERDs or LRDs. To further demonstrate our

hypothesis, we fixed one side of the adjacent DTZ–UTZ pairs and

examined the inter-interactions between this side with another side

and its flanking regions (Fig. 2A and B). We found that the inter-

actions of adjacent DTZ–UTZ pairs were substantially stronger than

those of flanking regions. Furthermore, we explored the interactions

between the adjacent DTZ–UTZ pairs and their flanking regions

by keeping the distance of the adjacent DTZ–UTZ pairs constant
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(Fig. 2C). The interactions of the adjacent DTZ–UTZ pairs were

highest in the interaction profiles. These findings suggest that adjacent

DTZ–UTZ pairs separated by ERDs and LRDs closely colocalize and

provide compelling evidence that the adjacent DTZ–UTZ pairs form

a chromatin loop.

We then closely examined the chromatin interactions in the vicin-

ity of the centre of each type of replication domain (Supplementary

Fig. S13E–H). Strikingly, we found that a locus within ERDs mainly

interacts with a close intra-locus, whereas a locus within LRDs

mainly interacts with a far intra-locus (Supplementary Fig. S13E and

G). Based on this observation, we hypothesize that intra-interactions

within each ERD tend to be short-range, where intra-interactions

within each LRD prefer to be long-range. To test this hypothesis, we

calculated the average intra-interaction I(s) for pairs of loci separated

by a genomic distance s within ERDs and LRDs (Fig. 2D). We found

that as the genomic distance s increased, the average intra-interaction

I(s) within ERDs increased over a very short genomic distance and

then decreased markedly, whereas the average intra-interaction I(s)

within LRDs decreased over a very short genomic distance and then

increased substantially. To further assess the short- and long-range

interactions, we measured the distributions of genomic distance s at

the threshold of interaction I(s)�0 within ERDs and LRDs, respect-

ively (Fig. 2E). We observed that the median interaction distance

within ERDs was markedly smaller than that within LRDs. We ex-

tended this analysis for any given threshold of interaction I(s), and

plotted the curves of the median interaction distances within ERDs

and LRDs (Fig. 2F). The median interaction distance within the LRDs

was always markedly larger than the median interaction distance

within the ERDs. These results support the hypothesis that intra-inter-

actions within ERDs tend to be short-range and that intra-inter-

actions within LRDs are likely to be long-range.

4 Discussion

In this study, we propose a pre-trained DNN–HMM hybrid model

and present its first successful application for de novo identification

of replication domains with replication timing profiles from Repli-

Seq data. Our approach has two key characteristics that distinguish

it from earlier methods. First, we adopted a deeper, more expressive

DNN–HMM hybrid architecture and thus employed the unsuper-

vised DBN pre-training and subsequent supervised fine-tuning strat-

egy, which made the training more effective. Second, we used

posterior probabilities of states as the output of DNN, which made

the training more informative. Subsequent performance assessments

demonstrated that our DNN–HMM approach achieves substantial

improvements in identification accuracy and robustness over dis-

criminatively trained pure GMM–HMM systems, generatively

trained traditional DNN algorithms and other six reported

methods.

Despite these promising results, there are many aspects of using

DNN–HMM for practical scalability in computational biology that

require further study. These aspects include investigation of the par-

allelization of DNN training, which may require a better theoretical

understanding of deep learning, and the exploration of more opti-

mal algorithms to training DNN–HMM rather than the embedded

suboptimal Viterbi algorithm. There is also a need to explore

the vast improvement space in the DNN–HMM hybrid model,

including adopting a full-sequence training of the DBN, using the

mean–covariance RBM, and even absorbing the insights gained

from generative modelling research in both neural networks and

speech and phone recognition.

Recently, Brendan J. Frey and his colleagues applied a DNN to

investigate the human and mouse splicing codes and demonstrated

the superior advantages of this deep architecture over the previous

Bayesian method for predicting the patterns of alternative splicing

(Leung et al., 2014; Xiong et al., 2015). Compared with their DNN

structure of a two-layer neural network with only 30 hidden units,

our DNN–HMM hybrid architecture is much more complex and

flexible. Regardless, their work and ours represent a critical process

of applying deep learning in computational biology. In particular,

with the exponentially rapid growth in the volume of multi-omic

data, such as genomics, transcriptomics, epigenomics, proteomics

and chromatin interactomics, our hybrid architecture employing

DNN and HMM has the potential to produce meaningful and hier-

archical representations that can be efficiently used to describe com-

plex biological phenomena. For example, DNN–HMMs may be

useful for modelling multiple stages of a regulatory network at the

sequence level and at higher levels of abstraction. In addition,

DNN–HMM can be applied to the identification of functional elem-

ents and regions, such as enhancers, insulators and promoters, and

the identification of chromatin states.

We applied our DNN–HMM algorithm to de novo identification

of distinct types of replication domains, including ERD, DTZ, LRD

and UTZ, using Repli-Seq data across 15 human cell types. We per-

formed a systematic and integrative analysis of these domains using

diverse ENCODE data and unravelled the replication domains of dis-

tinct types that harbour unique genomic and epigenetic patterns, tran-

scriptional activity and higher-order chromosomal structure. Our

results support a unifying model in which the human genome is gener-

ally organized into large replication domains of distinct types that

constitute stable regulatory units of replication timing. In our ‘replica-

tion-domain model’ (Fig. 3), DNA replicates early within ERDs that

acquire permissive chromatin signatures and active regulators.

Meanwhile, replication gradually moves forward into adjacent LRDs

that contain repressive chromatin features and repressive regulators.

This gradual progression forms DTZs or UTZs that connect the

boundaries of ERDs and LRDs. DTZs were characterized by the

sharp decrease/increase of active/repressive chromatin markers,

A B C

D E F

Fig. 2. Genome-wide chromatin interactions of replication domains. (A–B)

Interaction profiles surrounding the adjacent DTZ–UTZ pair obtained by fixing

one side (anchor) of the pair that encloses ERDs (A) and LRDs (B). (C) Interaction

profiles surrounding the adjacent DTZ–UTZ pair obtained by keeping the dis-

tance of the adjacent DTZ–UTZ pairs constant. (D) Intra-interaction I(s) for pairs

of loci separated by a genomic distance s within ERDs (magenta), LRDs (blue)

and randomly shuffled regions (grey). (E) Distribution of genomic spans of

all chromatin interactions below the threshold I(s)� 0 within ERDs (magenta)

and LRDs (blue). (F) Median genomic spans of the distance distributions of

all chromatin interactions below any thresholds within ERDs (magenta) and

LRDs (blue)
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whereas UTZs were characterized by the sharp increase/decrease of

active/repressive chromatin markers.

Our replication-domain model agrees well with the previously

presented fractal globule, a knot-free, polymer conformation

(Lieberman-Aiden et al., 2009). In our model, spatially separated

fractal globules are equivalent to temporally separated ERDs and

LRDs that are connected by UTZs and DTZs. The adjacent DTZ–

UTZ pairs separated by an ERD or LRD form a chromatin loop for

each ERD and LRD through the acquisition of much stronger con-

tacts. Most importantly, we found that in the chromatin loops formed

by adjacent DTZ–UTZ pairs, LRDs prefer to be more densely packed

and in long-range intra-interactions, whereas ERDs tend to be more

loosely packed and in short-range intra-interactions.
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