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Abstract

Motivation: Calling changes in DNA, e.g. as a result of somatic events in cancer, requires analysis

of multiple matched sequenced samples. Events in low-mappability regions of the human genome

are difficult to encode in variant call files and have been under-reported as a result. However,

they can be described accurately through thesaurus annotation—a technique that links multiple

genomic loci together to explicate a single variant.

Results: We here describe software and benchmarks for using thesaurus annotation to detect point

changes in DNA from matched samples. In benchmarks on matched normal/tumor samples we show

that the technique can recover between five and ten percent more true events than conventional

approaches, while strictly limiting false discovery and being fully consistent with popular variant ana-

lysis workflows. We also demonstrate the utility of the approach for analysis of de novo mutations in

parents/child families.

Availability and implementation: Software performing thesaurus annotation is implemented in java;

available in source code on github at GeneticThesaurus (https://github.com/tkonopka/GeneticThesaurus)

and as an executable on sourceforge at geneticthesaurus (https://sourceforge.net/projects/geneticthe

saurus). Mutation calling is implemented in an R package available on github at RGeneticThesaurus

(https://github.com/tkonopka/RGeneticThesaurus).

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: tomasz.konopka@ludwig.ox.ac.uk

1 Introduction

Variants and mutations in DNA underlie several human diseases.

Studies of whole-exome and whole-genome datasets based on short-

read shotgun sequencing have already uncovered much information

about the mutational landscape in disease. This is exemplified by the

growth of impressive catalogues of genetic markers linked to

Mendelian inherited conditions (Hamosh et al., 2005) and to cancer

(Forbes et al., 2014). However, considerable portions of the human

genome consist of non-unique sequences (Treangen et al., 2011), which

have posed challenges for bioinformatic analyses and for interpret-

ations of findings. Thus, the mutational landscape in these regions still

remains concealed.

To identify non-germline genetic features linked with a disease,

most mutation calling workflows process several matched samples

at the same time (Pabinger et al., 2013). For example, somatic muta-

tion callers for cancer genomics consider a tumor sample together

with a normal control from the same individual. One sample (the

tumor) is used to put forth a list of candidate sites that are different

than in the reference genome. Information from matched control

samples (normal tissue) is then used to eliminate features that also

appear in cells unaffected by the disease. The control sample is thus

used for personalized filtering of the candidate list. Because common

features in case and control samples may arise due to the germ-line

or because of sequencing artifacts, it is tempting to use models or

databases of polymorphisms for this step. However, despite increas-

ing detail in the databases and despite increasing understanding of

sequencing chemistry, the personalized filtering strategy remains the

most effective means to identify disease-associated variants (Jones et

al., 2015).
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Some approaches for personalized filtering are threshold- and

rule-driven (Koboldt et al., 2012; Larson et al., 2012; Roth et al.

2012), while others emphasize Bayesian models (Cibulskis et al.,

2013; Rimmer et al., 2014; Saunders et al., 2012). The best approach

is difficult to pin down because cancer genomes are heterogeneous,

contain regions of unusual copy number, and because tumor samples

are often mixtures of cancer and non-cancer cells; approaches have

been designed to handle these possibilities to various extent. Indeed,

tuning settings for individual workflows is still an active area of dis-

cussion (Ewing et al., 2015). Moreover, as sequencing technology is

applied in niche settings, specialized software is often required, for ex-

ample for detecting ultra-low frequency mutations (e.g. He et al.,

2015) or analyzing sample groups with several matched samples

(Josephidou et al., 2015). A separate branch of the literature avoids

idiosyncrasies of cancer samples altogether and focuses on family trios

(e.g. Li et al., 2012; Ramu et al., 2013; Wei et al., 2015).

Mutations are usually reported using coordinates in a reference

genome, i.e. in variant call files (VCF). For example, the common

BRAF mutation V600E in cancer patients is described as ‘genome

hg38, position chr7:140,753,336, substitution A>T.’ This ap-

proach is effective in most cases, but it is fundamentally unsuited

for describing variation in low-mappability regions. When reads

measured via high-throughput sequencing align onto multiple areas

of a reference genome, it is impossible to assign a mutation unam-

biguously to a single locus. As a result, genetic variation in such re-

gions can go unreported. False negatives may constitute 10% of the

total genetic variation in a human sample. Thus mappability is

sometimes described as the leading outstanding problem for variant

calling (Ewing et al., 2015).

A complementary approach to reporting single-nucleotide vari-

ants, called the thesaurus approach, is to link candidate sites in low-

mappability regions to alternative loci (Kerzendorfer et al., 2015). In

this approach, links between pairs of sites suggest that they are syn-

onymous as far as alignment is concerned. By symmetry and transitiv-

ity, genomic sites self-organize into clusters (if site A is linked to site

B, then sites A and B form a cluster; if site A is linked to site B and site

B is linked to site C, then sites A, B and C form a cluster; and so on).

These clusters, grounded on more than one genomic coordinate,

then constitute the basis for comparisons, interpretations and any fol-

low-up analysis. A software implementation of this approach

(GeneticThesaurus v0.1) has been shown to improve sensitivity in

calling germline variation in single samples, maintaining a manage-

able false discovery rate. Importantly, variants in low mappability re-

gions have been shown to lie in genomic regions that are functionally

relevant to diseases (i.e. exons of coding genes, regulatory elements,

etc.). They have also been shown to be experimentally reproducible

with alternative sequencing methods (capillary sequencing).

In this work, we extend the thesaurus approach to enhance detec-

tion of DNA changes across matched samples. In other words, we im-

plement a personalized filtering strategy taking thesaurus annotations

into account. This contribution removes low mapping quality from

the list of difficulties in the analysis of matched sample and thus en-

ables, for the first time, to use short-read sequencing data to describe

the landscape of mutations in sequence-similar regions of the human

genome. The implementation is designed to be general-purpose and

extensible in order to accommodate several use-cases, in particular

the genomics of cancer and of familial diseases.

2 Methods

Our contribution in this work has two distinct parts. The first is a

new release of the GeneticThesaurus software (v0.2) adapted to the

multiple sample setting. The second is a separate package to help the

exploration of thesaurus annotations in the R environment (R Core

Team, 2014). Before describing these contributions, however, we

first briefly review the thesaurus annotation scheme.

2.1 Thesaurus annotation in single samples
The thesaurus annotation approach is illustrated in Figure 1. When a

genetic variant is located in a unique region of the genome, sequenced

reads align correctly and evidence for a mismatch accumulates at

the variant site (Fig. 1, left). In such cases, the allelic frequency of the

variant can be estimated by the ratio of reads exhibiting a mismatch

relative to the total coverage at the locus. We call this a ‘local’ allelic

frequency and compute it on a site i as

½AF�localðiÞ ¼ mðiÞ=CðiÞ; (1)

where m(i) is the number of reads containing the mismatch and C(i)

is the total coverage.

When a variant in located in a low mappability region of the gen-

ome, short sequenced reads cannot be aligned unambiguously.

Evidence for mismatches are then distributed and diluted over mul-

tiple genomic sites; a local variant calling approach may detect any

combination of these as candidate variants (Fig. 1, right). For such

variants, thesaurus annotation provides links to related sites in the

genome. Sometimes links may point from a false location to the cor-

rect site of the variant. At other times links may point to sites that are

not the true site of the variant, but may contains misaligned reads

containing evidence for the variant (Fig. 1, bottom). We use the the-

saurus-linked sites to compute a thesaurus-adjusted allelic frequency

for the called variants. If we denote by T(i) the set of all genomic sites

linked to site i (including i itself), then the thesaurus allelic frequency

is defined as

½AF�thesaurusðiÞ ¼ jTðiÞjð
X

j2TðiÞ
mðjÞÞ=ð

X

k2TðiÞ
CðkÞÞ; (2)

where, as before, m(i) is the number of reads with a mismatch at site

i and C(i) is the corresponding coverage. Examples of this counting

method appear in the figure.

Fig. 1. Overview of thesaurus annotation of variants in a sample/control pair.

On top, a control genome contains two germline variants: one in a high- (left)

and one in a low-mappability region (right). Reads with evidence for the latter

variant are distributed over two sites. On bottom, a related genome contains

the same germline variants and two mutations. Thesaurus clusters of variants

accurately capture the true features in the samples. Allelic frequency (AF) esti-

mates are shown for each variant
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In terms of implementation, GeneticThesaurus analyzes an input

alignment in two passes. In the first pass it scans an alignment and

builds a set of thesaurus links for every variant candidate determined

by an input VCF file. This process contains several steps and conditions

to adjust thesaurus links based on the aligned reads (Kerzendorfer et al.

2015). In the second pass the software collects read count information

from all the relevant genomic sites and computes the local and the-

saurus-adjusted frequencies.

From the user perspective, the output of thesaurus annotation

consists of three components (Other output data types, e.g. tables

with cluster ids and database annotations of thesaurus links, can be

obtained by running post-processing utilities on the primary output).

The first component consists of a VCF table. Each VCF entry is

amended with a tag to the format and genotype columns indicating

the number of thesaurus links. When this number is nonzero, a VCF

entry is also assigned an additional filter code thesaurus. Some

sites are labeled with other filter codes: thesaurusmany when a

site can be linked to an excessive number of alternative sites, or

thesaurushard when a site is inside a thesaurus-annotated region

but whose partners cannot be computed, e.g. because of surrounding

indels.

The second component of the thesaurus output is a dedicated file

enumerating all the relevant alternative sites. This information could

in principle be added into the VCF file itself. However, this ap-

proach would require major changes to the VCF table, including

adding new lines and filling in all columns of the VCF table, for

which formats may vary across different workflows. In order to

minimize the possibilities of conflicts, the information is instead

kept separate.

The third component of the output is a table of allelic frequen-

cies evaluated for each called variant using naive read counting as

well as using the thesaurus-adjusted formula.

2.2 Allele frequencies from matched samples
The extension of the GeneticThesaurus software to matched samples

lies in the second pass of the annotation procedure.

The program starts the analysis in the same way as above: it

builds a network of links for all variant candidates identified in the

tumor sample and then scans the tumor sample again to collect al-

lelic frequency estimates. But, next, it also scans all the matched

samples using the same thesaurus link network. In this way, the out-

put files from this analysis follow the same structure as in the single-

sample analysis, but contain allelic information on all the candidate

sites from all the matched samples. Compared to running a the-

saurus annotation analysis separately on each sample, this gives add-

itional information at key candidate sites. These additional allelic

frequency estimates are marked in Figure 1.

It is worth stressing that the output of the thesaurus annotation

program is not a final set of mutation calls. Rather, it is a representa-

tion of summary statistics on all candidate sites. This is akin to

pileup information given by SAMtools (Li et al., 2009) and as such

forms a foundation on which mutation calling frameworks can build

on.

2.3 Mutation calls
We implemented a set of tools for manipulating thesaurus annota-

tion in an R package RGeneticThesaurus. Among the available func-

tions in the package are ones to import tables produced by the

GeneticThesaurus software. These can be used to interface with

other packages on variant annotation. They are also set to eliminate

certain classes of variants by default: structural variants, and

variants marked with filter codes thesaurusmany or thesaur-

ushard. These functions can also be set to eliminate variants with

other custom filter codes, for example strand bias.

The package provides rudimentary, threshold-based functions

for calling mutations from allelic frequency data. One calls muta-

tions under the following criteria: (i) the allelic frequency in the

tumor sample is above a threshold (default 0.15); (ii) the fold change

in allelic frequency between two samples is above a threshold (de-

fault 1.2); (iii) the allelic frequency in the matched control is below a

threshold (default 0.05). Another function has similar requirements

but is tailored to comparison of two matched samples in a family

trio (child, mother, father) context.

Despite the naivety, the heuristic approach is useful because it is

very transparent. The default settings select mutation candidates

with strong allelic frequencies that can be distinguished from noise

via Sanger sequencing. The functions are not intended to be the de-

finitive solutions for analysis of all sample types. Indeed, specific ex-

periments will likely require more complex treatment, possibly using

additional information/assumptions (e.g. genomic copy number,

sample purity, or pedigrees of the matched samples). Bayesian mod-

els are well suited for this purpose, but must be carefully formulated

for each application.

2.4 Comparisons of call sets
To benchmark mutation calling performance, we introduce some

terminology and quality metrics that are suitable to the context of

thesaurus annotation. These metrics apply to calculations where a

ground truth set of mutations is known, as is the case when working

with synthetic data.

We denote sites in a ground truth dataset as actual positives

[AP]. We denote mutation calls obtained from a workflow/method

as candidates. We call a candidate that coincides with a position in

the actual positives a true positive [TP]. A candidate site that is not

an actual positive, but that is linked to an actual positive via a the-

saurus link, is termed a thesaurus true positive [TTP]. A site within

the actual positives that is not called (not in the set of true positives)

and that is not linked to a called site (not in the set of thesaurus true

positives) is termed as a false negative [FN]. A site within the call set

that is neither an actual positive nor linked to an actual positive is a

false positive [FP]. Because of the presence of thesaurus links, these

definitions of [FP] and [FN] can be viewed as more ‘lenient’ than the

usual definitions from the classification literature.

Using this terminology, we define the true positive rate (Note

that this definition is slightly different from the ‘thesaurus true

positive rate’ used in Kerzendorfer et al. (2015)) as

½TPR� ¼ ½AP� � ½FN�
½AP� : (3)

Unlike the traditional formula ½TPR� ¼ ½TP�=½AP�, this definition

avoids making reference to true positives. In a thesaurus annotated

setting, it counts actual positives found through alternative sites as

informative. Such hits increase the true positive rate by reducing the

number of false negatives.

We define the false discovery rate as

½FDR� ¼ 0:5þ ½FP�
0:5þ ½FP� þ ½AP� � ½FN� : (4)

This is a quantity normalized by the number of actual positives and

calls made, so it is comparable across datasets. In contrast to the

usual formula ½FDR� ¼ ½FP�=ð½FP� þ ½TP�Þ, we again avoid making

reference to true positives. We also include a term 0.5 in both the
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numerator and the denominator to prevent [FDR] from ever falling

to zero. This property will allow us to exhibit [FDR] on a logarith-

mic scale, even for experiments with zero false positives. However,

for experiments with a very small number of true positives

(½AP� � ½FN� � 0), the constant can produce an artificially large

[FDR] even with ½FP� ¼ 0.

We emphasize again that these definitions for [TPR] and [FDR]

are different from the usual ones in the literature. In principle they

should be labeled as ‘thesaurus-adjusted-[TPR]’ and ‘thesaurus-ad-

justed-[FDR]’. However, we will use the shorter names for brevity.

We will also henceforth omit the [�] notation.

3 Results and discussion

We applied the matched-sample thesaurus software on two synthetic

datasets and performed a descriptive analysis of a whole genome

family trio dataset.

3.1 Synthetic normal/tumor pairs
To measure the power to detect mutations in sample pairs, we gen-

erated synthetic data. We created a ‘normal’ genome by inserting

single-nucleotide substitutions in the hg38 reference genome at a

rate of one event per kilobase (rate 10�3 bp– 1). We then further

mutated this genome at a rate 5�10– 4 bp– 1 to emulate a matched

‘tumor.’ Such a high mutation rate is not characteristic of real can-

cers, but it creates many examples of somatic changes in a variety of

genomics contexts, which is ideal for benchmarking. This setup is

equivalent to a thousand repeats of simulations with a more realistic

somatic mutation rate of 5�10–7 bp–1.

Next, we created synthetic short-read data. We created one sam-

ple from the mock normal genome, one sample from the mock

tumor genome, and samples mimicking normal-tumor mixtures. For

each case, we extracted 2�100 bp reads with 400 bp inserts at regu-

lar intervals from the synthetic genomes (20� coverage). The result-

ing datasets do not have realistic variability in coverage due to

sampling, GC content biases, or other systematic effects. However,

the generation procedure is transparent and reproducible. It also

guarantees that all variants are well-represented in the data. This is

useful for benchmarking, because discrepancies between expected

and detected variants must be due to mappability alone.

We aligned samples onto the hg38 reference genome with

Bowtie2 (Langmead et al., 2012) and called variants and mutations

with Bamformatics (sourceforge.net/projects/bamformatics). We

worked with stringent and lenient settings related to mapping qual-

ity, setting thresholds at 16 (MQ16) and 1 (MQ1), respectively. We

annotated variants with thesaurus links and called somatic muta-

tions at sites where the estimated allele frequencies differed by 0.2

between normal and tumor samples, with the frequency in normal

sample below 0.05. We then compared calls—with and without the-

saurus annotation—to the known mutation sites.

When using a standard mappability threshold (MQ16) without

thesaurus, recall of true mutations increased with mutation allele fre-

quency and reached 90% in pure-tumor samples (Fig. 2A).

The number of false positive calls was consistently low, indicating

appropriate elimination of germline variants.

As expected, relaxing the mappability threshold (MQ1)

increased recall, here to around 97% at high tumor content. The

drawback of higher recall was the appearance of false positive calls

(Fig. 2B). In samples with higher tumor allelic frequency, thousands

of false positives raised FDR to close to 0.1, or one false call in ten.

When we considered thesaurus annotation false discovery dropped

substantially; notably at the MQ1 setting FDR fell to around 10–5,

or one false call per hundred thousand calls. The same improvement

was not reproduced by replacing the computed links with randomly

generated links (Supplementary Text).

Benefits of thesaurus annotation were also observed relative to

other mutation calling programs. Mutation calls by Mutect

(Cibulskis et al., 2013) on the same datasets followed a similar pat-

tern to what we described for stringent mappability settings without

thesaurus (Fig. 2A and B). Mutation calls by Varscan2 (Koboldt et

al., 2012) also followed the above results without thesaurus

(Supplementary Text). Such similarities arise because the enhanced

performance is due to linking related sites together, which is an in-

novation unique to the thesaurus approach.

We also performed thesaurus annotation calculations starting

with variants from Platypus (Rimmer et al., 2014), an alternative

caller, and observed similar improvement in performance

(Supplementary Text). These observations suggest that the thesaurus

implementation is not bound to a particular variant calling pipeline

and can be incorporated into existing workflows.

3.2 Synthetic family trio
Next, we performed similar benchmarks for de novo mutation de-

tection in a family trio. We created diploid genomes for a synthetic

mother and father with random heterozygous variants inserted at a

rate of 10–3 bp–1. We then selected a set of chromosomes from each

of the parents, mutated them further at a rate of 10–4 bp–1, and

treated the result as the genome of an offspring.

The calculations followed the same procedures as in the previous

section. We generated synthetic reads for exactly 20� coverage of

each genome, aligned them to the hg38 reference genome, called vari-

ants with two mapping quality settings, and then applied thesaurus

multi-sample filtering. To search for de novo mutations in the child,

we compared allelic frequencies in the child sample to the correspond-

ing frequencies in both the parents’ samples. We evaluated candidates

using a series of thresholds on the observed allelic frequency (AF).

The majority of de novo variants in well-mappable regions were

readily detectable in the child sample, with overall recall at around

90% (Fig. 3A). The true positive rate only fell when we required an

allelic frequency above 0.5 (all the mutations were exactly

A B

Fig. 2. Performance for calling somatic mutations from synthetic normal/

tumor sample pairs. (A) True positive rate (TPR) of various mutation detection

approaches (note vertical axis does not start at 0 to emphasize the practically

relevant TPR range). Dots represent synthetic tumor samples with different

mutation allelic frequencies (AF). The approaches are Mutect, a local muta-

tion calling at two mapping quality (MQ) thresholds, and thesaurus-assisted

mutation calling at two mappability thresholds. Other methods are discussed

in the Supplementary Text. (B) False discovery rates (FDR) for the same meth-

ods. The gray band indicates results with zero false positives and a small

number of true positives, a performance regime that produces spuriously

high FDRs based on Eq. (4)
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heterozygous, hence none satisfied the excessive criterion). Including

sites from low-mappability regions increased recall, but, as ex-

pected, substantially increased false discovery (Fig. 3B). However,

thesaurus links resolved ambiguous mapping and reduced false dis-

covery by orders of magnitude. At intermediate AF thresholds, the-

saurus annotation also served to reduce the number of false

negatives.

For our usual annotation pipeline, we allowed up to 100 thesaurus

links per annotated site. In practice, however, many sites connected

only to a handful of alternative loci. To illustrate this and at once test

the robustness of the mutation calling procedure to the threshold on

maximal links, we reran the annotation allowing at most ten links per

site (Supplementary Text). As expected, this change increased the

number of false negatives in the mutation call set. However, the over-

all shape of the TPR and FDR curves remained unaffected. Thus, the

majority of the variants throughout the genome affected by mappabil-

ity are in regions of relatively low copy number.

Finally, we observed that although the synthetic dataset con-

tained de novo mutations with AF of exactly 0.5, some candidate

sites received considerably smaller estimates (both naive and the-

saurus adjusted). This implies that while reads with mismatches

accumulated at these particular genomic loci (possibly because of

idiosyncrasies of the aligner), the variants could not be linked to all

their appropriate partners (possibly because of combinations of

nearby variants or sub-optimal linking strategy). Missing links

spoiled the adjustment for allelic frequency and failed to turn false

positive sites into thesaurus true positives. Thus, additional the-

saurus links would be required to decode the remaining variation in

this trio.

3.3 Platinum family trio
Following benchmarks on synthetic data, we turned to actual datasets

that include a realistic mix of sequencing errors, coverage biases, in-

sertions and deletion and other features. We obtained whole genome

data for a family trio from the publicly available Platinum genomes

project (Illimina, 2015). Although this dataset consists of a large fam-

ily of three generations, we selected to work only with child

NA12882 because DNA from this sample was sequenced in two inde-

pendent replicates, which we denoted as R1 and R2 (Fig. 4A). In the

absence of a ground truth set of mutations, we decided to explore

consistency between these replicates instead.

The data from the Platinum genomes project had already been

aligned with BWA (Li et al., 2009), so we used these ready align-

ments. We called variants in the NA12882 replicates using two map-

ping quality thresholds (MQ 0 and MQ 16). We then performed

thesaurus multi-sample annotation using alignments from the child

together with the parents (NA12877 and NA12878). To call de novo

mutations, we set an allelic frequency threshold of 0.3 for variants in

the child and a maximum allelic frequency of 0.02 in each of the par-

ents. Because of increased error rate relative to the idealized synthetic

datasets, we eliminated candidate sites supported by reads with exces-

sive strand bias (Fisher test P<0.06) and several mismatches (mean

value of MN tag>6). In calculations involving thesaurus annotation,

we eliminated candidates marked with filter codes thesaurusmany

and thesaurushard. We required a minimum coverage of 10 reads

in each of the parents, except for candidates on chromosome Y, for

which we applied this condition only in the father.

After processing each replicate separately, we compared the re-

sults. When working with variants identified at the higher mapping

quality threshold, we obtained high concordance (Fig. 4B, Jaccard

index 0.85). The number of mutation candidates—around 2000—

was ten times higher than in reports of de novo mutations in primary

patient samples (Kong et al., 2012), but was consistent with results

on other trios in the Platinum dataset (Cleary et al., 2014), which

are based on patient-derived cell lines. Mutations called in only one

replicate, i.e. discordant sites, were often also present in the other,

but not selected for the final mutation set because of lower allelic

frequency or strand-bias filtering (strand-bias filtering falsely re-

moves around 6% of true calls). These observations suggest that the

A B

C D

Fig. 4. Results on de novo mutation calling from a family trio from the

Platinum dataset. (A) Family pedigree for sample NA12882. R1 and R2 denote

two replicates of the child’s genome. (B) Concordance of de novo mutation

calls in two replicates of sample NA12882 obtained using a high (MQ 16)

mapping quality threshold. Axes display the allelic frequencies (AF) of candi-

date sites in the two replicates. (C) Concordance of de novo mutation calls

identified through thesaurus analysis of low mappability genomic regions

(MQ 0) and not in the previous analysis. Allelic frequencies on the axes are in-

formed by all thesaurus-linked genomic sites. (Thesaurus-adjusted AF>1 are

plotted at unity.) (D) Analogous to panel (C), but with allelic frequencies on

the axes computed using data from only one genomic locus per mutation

candidate

A B

Fig. 3. Performance for calling de novo mutations in a synthetic family trio.

(A) True positive rates (TPR) of various calling approaches. Dots represent ac-

tual calls at various thresholds for observed allelic frequency (AF); lines are

simple interpolations. The approaches used to select candidates are local mu-

tation calling at two mapping quality (MQ) thresholds, and the thesaurus-

assisted equivalents. (B) False discovery rates (FDR) for the same methods.

The gray band indicates experiments with a small number of true positives

and no false positives at all, for which Eq. (4) gives spuriously high FDR

values
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sequencing data and the mutation calls are of high quality; the nom-

inal value for concordance between replicates would likely increase

with higher coverage and with additional technical replicates.

We then turned to mutations detected at the low mapping qual-

ity (Fig. 4C) and identified over 130 new mutation candidates using

the thesaurus approach. The nominal concordance for called sites

was lower than before (78 concordant sites, Jaccard index 0.57).

However, the majority of candidate sites detected in one replicate

also presented nonzero allelic frequencies in the other replicate (and

not in the parents), albeit below threshold for selection to the final

call set. This suggests that most of the identified sites are actually

true, but appear discordant because of low coverage or an imperfect

calling procedure. Considering borderline cases as actually concord-

ant, the proportion of true variants in each replicate set could reach

80%, the previously reported experimental validation rate for the-

saurus annotated variants (Kerzendorfer et al., 2015).

Because signal from a true variant is typically diluted over mul-

tiple sites, the effect of coverage on power to detect mutations is ex-

pected be more pronounced in low- than in high-mappability regions.

To visualize this, we compared allelic frequencies computed using

thesaurus-adjusted counting (Fig. 4C, Eq. (2)) and using local count-

ing (Fig. 4D, Eq. (1)). Around two-thirds of concordant mutation can-

didate sites were identified because their thesaurus adjusted allelic

frequencies satisfied our thresholds although their unadjusted coun-

terparts did not. In other words, this group of reproducible variants

was only called by collecting information from more than one site of

the genome; identifying this group would not have been possible with

any method considering only local information. Despite success in de-

tecting these sites, the pronounced differences between local and the-

saurus-adjusted allelic frequencies also highlight a limitation of the

current implementation: because the initial mutation candidate set is

guided by variants obtained with a standard variant caller, discrepan-

cies due to low read counts can hinder analysis even prior to the-

saurus link-building. Unfortunately the thesaurus software currently

cannot rescue candidates missed in the initial screening stage.

While comparing mutation call sets, we also observed that

around 50 candidates in the analysis based on high MQ candidates

(Fig. 4B) were absent in the subsequent result sets. This can happen

when a local AF indicates presence of a mutation but the thesaurus-

adjusted AF fails the criteria. Some such sites may be germline con-

taminants that are eliminated by thesaurus annotation. Others can

be attributed to filtering by thesaurusmany and thesaurushard

codes, which eliminate sites cannot be reliably annotated with the

current implementation of the thesaurus software.

Beyond comparisons of replicate datasets, the appropriate test

for novel mutation candidates is independent validation in a separ-

ate dataset. In this direction, we analyzed a long-insert sequencing

dataset based on the same family trio. In long-insert datasets, indi-

vidual reads are still only 100 bp long, but are separated by longer

gaps. The long-insert dataset for this family was lower in coverage

than the primary dataset, so a direct comparison is not directly use-

ful. However, we queried the long-insert dataset for the mutation

sites of interest. We observed that the majority of the novel mutation

candidates were also present in the long-insert data (Supplementary

Text), reinforcing the view that a majority of the newly called vari-

ants are probably true. Of note, many of the new mutations re-

mained supported only by reads with low mapping quality. This

indicates that similarity of some mutation-containing genomic re-

gions spans several kilobases where mapping ambiguities cannot be

easily solved with long-insert sequencing.

Altogether, the thesaurus-based analysis puts forth more than

100 novel mutation sites in the NA12882 genome, an

approximately 5% increase over the analysis using only high-mapp-

ability regions. This increase is comparable to, albeit slightly lower

than, results using the synthetic datasets. Based on concordance be-

tween replicates, previous results on validation of thesaurus-anno-

tated variants (Kerzendorfer et al., 2015), and in-silico validation in

a long-insert dataset, we argued that the majority of the newly iden-

tified sites are likely to be true in the underlying biological sample.

4 Conclusion

In this work we extended the thesaurus variant annotation strategy

(Kerzendorfer et al., 2015) to the context of multiple matched sam-

ples. This capability makes thesaurus filtering now available for

problems such as detection of somatic mutations in cancer genomes

and de novo mutations in family trios. We implemented software

suitable for these applications, proposed a package to handle the-

saurus annotations within the R environment, and performed a

number of tests on synthetic and actual data. All the tests indicated

that thesaurus annotation provides a real benefit for describing

changes in DNA in low mappability regions of the human genome.

The improvements are observed relative to existing methods that re-

port mutations at individual genomic loci through single entries in

VCF files rather than clusters of loci.

The contribution of this work is twofold. First, the software proposes

a particular implementation of mutation calling in matched samples, i.e.

an extension of existing analysis pipelines incorporating thesaurus anno-

tation. In this direction, we showed that the software is compatible with

existing workflows including different aligners and variant callers.

Second, our work provides tools and data structures upon which special-

ized applications can draw on. The formats are intentionally generic to

enable extensions and adaptations of thesaurus annotations to particular

needs. In particular, selection of mutation candidates can be adjusted in

many ways beyond the filters described here.

A practical conclusion of the benchmarking studies is that the-

saurus annotation opens the analysis window on between five and

ten percent of the human genome. But the thesaurus technique also

has some limitations. The implementation used in this work is not

adapted to the study of indels or variants immediately near struc-

tural rearrangements. Also, because a signal from one locus is often

diluted over multiple genomic sites because of alignment ambiguity,

the coverage required to detect and call a variant or mutation in low

mappability regions is higher than in high mappability regions. With

decreasing sequencing costs and gradually increasing standards of

sample coverage and read length, however, this factor should not be

a serious obstacle to the study of mutations in these regions.
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