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Abstract

Motivation: The field of phylodynamics focuses on the problem of reconstructing population size

dynamics over time using current genetic samples taken from the population of interest. This tech-

nique has been extensively used in many areas of biology but is particularly useful for studying the

spread of quickly evolving infectious diseases agents, e.g. influenza virus. Phylodynamic inference

uses a coalescent model that defines a probability density for the genealogy of randomly sampled

individuals from the population. When we assume that such a genealogy is known, the coalescent

model, equipped with a Gaussian process prior on population size trajectory, allows for nonpara-

metric Bayesian estimation of population size dynamics. Although this approach is quite powerful,

large datasets collected during infectious disease surveillance challenge the state-of-the-art of

Bayesian phylodynamics and demand inferential methods with relatively low computational cost.

Results: To satisfy this demand, we provide a computationally efficient Bayesian inference frame-

work based on Hamiltonian Monte Carlo for coalescent process models. Moreover, we show that

by splitting the Hamiltonian function, we can further improve the efficiency of this approach. Using

several simulated and real datasets, we show that our method provides accurate estimates of

population size dynamics and is substantially faster than alternative methods based on elliptical

slice sampler and Metropolis-adjusted Langevin algorithm.

Availability and implementation: The R code for all simulation studies and real data analysis con-

ducted in this article are publicly available at http://www.ics.uci.edu/�slan/lanzi/CODES.html and in

the R package phylodyn available at https://github.com/mdkarcher/phylodyn.

Contact: S.Lan@warwick.ac.uk or babaks@uci.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Population genetics theory states that changes in population size affect

genetic diversity, leaving a trace of these changes in individuals’ gen-

omes. The field of phylodynamics relies on this theory to reconstruct

past population size dynamics from current genetic data. In recent
years, phylodynamic inference has become an essential tool in areas like

ecology and epidemiology. For example, a study of human influenza A
virus from sequences sampled in both hemispheres pointed to a source-
sink dynamics of the influenza evolution (Rambaut et al., 2008).
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Phylodynamic models connect population dynamics and genetic

data using coalescent-based methods (Griffiths and Tavare, 1994;

Kuhner et al., 1998; Strimmer and Pybus, 2001; Drummond et al.,

2002; Drummond et al., 2005; Opgen-Rhein et al., 2005; Heled and

Drummond, 2008; Minin et al., 2008; Palacios and Minin, 2013).

Typically, such methods rely on Kingman’s coalescent model, which

is a probability model that describes formation of genealogical rela-

tionships of a random sample of molecular sequences. The coales-

cent model is parameterized in terms of the effective population size,

an indicator of genetic diversity (Kingman, 1982).

While recent studies have shown promising results in alleviating

computational difficulties of phylodynamic inference (Palacios and

Minin, 2012, 2013), existing methods still lack the level of computa-

tional efficiency required to realize the potential of phylodynamics:

developing surveillance programs that can operate similarly to wea-

ther monitoring stations allowing public health workers to predict

disease dynamics to optimally allocate limited resources in time and

space. To achieve this goal, we present an accurate and computa-

tionally efficient inference method for modeling population dy-

namics given a genealogy. More specifically, we concentrate on a

class of Bayesian nonparametric methods based on Gaussian proc-

esses (Minin et al., 2008; Gill et al., 2013; Palacios and Minin,

2013). Following Palacios and Minin (2012) and Gill et al. (2013),

we assume a log-Gaussian process prior on the effective population

size. As a result, the estimation of effective population size trajectory

becomes similar to the estimation of intensity of a log-Gaussian Cox

process (LGCP; Møller et al., 1998), which is extremely challenging

since the likelihood evaluation becomes intractable: it involves inte-

gration over an infinite-dimensional random function. We resolve

the intractability in likelihood evaluation by discretizing the integra-

tion interval with a regular grid to approximate the likelihood and

the corresponding score function.

For phylodynamic inference, we propose a computationally effi-

cient Markov chain Monte Carlo (MCMC) algorithm using

Hamiltonian Monte Carlo (HMC; Duane et al., 1987; Neal, 2010)

and one of its variants, called Split HMC (Leimkuhler and Reich,

2004; Neal, 2010; Shahbaba et al., 2013), which speeds up standard

HMC’s convergence. Our proposed algorithm has several advan-

tages. First, it updates all model parameters jointly to avoid poor

MCMC convergence and slow mixing rates when there are strong

dependencies among model parameters (Knorr-Held and Rue,

2002). Second, unlike a recently proposed Integrated Nested

Laplace Approximation method (INLA, Rue et al., 2009; Palacios

and Minin, 2012), which approximates the posterior distribution

of model parameters given a fixed genealogy, our approach can be

extended to more general settings where we observe genetic data

(as opposed to the genealogy of sampled individuals) that provide

information on genealogical relationships. Third, we show that our

method is up to an order of magnitude more efficient than alterna-

tive MCMC algorithms, such as Metropolis-adjusted Langevin algo-

rithm (MALA; Roberts and Tweedie, 1996), adaptive MALA

(aMALA; Knorr-Held and Rue, 2002) and Elliptical Slice Sampler

(ES2; Murray et al., 2010) that are commonly used in the field of

phylodynamics. Finally, although in this article we focus on phylo-

dynamic studies, our proposed methodology can be easily applied to

more general point process models.

The remainder of the article is organized as follows. In Section 2,

we provide a brief overview of coalescent models and HMC algo-

rithms. Section 3 presents the details of our proposed sampling

methods. Experimental results based on simulated and real data are

provided in Section 4. Section 5 is devoted to discussion and future

directions.

2 Preliminaries

2.1 Coalescent
Assume that a genealogy with time measured in units of generations is

available. The coalescent model allows us to trace the ancestry of a

random sample of n genomic sequences: two sequences or lineages

merge into a common ancestor as we go back in time until the com-

mon ancestor of all samples is reached. Those ‘merging’ times are

called coalescent times. The coalescent with variable population size

is an inhomogeneous Markov death process that starts with n lineages

at present time, tn¼0, and decreases by one at each of the consequent

coalescent times, tn�1 < � � � < t1, until reaching their most recent

common ancestor (Kingman, 1982; Griffiths and Tavare, 1994).

Suppose we observe a genealogy of n individuals sampled at time

0. Under the standard (isochronous) coalescent model, given the ef-

fective population size trajectory, NeðtÞ, the joint density of coales-

cent times tn ¼ 0 < tn�1 < � � � < t1 is

P t1; . . . ; tnjNe tð Þ½ � ¼
Yn
k¼2

P tk�1jtk;Ne tð Þ½ �

¼
Yn
k¼2

Ak

Ne tk�1ð Þexp �
ð

Ik

Ak

Ne tð Þ dt

� �
;

(1)

where Ak¼ðk2Þ and Ik ¼ ðtk; tk�1�. Note that the larger the popula-

tion size, the longer it takes for two lineages to coalesce. Further, the

larger the number of lineages, the faster two of them meet their com-

mon ancestor.

For rapidly evolving organisms, we may have different sampling

times. When this is the case, the standard coalescent model can be

generalized to account for such heterochronous sampling (Rodrigo

and Felsenstein, 1999). Under the heterochronous coalescent, the

number of lineages changes at both coalescent times and sampling

times. Let ftkgn
k¼1 denote the coalescent times as before, but now let

sm ¼ 0 < sm�1 < � � � < s1 denote sampling times of nm; . . . ;n1 se-

quences respectively, where
Pm

j¼1 nj ¼ n. Further, let s and n denote

the vectors of sampling times fsjgm
j¼1 and numbers of sequences

fnjgm
j¼1 sampled at these times, respectively. Then we can modify

density (1) as

P½t1; . . . ; tnjs; n;NeðtÞ� ¼

Yn

k¼2

A0;kexp �
ð

I0;k

A0;k

NeðtÞ
dt �

X
i�1

ð
Ii;k

Ai;k

NeðtÞ
dt

( )

Neðtk�1Þ
;

(2)

where the coalescent factor Ai;k ¼ ð li;k
2
Þ depends on the number of

lineages li;k in the interval Ii;k defined by coalescent times and sam-

pling times. For k ¼ 2; . . . ;n, we denote half-open intervals that

end with a coalescent event by

I0;k ¼ ðmax tk; sj

� �
; tk�1�; (3)

for sj < tk�1 and half-open intervals that end with a sampling event

by (i>0)

Ii;k ¼ ðmax tk; sjþi

� �
; sjþi�1�; (4)

for tk < sjþi�1� sj < tk�1. In density (2), there are n – 1 intervals

fIi;kgi¼0 and m – 1 intervals fIi;kgi>0 for all (i, k). Note that only

those intervals satisfying Ii;k � ðtk; tk�1� are non-empty. See Figure 1

for more details.

We can think of isochronous coalescence as a special case of het-

erochronous coalescence when m ¼ 1;A0;k ¼ Ak; I0;k ¼ Ik; Ii;k ¼ ;
for i>0. Therefore, in what follows, we refer to density (2) as the

general case.
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We assume the following log-Gaussian Process prior on the ef-

fective population size, NeðtÞ:

NeðtÞ ¼ exp½f ðtÞ�; f ðtÞ � GPð0;CðhÞÞ; (5)

where GPð0;CðhÞÞ denotes a Gaussian process with mean function 0

and covariance function CðhÞ. A priori, NeðtÞ is a log-Gaussian

process.

For computational convenience, we use a Gaussian process with

inverse covariance function C�1
in ðj Þ ¼ j C�1

in , where C�1
in corres-

ponds to a modified inverse covariance matrix of Brownian motion

(C�1
BM) that starts with an initial Gaussian distribution with mean 0

and large variance. This corresponds to an intrinsic autoregression

model (Besag and Kooperberg, 1995; Knorr-Held and Rue, 2002).

The computational complexity of computing the density of this

prior is OðDÞ since the inverse covariance matrix is tri-diagonal

(Kalman, 1960; Rue and Held, 2005; Palacios and Minin, 2013).

The precision parameter j is assumed to have a Gammaða;bÞ prior.

2.2 HMC
Bayesian inference typically involves intractable models that rely on

MCMC algorithms for sampling from the corresponding posterior

distribution, pðhÞ. HMC (Duane et al., 1987; Neal, 2010) is a state-

of-the-art MCMC algorithm that suppresses the random walk

behavior of standard Metropolis-based sampling methods by pro-

posing states that are distant from the current state but nevertheless

have a high probability of being accepted. These distant proposals

are found by numerically simulating Hamilton dynamics, whose

state space consists of position, denoted by the vector h, and mo-

mentum, denoted by the vector p. It is common to assume

p � Nð0;MÞ, where M is a symmetric, positive-definite matrix

known as the mass matrix, often set to the identity matrix I for

convenience.

For Hamiltonian dynamics, the potential energy, UðhÞ, is defined

as the negative log density of h (plus any constant); the kinetic energy,

KðpÞ for momentum variable p, is set to be the negative log density of

p (plus any constant). Then the total energy of the system, the

Hamiltonian function, is defined as their sum: Hðh; pÞ ¼ UðhÞ þKðpÞ.

The system of ðh; pÞ evolves according to the following set of

Hamilton’s equations:

_h ¼ rpHðh;pÞ ¼ M�1p;

_p ¼ �rhHðh; pÞ ¼ �rhUðhÞ:
(6)

In practice, we use a numerical method called leapfrog to approxi-

mate the Hamilton’s equations (Neal, 2010) when the analytical so-

lution is not available. We numerically solve the system for L steps,

with some step size, e, to propose a new state in the Metropolis algo-

rithm and accept or reject it according to the Metropolis acceptance

probability (see Neal, 2010, for more discussions).

3 Method

3.1 Discretization
As discussed above, the likelihood function (2) is intractable in general.

We can, however, approximate it using discretization. To this end, we

use a fine regular grid, x ¼ fxdgD
d¼1, over the observation window and

approximate NeðtÞ by a piecewise constant function as follows:

NeðtÞ 	
XD�1

d¼1

exp½f ðx
dÞ�1t2ðxd ;xdþ1 �; x
d ¼
xd þ xdþ1

2
: (7)

Note that the regular grid x does not coincide with the sampling

coalescent times, except for the first sampling time sm ¼ x1 and the

last coalescent time t1 ¼ xD. To rewrite (2) using the approximation

(7), we sort all the time points ft; s;xg to create new Dþmþ n� 4

half-open intervals fI
ag with either coalescent time points, sampling

time points or grid time points as the end points (Fig. 1).

For each a 2 f1; � � � ;Dþmþ n� 4g, there exists some i, k and

d such that I
a ¼ Ii;k \ ðxd; xdþ1�. Each integral in density (2) can be

approximated as a sum:ð
Ii;k

Ai;k

NeðtÞ
dt 	

X
I
a�Ii;k

Ai;kexp½�f ðx
dÞ�Da;

where Da is the length of the interval I
a. This way, the joint density

of coalescent times (2) can be rewritten as a product of the following

terms:

Ai;k

exp½f ðx
dÞ�

� �ya

exp � Ai;kDa

exp½f ðx
dÞ�

� �
; (8)

where ya is an auxiliary variable set to 1 if I
a ends with a coalescent

time and to 0 otherwise. Then, density (2) can be approximated as

follows:

P½t1; . . . ; tnjs; n;NeðtÞ� 	
YDþmþn�4

a¼1

P½yajs; n;NeðtÞ�

¼
YD�1

d¼1

a
I
a�ðxd ;xdþ1 �

Ai;k

exp½f ðx
dÞ�

� �ya

exp � Ai;kDa

exp½f ðx
dÞ�

� �
;

(9)

where the coalescent factor Ai;k on each interval I
a is determined by

the number of lineages li;k in I
a. We denote the expression on the right-

hand side of Equation (9) by CoalescentðfÞ, where f :¼ ff ðx
dÞg
D�1
d¼1

.

3.2 Sampling methods
Our model can be summarized as

yaf gDþmþn�4
a¼1 js;n; f � CoalescentðfÞ;

fjj � N 0;
1

j
Cin

� �
;

j � Gammaða; bÞ:

(10)

Observed data 6t4 t5t3t2

32 43354433

x 1

t1

x 4 x 3 x 2x 5

1,60,2 0,6

I

0,3

I I I I I I

Number of lineages

s3s2s1

Grid of Points

Time (Present to Past)

0,4 0,5 1,5

t =

Fig. 1. A genealogy with coalescent times and sampling times. Blue dashed

lines indicate the observed times: coalescent times ft1; � � � ; t6g and sampling

times fs1; s2; s3g. The intervals where the number of lineages change are

denoted by Ii;k . The superimposed grid fx1; � � � ; x5g is marked by gray dashed

lines. We count the number of lineages in each interval defined by grid

points, coalescent times and sampling times

3284 S.Lan et al.



After transforming the coalescent times, sampling times and

grid points into fya;Ai;k;Dag, we condition on these data to generate

posterior samples for f ¼ logNeðx
Þ and j, where x
 ¼ fx
dg is the

set of the middle points in (7). We use these posterior samples to

make inference about NeðtÞ.
For sampling f using HMC, we first compute the discretized log-

likelihood

l ¼ �
XD�1

d¼1

X
I
a�ðxd ;xdþ1 �

yaf ðx
dÞ þ Ai;kDaexp½�f ðx
dÞ�
� �

and the corresponding gradient (score function)

sd ¼ �
X

I
a�ðxd ;xdþ1 �
ya � Ai;kDaexp½�f ðx
dÞ�
� �

:

based on (9).

Because the prior on j is conditionally conjugate, we could dir-

ectly sample from its full conditional posterior distribution,

j jy; s; n; f � Gammaðaþ ðD� 1Þ=2; bþ fTC�1
in f=2Þ: (11)

However, updating f and j separately is not recommended in gen-

eral because of their strong interdependency (Knorr-Held and Rue,

2002): large value of precision j strictly confines the variation of f,

rendering slow movement in the space occupied by f. Therefore, we

update ðf; j Þ jointly in our sampling method. In practice, of course,

it is better to sample h :¼ ðf; sÞ, where s ¼ logðj Þ is in the same scale

as f ¼ logNeðx
Þ. Note that the log-likelihood of h is the same as

that of f because density (2) does not involve s. The log-density prior

on h is defined as follows:

logPðhÞ / ððD� 1Þ=2þ aÞs� ðfTC�1
in f=2þ bÞes: (12)

3.3 Speed up by splitting Hamiltonian
The speed of HMC could be increased by splitting the Hamiltonian

into several terms such that the dynamics associated with some of

these terms can be solved analytically (Leimkuhler and Reich, 2004;

Neal, 2010; Shahbaba et al., 2013). For these analytically solvable

parts (typically in quadratic forms), simulation of the dynamics does

not introduce a discretization error, allowing for faster movements

in the parameter space.

For our model, we split the Hamiltonian Hðh; pÞ ¼ UðhÞ þ KðpÞ
as follows:

Hðh;pÞ ¼ �l � ½ðD� 1Þ=2þ a�sþ bes

2
þ

fTC�1
in fes þ pTp

2
þ�l � ½ðD� 1Þ=2þ a�sþ bes

2
:

(13)

We further split the middle part into two dynamics involving fjs and

sjf, respectively,

_f js ¼ p�D;

_p�D ¼ �C�1
in fes:

(
(14a)

_sjf ¼ pD;

_pD ¼ �fTC�1
in fes=2;

(
(14b)

where the subindex ‘– D’ means all but the Dth element. Using the

spectral decomposition C�1
in ¼ UKU�1 and denoting f
 :¼

ffiffiffiffi
K
p

es=2

U�1f and p
�D :¼ U�1p�D, we can analytically solve the dynamics

(14a) as follows (Lan, 2013) (more details are provided in the

Supplementary Material):

f
ðtÞ

p
�DðtÞ

" #
¼

cosð
ffiffiffiffi
K
p

es=2tÞ sinð
ffiffiffiffi
K
p

es=2tÞ

�sinð
ffiffiffiffi
K
p

es=2tÞ cosð
ffiffiffiffi
K
p

es=2tÞ

" #
f

ð0Þ

p
�Dð0Þ

" #
(15)

where diagonal matrix
ffiffiffiffi
K
p

scales different dimensions. We then use

the standard leapfrog method to solve the dynamics (14b) and the

residual dynamics in (13). Note that we only need to diagonalize

C�1
in once prior to sampling and then calculate fTC�1

in fes ¼ f
Tf
;

therefore, the overall computational complexity of the integrator is

OðD2Þ. Algorithm 1 shows the steps for this approach, which we

refer to as splitHMC.

4 Experiments

We illustrate the advantages of our HMC-based methods using four

simulation studies. We also apply our methods to analysis of a real

dataset. We evaluate our methods by comparing them to INLA in

terms of accuracy and to several sampling algorithms, MALA,

aMALA and ES2, in terms of sampling efficiency. We measure sam-

pling efficiency with time-normalized effective sample size (ESS).

Given B MCMC samples for each parameter, we define the corres-

ponding ESS¼B½1þ 2
PK

k¼1 cðkÞ��1 and calculate it using the

‘effectiveSize’ function in R Coda. Here,
PK

k¼1 cðkÞ is the sum of K

monotone sample autocorrelations (Geyer, 1992). We use the min-

imum ESS over all parameters normalized by the CPU time, s (in se-

conds), as the overall measure of efficiency: minðESSÞ=s.
We tune the stepsize and number of leapfrog steps for our HMC-

based algorithm, such that their overall acceptance probabilities are

in a reasonable range (close to 0.70). In all experiments, we use

Gamma hyper prior parameters a ¼ b ¼ 0:1.

Algorithm 1. splitHMC for the coalescent model

Initialize hð1Þ at current h ¼ ðf; sÞ
Sample a new momentum value pð1Þ � N ð0; IÞ
Calculate Hðhð1Þ; pð1ÞÞ ¼ Uðhð1ÞÞ þ Kðpð1ÞÞ according to (13)

for ‘ ¼ 1 to L do

p
‘þ

1

2

� �
¼p ‘ð Þ þ e=2

s ‘ð Þ

D�1ð Þ=2það Þ�bexp s ‘ð Þ	 

2
4

3
5

p
‘þ

1

2

� �
D ¼p

‘ð Þ
D � e=2f
 ‘ð ÞTf
 ‘ð Þ=2

s
‘þ

1

2

� �
¼ s ‘ð Þ þ e=2p

‘þ
1

2

� �
D

f
 ‘þ1ð Þ

p

 ‘þ

1

2

� �
�D

2
64

3
75 

cos
ffiffiffiffi
K
p

e

1

2
s

‘þ
1

2

� �
e

0
B@

1
CA sin

ffiffiffiffi
K
p

e

1

2
s

‘þ
1

2

� �
e

0
B@

1
CA

�sin
ffiffiffiffi
K
p

e

1

2
s

‘þ
1

2

� �
e

0
B@

1
CA cos

ffiffiffiffi
K
p

e

1

2
s

‘þ
1

2

� �
e

0
B@

1
CA

2
666666664

3
777777775

f
 ‘ð Þ

p

 ‘þ

1

2

� �
�D

2
64

3
75

s ‘þ1ð Þ ¼ s
‘þ

1

2

� �
þ e=2p

‘þ
1

2

� �
D

p
‘þ1ð Þ

D ¼p
‘þ

1

2

� �
D � e=2f
 ‘þ1ð ÞTf
 ‘þ1ð Þ=2

p ‘þ1ð Þ ¼p
‘þ

1

2

� �
þ e=2

s ‘þ1ð Þ

D�1ð Þ=2það Þ�bexp s ‘þ1ð Þ	 

2
4

3
5

end for

Calculate Hðhðþ1Þ; pðLþ1ÞÞ ¼ UðhðLþ1ÞÞ þ KðpðLþ1ÞÞ according to (13)

Calculate the acceptance probability a ¼ minf1; exp½�Hðhðþ1Þ; pðLþ1ÞÞþ
Hðhð1Þ; pð1ÞÞ�g

Accept or reject the proposal according to a for the next state h0
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Since MALA (Roberts and Tweedie, 1996) and aMALA (Knorr-

Held and Rue, 2002) can be viewed as variants of HMC with one

leapfrog step for numerically solving Hamiltonian dynamics, we im-

plement MALA and aMALA proposals using our HMC framework.

MALA, aMALA and HMC-based methods update f and s jointly.

aMALA uses a joint block-update method designed for Gaussian

Markov Random Field (GMRF) models: it first generates a proposal

j 
jj from some symmetric distribution independently of f and then

updates f
jf; j 
 based on a local Laplace approximation. Then,

ðf
;j 
Þ is either accepted or rejected. It can be shown that aMALA

is equivalent to Riemannian MALA (Roberts and Stramer, 2002;

Girolami and Calderhead, 2011, also see Supplementary Material).

In addition, aMALA closely resembles the most frequently used

MCMC algorithm in Gaussian process-based phylodynamics

(Minin et al., 2008; Gill et al., 2013).

ES2 (Murray et al., 2010) is another commonly used sampling al-

gorithm designed for models with Gaussian process priors. Palacios

and Minin (2013) used ES2 for phylodynamic inference. ES2 imple-

mentation relies on the assumption that the target distribution is ap-

proximately normal. This, of course, is not a suitable assumption

for the joint distribution of ðf; sÞ. Therefore, we alternate the up-

dates fjj and j jf when using ES2. Note that we are sampling j in

ES2 to take advantage of its conjugacy.

4.1 Simulations
We simulate four genealogies for n¼50 individuals with the follow-

ing true trajectories:

1. logistic trajectory:

NeðtÞ ¼
10þ 90

1þ expð2ð3� ðt mod 12ÞÞÞ ; t mod 12�6;

10þ 90

1þ expð2ð�9þ ðt mod 12ÞÞÞ ; t mod 12 > 6;

8>>><
>>>:

2. exponential growth: NeðtÞ ¼ 1000 expð�tÞ;
3. boombust:

NeðtÞ ¼
1000 expðt � 2Þ; t�2;

1000 expð�t þ 2Þ; t > 2;

(

4. bottleneck:

NeðtÞ ¼

1; t�0:5;

0:1; t 2 ð0:5; 1:0Þ;

1; t�1:0:

8>><
>>:

To simulate data under heterochronous sampling, we selected 10 of

our samples to have sampling time 0. The sampling times for the re-

maining 40 individuals were selected uniformly at random. Our four

simulated genealogies were generated using the thinning algorithm

detailed in Palacios and Minin (2013) and implemented in R.

Simulated genealogies are displayed in the Supplementary File.

We use D¼100 equally spaced grid points in the approximation

of likelihood when applying INLA and MCMC algorithms (HMC,

splitHMC, MALA, aMALA and ES2). Figure 2 compares the esti-

mates of NeðtÞ using INLA and MCMC algorithms for the four

simulations. In general, the results of MCMC algorithms match

closely with those of INLA. It is worth noting that MALA and ES2

are occasionally slow to converge. Also, INLA fails when the num-

ber of grid points is large, e.g. 10 000, while MCMC algorithms can

still perform reliably.

For each experiment, we run 15 000 MCMC iterations with the

first 5000 samples discarded. We repeat each experiment 10 times.
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Fig. 2. INLA versus MCMC: simulated data under logistic (top 1), exponential

growth (top 2), boombust (top 3) and bottleneck (bottom) population size tra-

jectories. Dotted blue lines show 95% credible intervals given by INLA and

shaded regions show 95% credible interval estimated with MCMC samples

given by splitHMC
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The results provided in Table 1 are averaged over 10 repetitions. As

we can see, our methods substantially improve over MALA,

aMALA and ES2. Note that due to high computational cost of

Fisher information, aMALA is much worse than MALA in terms of

time-normalized ESS.

Figure 3 compares different sampling methods in terms of their

convergence to the stationary distribution when we increase the size

of grid points to D¼1000. As we can see in this more challenging

setting, Split HMC has the fastest convergence rate. HMC, ES2 and

MALA take longer time (around 500 s, 1000 s and 2000 s, respect-

ively) to converge, while aMALA does not reach the stationary dis-

tribution within the given time-frame.

In Figure 4, we show the estimated population size trajectory for

the four simulations using our splitHMC, Bayesian Skyline Plot

(Drummond et al., 2005) and Bayesian Skyride (Minin et al., 2008).

Comparison of recovered estimates from these three methods

show that our Gaussian-process-based method (using splitHMC

algorithm) performs better than the other two: our point estimates

are closer to the truth and our credible intervals cover the truth al-

most everywhere. Bayesian Skyride and splitHMC perform very

similar; however, the BCIs recovered with splitHMC cover entirely

the two peaks in the logistic simulation, the peak in the boombust

simulation and the entire bottleneck phase in the bootleneck simula-

tion. A direct comparison of efficiency of these three methods is not

possible since Bayesian Skyline Plot and Bayesian Skyride assume

different prior distributions over NeðtÞ. Additionally, Bayesian

Skyline Plot and Bayesian Skyride are implemented in BEAST

(Drummond et al., 2012) using a different language (Java).

Supplementary Figure S2 in the Supplementary File shows the

trace plots of the posterior distributions of the results displayed in

Figure 4 to assess convergence of the posterior estimates.

4.2 Human influenza A in New York
Next, we analyze a real dataset previously used to estimate influenza

seasonal dynamics (Palacios and Minin, 2012, 2013). The data con-

sist of a genealogy estimated from 288 human influenza H3N2 se-

quences sampled in New York state from January 2001 to March

2005. The key feature of the influenza A virus epidemic in temperate

regions like New York is the epidemic peaks during winters fol-

lowed by strong bottlenecks at the end of the winter season. We use

Table 1. Sampling efficiency in modeling simulated population

trajectories

Method AP s/iter minESS

(f)/s

spdup

(f)

ESS

(s)/s
spdup

(s)

ES2 1.00 1.62E-03 0.19 1.00 0.27 1.00

MALA 0.77 1.06E-03 0.70 3.76 2.13 7.86

I aMALA 0.64 7.73E-03 0.14 0.73 0.10 0.37

HMC 0.75 9.39E-03 1.88 10.08 1.77 6.52

splitHMC 0.72 6.71E-03 2.64 14.17 2.71 10.02

ES2 1.00 1.68E-03 0.22 1.00 0.28 1.00

MALA 0.76 1.05E-03 0.55 2.53 2.11 7.40

II aMALA 0.66 8.00E-03 0.06 0.29 0.12 0.41

HMC 0.73 1.23E-02 2.94 13.47 1.34 4.69

splitHMC 0.75 7.12E-03 5.22 23.93 2.73 9.58

ES2 1.00 1.67E-03 0.21 1.00 0.33 1.00

MALA 0.75 1.12E-03 0.55 2.66 1.91 5.81

III aMALA 0.65 8.11E-03 0.07 0.34 0.10 0.31

HMC 0.75 1.27E-02 2.23 10.68 1.05 3.20

splitHMC 0.75 7.66E-03 3.78 18.09 2.04 6.23

ES2 1.00 1.66E-03 0.25 1.00 0.14 1.00

MALA 0.83 1.11E-03 0.51 2.05 1.69 12.18

IV aMALA 0.65 8.18E-03 0.07 0.30 0.08 0.60

HMC 0.81 1.17E-02 0.58 2.30 0.87 6.25

splitHMC 0.76 7.78E-03 0.80 3.21 1.38 9.96

The true population trajectories are (I) logistic, (II) exponential growth,

(III) boombust and (IV) bottleneck. AP, acceptance probability; s/iter, seconds

per sampling iteration; ‘spdup’, speedup of efficiency measurement minESS/s

using ES2 as baseline.
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120 grid points in the likelihood approximation. The results de-

picted in Figure 5 based on intrinsic precision matrix, C�1
in , are quite

comparable to that of INLA. However, estimates using splitHMC

with different covariances show that using C�1
in is more conservative

than C�1
BM in estimating the variation of population size trajectory.

In Table 2, we can see that the speedup by HMC and splitHMC

over other MCMC methods is substantial.

5 Discussion

Phylodynamic inference has become crucial in conservation biology,

epidemiology and other areas. Bayesian nonparametric methods

coupled with coalescent models provide a powerful framework to

infer changes in effective population sizes with many advantages.

One of the main advantages of Bayesian nonparametric methods

over traditional parametric methods that assume fixed functional

form of NeðtÞ, such as exponential growth (Kuhner et al., 1998), is

the ability of Bayesian nonparametric methods to recover any func-

tional form without any prior knowledge about NeðtÞ. With the

technological advance of powerful tools for genotyping individuals,

it is crucial to develop efficient methodologies that can be applied to

large number of samples and multiple genes.

In this article, we have proposed new HMC-based sampling al-

gorithms for phylodynamic inference. We have compared our meth-

ods to several alternative MCMC algorithms and showed that

they substantially improve computational efficiency of GP-based

Bayesian phylodynamics. (More results are provided in the

Supplementary Document.) Further, our analysis shows that our re-

sults are not sensitive to the prior specification for the precision par-

ameter j. This is inline with previously published results for similar

models (see Supplementary Material of Palacios and Minin, 2013).

To obtain the analytical solution of (14a) in splitHMC, we

Eigen-decompose the precision matrix C�1
in , sacrificing sparsity. One

can, however, use the Cholesky decomposition instead C�1
in ¼ RTR

and transform f
 ¼ Rf. This way, the dynamics (14a) would be

much simpler with the solution as a rotation (Pakman and Paninski,

2014). Because R is also tridiagonal similar to C�1
in , in theory the

computational cost of splitHMC could be reduced to OðDÞ. In prac-

tice, however, we found that this approach would work well when

the Hamiltonian (13) is mainly dominated by the middle term. This

condition does not hold for the examples discussed in this article.

Nevertheless, we have provided the corresponding splitHMC

method with Cholesky decomposition in the Supplementary File,

since it can still be used for situations where the middle term does in

fact dominate the overall Hamiltonian.

There are several possible future directions. One possibility is to

use ES2 as a proposal generating mechanism in updating f as

opposed to using it for sampling from the posterior distribution.

Finding a good proposal for j (or s), however, remains challenging.

Another possible direction it to allow j to be time dependent. When

there is rapid fluctuation in the population, one single precision par-

ameter j may not well capture the corresponding change in the la-

tent vector f. Our future work will include time-varying precision

j ðtÞ or more informative covariance structure in modeling Gaussian

prior. Also, we can extend our existing work by allowing irregular

grids, which may be more suitable for rapidly changing population

dynamics.

Another important extension of the methods presented here is to

allow for multiple genes and genealogical uncertainty. The MCMC

methods proposed here can be incorporated into a hierarchical

framework to infer population size trajectories from sequence data

directly. In contrast, INLA cannot be adapted easily to perform in-

ference from sequence data. This greatly limits its generality.
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