Skip to main content
. 2015 Jun 20;31(20):3282–3289. doi: 10.1093/bioinformatics/btv378

Table 1.

Sampling efficiency in modeling simulated population trajectories

Method AP s/iter minESS(f)/s spdup(f) ESS(τ)/s spdup(τ)
ES2 1.00 1.62E-03 0.19 1.00 0.27 1.00
MALA 0.77 1.06E-03 0.70 3.76 2.13 7.86
I aMALA 0.64 7.73E-03 0.14 0.73 0.10 0.37
HMC 0.75 9.39E-03 1.88 10.08 1.77 6.52
splitHMC 0.72 6.71E-03 2.64 14.17 2.71 10.02
ES2 1.00 1.68E-03 0.22 1.00 0.28 1.00
MALA 0.76 1.05E-03 0.55 2.53 2.11 7.40
II aMALA 0.66 8.00E-03 0.06 0.29 0.12 0.41
HMC 0.73 1.23E-02 2.94 13.47 1.34 4.69
splitHMC 0.75 7.12E-03 5.22 23.93 2.73 9.58
ES2 1.00 1.67E-03 0.21 1.00 0.33 1.00
MALA 0.75 1.12E-03 0.55 2.66 1.91 5.81
III aMALA 0.65 8.11E-03 0.07 0.34 0.10 0.31
HMC 0.75 1.27E-02 2.23 10.68 1.05 3.20
splitHMC 0.75 7.66E-03 3.78 18.09 2.04 6.23
ES2 1.00 1.66E-03 0.25 1.00 0.14 1.00
MALA 0.83 1.11E-03 0.51 2.05 1.69 12.18
IV aMALA 0.65 8.18E-03 0.07 0.30 0.08 0.60
HMC 0.81 1.17E-02 0.58 2.30 0.87 6.25
splitHMC 0.76 7.78E-03 0.80 3.21 1.38 9.96

The true population trajectories are (I) logistic, (II) exponential growth, (III) boombust and (IV) bottleneck. AP, acceptance probability; s/iter, seconds per sampling iteration; ‘spdup’, speedup of efficiency measurement minESS/s using ES2 as baseline.