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Abstract
The Brazilian South coast seasonally hosts numerous marine species, observed particu-

larly during winter months. Some animals, including fur seals, are found dead or debilitated

along the shore and may harbor potential pathogens within their microbiota. In the present

study, a metagenomic approach was performed to evaluate the viral diversity in feces of fur

seals found deceased along the coast of the state of Rio Grande do Sul. The fecal virome of

two fur seal species was characterized: the South American fur seal (Arctocephalus austra-
lis) and the Subantarctic fur seal (Arctocephalus tropicalis). Fecal samples from 10 speci-

mens (A. australis, n = 5; A. tropicalis, n = 5) were collected and viral particles were purified,

extracted and amplified with a random PCR. The products were sequenced through Ion Tor-

rent and Illumina platforms and assembled reads were submitted to BLASTx searches.

Both viromes were dominated by bacteriophages and included a number of potentially

novel virus genomes. Sequences of picobirnaviruses, picornaviruses and a hepevirus-like

were identified in A. australis. A rotavirus related to group C, a novel member of the Sakobu-
virus and a sapovirus very similar to California sea lion sapovirus 1 were found in A. tropica-
lis. Additionally, sequences of members of the Anelloviridae and Parvoviridae families were

detected in both fur seal species. This is the first metagenomic study to screen the fecal vir-

ome of fur seals, contributing to a better understanding of the complexity of the viral commu-

nity present in the intestinal microbiota of these animals.

Introduction
Every year, hundreds of marine species arrive at the coast of Rio Grande do Sul, the southern-
most state in Brazil. Among these species, which include birds, turtles and mammals, fur seals
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are regular visitors that can be observed near or on-shore. These animals are driven to this
region by the Malvinas current, particularly during winter months [1–3]. Although some fur
seals may reach the coast to rest, several are found dead or debilitated along the shore and the
cause of their weakness or death cannot always be determined [4,5]. Few studies have
attempted to identify the pathogens that infect these populations and their roles as etiological
agents of diseases and as potential zoonotic agents, especially those concerned with viruses [6–
10]. While the virome of marine mammals has already been investigated [11], these studies
have been restricted to species native to the northern hemisphere. Little is known about the
viruses that infect marine mammals limited to the southern hemisphere and the effects of this
geographical difference on their virome profiles.

Here, we evaluated the viral diversity of two species of pinnipeds from the Otariidae family
from the southern hemisphere: the South American fur seal (Arctocephalus australis) and the
Subantarctic fur seal (Arctocephalus tropicalis). While the South American fur seal is found
along the Pacific and Atlantic coast of South America, the Subantarctic fur seal has a broader
range that extends from the South Atlantic to Indian ocean islands. The South American fur
seal is more frequently sighted in Rio Grande do Sul coast, mostly juveniles, due to the proxim-
ity of its closest breeding colony, located in the neighboring country of Uruguay. By contrast,
the closest Subantarctic fur seals colonies are located at more than 4,000 km away at the south
Atlantic islands of Gough and Tristan da Cunha [3,12]. Juveniles and adults specimens of Sub-
antarctic fur seals reach the Atlantic coast with the help of ocean currents, and it is known that
juveniles do not stay in the colonies during breeding seasons, while adults can travel long dis-
tances after mating [1,13].

The aim of this study was to examine the fecal virome of two species of fur seals whose
cadavers were found along the shore of Rio Grande do Sul state. Anelloviruses, parvoviruses
and picornaviruses were identified, as well as potential new members of Sakobuvirus, Picobir-
navirus and Rotavirus. A sapovirus very similar to California sea lion sapovirus 1 was found in
the Subantarctic fur seal, and a hepevirus-like sequence was identified. The data provides a pre-
liminary characterization of the viruses that occur within fur seals populations of the southern
hemisphere.

Materials and Methods

Sample Collection
Fecal samples from 10 specimens (A. australis, n = 5; A. tropicalis, n = 5) were collected directly
from the intestines of deceased fur seals found along shores between August 2012 and Septem-
ber 2013 by the Center for Coastal, Limnology and Marine Studies (CECLIMAR) team. Sam-
ples for each species were pooled and kept at -80°C until processing. All samples from this
study were collected in strict accordance with the Brazilian law, and the license for collecting
zoological material was granted by SISBIO/Ministry of the Environment (License number:
20185–4). The location and information about the specimens are provided in Table 1 and
Fig 1.

Viral Particle Purification and Nucleic Acid Extraction
Fecal samples were suspended in Hank's balanced salt solution, vigorously vortexed and then
centrifuged at 2500 × g for 90 min at 4°C. The supernatant was again centrifuged for 10 min at
maximum speed and then filtered through a 0.45 μm syringe filter (MF-Millipore). The viral
particles were harvested and pelleted on a 25% sucrose cushion by ultracentrifugation at
190000 × g for 4h at 4°C. The pellet was resuspended in TE buffer and clarified by emulsifying
with 1/1 (v/v) chloroform and centrifugation. In order to remove nucleic acids not protected
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by the capsid, the purified samples were treated with 100 U of DNase I (Roche) and 20 U of
RNase (Invitrogen) at 37°C for 2h, as similar to other studies [16,17].

Viral genomes were extracted via commercial kits (PureLink1 Viral RNA/DNA Invitrogen
for DNA extraction; RNeasy1Mini Kit Qiagen for RNA) and processed as described by [18]
with minor modifications. Briefly, a complementary strand of extracted DNA (5 μl) was syn-
thesized using the Klenow fragment DNA polymerase (New England Biolabs) and primer K-
randoms (GAC CAT CTA GCG ACC TCC ACMNNMNM) designed by [19]. For the
extracted RNA (10 μl), a reverse transcription using the primer K-randoms was carried out
prior the second strand synthesis using Klenow fragment DNA polymerase.

Library Construction for Metagenomic Sequencing
A random PCR was performed in a final volume of 50 μL, containing 5 μL of template, 0.8 μM
of the fixed portion of primer K-randoms (GAC CAT CTA GCG ACC TCC AC), 0.2 mM of
each dNTP, 1X PCR Buffer, 2.5 mMMgCl2, and 1 U of Taq DNA polymerase. Amplification
conditions consisted of an initial denaturation cycle at 95°C for 5 min, followed by 35 cycles for
amplification (95°C for 1 min, 53°C for 1 min and 72°C for 1 min), and final extension at 72°C

Table 1. Samples used in this study.

Pool
no.

No. Species Length
(cm)

Weight
(kg)

Sex Carcass
classification

code*

Date of
collection (dd/

mm/yyyy)

Collection
location

Geolocation
latitude/ longitude

(decimal)

1 G1529 South American fur
seal Arctocephalus

australis

94.2 10.6 Male 2 02/08/2012 Osório, RS -29.878119/-
50.073224

1 G1560 South American fur
seal Arctocephalus

australis

92 9.5 Male 2 09/08/2012 Cidreira, RS -30.165946/-
50.197728

1 G1574 South American fur
seal Arctocephalus

australis

89.4 10.8 Male 2 16/08/2012 Imbé, RS -29.94758/-
50.105842

1 G1604 South American fur
seal Arctocephalus

australis

92 15.5 Male 2 31/08/2012 Capão da
Canoa, RS

-29.657469/-
49.954338

1 G1657 South American fur
seal Arctocephalus

australis

88 12 Male 2 11/09/2013 Imbé, RS -29.94579/-
50.10498

2 G1535 Subantarctic fur seal
Arctocephalus

tropicalis

91.9 8.4 Male 2 02/08/2012 Capão da
Canoa, RS

-29.730323/-
49.995557

2 G1537 Subantarctic fur seal
Arctocephalus

tropicalis

90.6 9 Male 2 02/08/2012 Capão da
Canoa, RS

-29.665492/-
49.959170

2 G1561 Subantarctic fur seal
Arctocephalus

tropicalis

91.9 8.8 Male 2 09/08/2012 Cidreira, RS -30.174591/-
50.200809

2 G1577 Subantarctic fur seal
Arctocephalus

tropicalis

80.5 7.1 Male 3 16/08/2012 Osório, RS -29.917806/-
50.091768

2 G1640 Subantarctic fur seal
Arctocephalus

tropicalis

157.5 40.9 Male 2 25/07/2013 Tramandaí,
RS

-30.13273/-
50.18535

*Code for carcass classification according to Geraci & Lounsbury (1993)[14]: freshly dead, edible (2); and decomposed, but organs basically intact (3).

doi:10.1371/journal.pone.0151921.t001
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for 7 min. The products were visualized by 1% agarose gel electrophoresis, purified and pro-
cessed for Ion Torrent (Life Technologies, USA) using a 316 Ion chip, which was performed by
the Genomic and Molecular Biology Laboratory from the Pontifical Catholic University of Rio
Grande do Sul. The same process, including the random PCR, was repeated for Illumina MiSeq
platform sequencing using Kit v2 in the 300-cycles (2x150) format performed by Fepagro Ani-
mal Health Institute of Veterinary Research Desidério Finamor (IPVDF), Eldorado do Sul,
Brazil.

Bioinformatics
Ion Torrent reads were trimmed using PRINSEQ (prinseq.sourceforge.net) and the quality of
the sequences was analyzed with FastQC (www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Trimmed reads were assembled de novo by using MetaVelvet v1.2.01 (metavelvet.dna.
bio.keio.ac.jp) with a k-mer of 51. Illumina reads were trimmed for primers using Geneious

Fig 1. Sample location map.Map indicating the location of where the samples were collected along the coast of the State of Rio Grande do Sul, Brazil
(shaded). The map was extracted from the Open Street Map[15] database.

doi:10.1371/journal.pone.0151921.g001
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8.1.3 and de novo assembled with St. Petersburg genome assembler (SPAdes) 3.5.0 (bioinf.spbau.
ru/spades). The resulting contigs (>100bp) were submitted to BLASTx search against the
National Center for Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov) non-redundant
database (nr) and its viral database by using an E-value cutoff of 1e-05. The contigs were classified
into eukaryotic viruses, bacteriophages, bacterium, eukaryotes and unknown based on lowest
E-value. Contigs of eukaryotic viruses were used for sequence and phylogenetic analyses and
bacteriophage sequences were not further analyzed. The GenBank accession numbers for the
sequences derived in this study are: KR261062, KR261063, KR261065, KR816222, KR816223
(fur seal anelloviruses); KR261066-KR261068, KR261070-KR261075, KR261077-KR261079,
KR816217, KR816218, KR816220, KR816221 (fur seal parvoviruses); KR106199-KR106202,
KR816213, KR816215, KR337994 (fur seal picornaviruses); KR072975-KR072979, KR072981,
KR072982, KR072984 (fur seal sakobuvirus); KR106194-KR106196, KR106198, KR816216 (fur
seal picobirnavirus); KR072985-KR072990 (fur seal rotavirus), KR827461 (fur seal hepevirus);
KR072992, KR072994, KR072995 (fur seal sapovirus). The sequence data obtained from this
study is available at the NIH Sequence Read Archive (SRA) under the study accession number
SRP070196.

Phylogenetic Analysis
Nucleotide or translated amino acid sequences from the contigs of anellovirus, parvovirus,
picornavirus, picobirnavirus, rotavirus, sapovirus and hepevirus-like were aligned with MUS-
CLE (www.drive5.com/muscle) and phylogenetic trees were built using MEGA6 [20]. Trees
were constructed by the neighbor-joining (NJ) method [21] with a bootstrap of 1000 replicates,
p-distance model, and gaps were treated as pairwise deletion. The contig sequences from this
study were compared with other selected gene sequences available in the GenBank.

Results

Overview
A substantial proportion of the assembled reads detected in both fur seals species have no sig-
nificant similarity to any of the sequences deposited to date at GenBank. About 70% of the
assembled reads from the Ion Torrent platform had no significant hits, whereas in Illumina
NGS apparatus the sequences with no identified matches reached 35% (cutoff for significant as
<1e-05 BLASTx E score). The same divergence was observed with the number of bacterial hits,
however, Ion Torrent had the lowest number of hits (about 25%) when compared to Illumina
(about 60%).

The viral component detected in either of the sequencing platforms represented 4–5% of
total sequences, regardless of the fur seal species analyzed. Most of the viral hits were from bac-
teriophages, in agreement with previous studies of bats and dromedary fecal viromes [22–24].
Some of the contigs from eukaryotic viruses displayed low similarity to currently known
viruses and, as such, may represent novel viruses. The Subantarctic fur seal was found to carry
a larger proportion of identifiable sequences of eukaryotic viruses (95 hits, corresponding to
33% of total assembled reads assigned to viruses) when compared to the South American fur
seal (53 hits, corresponding to 11% of total assembled reads assigned to viruses). The propor-
tional taxonomic composition of the assembled reads is shown in Fig 2.

South American Fur Seal (Arctocephalus australis)
Ion Torrent sequencing generated a total of 475,511 reads with an average length of 191 bp
which were trimmed to a final number of 282,732 reads. MetaVelvet de novo assembly of
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Fig 2. Taxonomic classification of assembled reads (>100bp). (A) Pie charts of assembled reads based on BLASTx best E-scores (cutoff: 10e-05)
against the GenBank non-redundant and viral databases. (B) Taxonomic distribution of viruses for each fur seal species.

doi:10.1371/journal.pone.0151921.g002
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trimmed reads resulted in 10,801 contigs (>100 bp). Illumina sequencing generated a total of
496,016 paired-end reads (average length of 149 bp) which were trimmed for primers and
assembled de novo with St. Petersburg genome assembler (SPAdes) into 2,053 contigs (>100
bp). BLASTx results from the Ion Torrent contigs revealed sequences with similarity to the
eukaryotic virus families Parvoviridae (11 contigs), Anelloviridae (5), Picornaviridae (10), Pico-
birnaviridae (5) and invertebrate virus (1). Illumina contigs displayed similarity to genomes of
members of the families Parvoviridae (3), Anelloviridae (3), Picornaviridae (5), Picobirnaviri-
dae (3) and Hepeviridae (1), among other viruses that infect fish, small invertebrates and
insects (7). Contigs with significant BLASTx hits and their GenBank accession numbers are
shown in Table 2.

Subantarctic Fur Seal (Arctocephalus tropicalis)
Ion Torrent sequencing generated a total of 784,917 reads with an average length of 184 bp
which were trimmed into 288,611 reads. Trimmed reads were de novo assembled with Meta-
Velvet into 6,690 contigs (>100 bp). Illumina sequencing generated a total of 1,253,988 paired-
end reads (average length of 144 bp) which were trimmed for primers and de novo assembled
with SPAdes into 628 contigs (>100 bp). For Ion Torrent contigs, the eukaryotic virus families
with significant similarity to results from BLASTx searches were Parvoviridae (24 contigs),
Anelloviridae (2), Picornaviridae (19), Reoviridae (13), Caliciviridae (18), other insect viruses
(2) and a circovirus-like hit (1). Illumina contigs had similarity with Parvoviridae (9), Anello-
viridae (1), Picornaviridae (3), Caliciviridae (3) and Reoviridae (1). Contigs with significant
BLASTx hits and their GenBank accession numbers are shown in Table 3.

Anellovirus
Anelloviruses are small, non-enveloped, circular ssDNA viruses belonging to the Anelloviridae
family [25]. Anellovirus genome sequences were detected in both fur seal species (Fig 3A). Few
sequences from the South American fur seal had the closest similarity to Seal anellovirus 5,
with an amino acid identity ranging from 35–45% and covering up to 65% of ORF1. Another
sequence from the Subantarctic fur seal had the closest similarity to Torque teno zalophus
virus1 (TTZV), with 78% amino acid identity and covering 69% of ORF2 of TTZV. Both fur
seal species had sequences with the closest similarity to Torque teno sus virus 1a, with an amino
acid identity ranging from 84–88% and coverage of up to 56% of ORF1.

Due to the high divergence within anelloviruses, ORF1 sequences are the most indicative to
phylogenetic analyses [25]. Phylogenetic trees of partial ORF1 amino acid sequences obtained
from South American fur seals showed that distinct anelloviruses grouped in different clusters:
one most closely related to seal anelloviruses, whereas the other sequence was placed on the
same clade as swine torque teno viruses (Fig 3B).

Parvovirus
Parvoviruses are non-enveloped linear ssDNA viruses, members of the Parvoviridae family. In
this study, both fur seals species had sequences (Fig 4A) more closely related to mammal par-
voviruses of the Parvovirinae, a subfamily that infects vertebrates and is currently divided into
eight genera [26,27]. The amino acid identity of those sequences with members of the Parvovir-
inae ranged from 36–82%. Phylogenetic analysis of partial NS1 sequence, conserved within
parvoviruses, showed that the fur seal parvovirus clustered with members of the Protoparvo-
virus genus, distant from previously described pinniped parvorviruses (Fig 4B).
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PLOS ONE | DOI:10.1371/journal.pone.0151921 March 17, 2016 7 / 24



Picornavirus
Picornaviruses are small, non-enveloped, positive sense ssRNA viruses of the Picornaviridae
family, which has, to date, 29 recognized genera, though often increasing [28–30]. Picornavirus
sequences more related to Hepatitis A (HAV) and Avian encephalomyelitis viruses (AEV)
were detected in both fur seal species examined (Fig 5A). HAV belongs to Hepatovirus and
AEV to Tremovirus, which are closely related genera [31]. The polyprotein sequences obtained
here displayed between 32–39% of amino acid identity to both Hepatovirus and Tremovirus

Table 2. Contigs (>200bp) with significant BLASTx hits to known eukaryotic viruses obtained from the South American fur seals (Arctocephalus
australis).

Contig
ID

Accession
number

Length
(nt)

Family/Genus Genome Product Best hit Amino acid
identity (%)

E-
value

58 KR261062 1292 Anelloviridae ssDNA putative ORF1 ORF1 [Seal anellovirus 5]
(KM262782)

35 5e-61

59 KR261063 480 Anelloviridae ssDNA putative ORF1 ORF1 [Seal anellovirus 5]
(KM262782)

45 1e-14

62 KR816222 1080 Anelloviridae ssDNA putative ORF1 ORF1 [Torque teno sus virus 1a]
(HM633252)

84 0.0

53 KR261066 616 Parvoviridae ssDNA capsid protein VP2 [Tusavirus 1] (KJ495710) 46 8e-46

54 KR261067 334 Parvoviridae ssDNA capsid protein capsid protein [Canine parvovirus
2a](HM042734)

50 2e-29

55 KR261068 460 Parvoviridae ssDNA NS1 NS1 [Solwezi bufavirus]
(LC011438)

43 1e-23

57 KR261070 237 Parvoviridae ssDNA capsid protein VP2 [Fox parvovirus] (KC692368) 46 3e-11

63 KR816220 344 Parvoviridae ssDNA NS1 NS1 [Tusavirus 1] KJ495710) 82 1e-65

34 KR106199 561 Picornaviridae +ssRNA polyprotein polyprotein [Hepatitis A virus]
(FJ360731)

36 3e-15

35 KR106200 707 Picornaviridae +ssRNA polyprotein capsid protein [Hepatitis A virus]
(AF365952)

37 1e-39

36 KR106201 519 Picornaviridae +ssRNA polyprotein putative 3C [Avian
encephalomyelitis virus]

(NP_653151)

39 2e-26

37 KR106202 285 Picornaviridae +ssRNA polyprotein polyprotein [Bat picornavirus]
(KJ641684)

38 5e-12

65 KR816213 466 Picornaviridae +ssRNA polyprotein 1B VP2 mature peptide [Hepatitis A
virus] (NP_041008)

52 2e-50

67 KR816215 318 Picornaviridae +ssRNA polyprotein hypothetical protein [Avian
encephalomyelitis virus]

(AJ006950)

32 2e-09

29 KR106194 217 Picobirnaviridae
Picobirnavirus

dsRNA RNA-dependent
RNA polymerase

RNA dependent RNA polymerase
[Human picobirnavirus]

(AB517735)

52 3e-13

30 KR106195 968 Picobirnaviridae
Picobirnavirus

dsRNA RNA-dependent
RNA polymerase

RNA-dependent RNA polymerase
[Fox picobirnavirus] (KC692366)

71 1e-
169

31 KR106196 240 Picobirnaviridae
Picobirnavirus

dsRNA RNA-dependent
RNA polymerase

putative RNA-dependent RNA
polymerase [Dromedary

picobirnavirus] (KM573806)

77 3e-34

33 KR106198 293 Picobirnaviridae
Picobirnavirus

dsRNA capsid protein hypothetical protein [Human
picobirnavirus] (GU968923)

35 1e-08

64 KR816216 330 Picobirnaviridae
Picobirnavirus

dsRNA RNA-dependent
RNA polymerase

putative RNA-dependent RNA
polymerase [Dromedary

picobirnavirus] (KM573806)

82 3e-61

73 KR827461 661 Hepevirus-like +ssRNA polyprotein nonstructural protein [Hepatitis E
virus] (JQ026407)

27 4e-07

doi:10.1371/journal.pone.0151921.t002
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Table 3. Contigs (>200bp) with significant BLASTx hits to known eukaryotic viruses obtained from the Subantarctic fur seals (Arctocephalus
tropicalis).

Contig
ID

Accession
number

Length
(nt)

Family/Genus Genome Product Best hit Amino acid
identity (%)

E-
value

52 KR261065 347 Anelloviridae ssDNA putative ORF2 ORF2 [Torque teno zalophus
virus 1] (NC_012126)

78 5e-18

72 KR816223 467 Anelloviridae ssDNA putative ORF2
and ORF1

ORF1 [Torque teno sus virus 1a]
(HM633252)

88 4e-39

40 KR261071 1519 Parvoviridae ssDNA capsid protein VP2 [Tusavirus 1] (KJ495710) 39 1e-85

41 KR261072 1648 Parvoviridae ssDNA NS1 NS1 [Miniopterus schreibersii
parvovirus] (KC154061)

57 7e-
131

42 KR261073 628 Parvoviridae ssDNA NS1 nonstructural protein NS1 [Tumor
virus X] (KJ631100)

44 2e-43

43 KR261074 565 Parvoviridae ssDNA NS1 NS1 [Turkey parvovirus TP1-
2012/HUN] (KF925531)

36 2e-13

44 KR261075 612 Parvoviridae ssDNA capsid protein putative VP1 [Tusavirus 1]
(KJ495710)

39 2e-18

46 KR261077 349 Parvoviridae ssDNA capsid protein VP protein [Canine parvovirus]
(KM235293)

55 2e-26

47 KR261078 957 Parvoviridae ssDNA NS1 non-structural protein 1
[Chipmunk parvovirus] (U86868)

37 1e-26

48 KR261079 301 Parvoviridae ssDNA capsid protein capsid protein [Canine parvovirus
2b] (JQ730016)

53 6e-25

68 KR816217 438 Parvoviridae ssDNA capsid protein putative VP1 [Tusavirus 1]
(KJ495710)

42 1e-18

69 KR816218 322 Parvoviridae ssDNA capsid protein capsid protein VP2 [Mpulungu
bufavirus] (NC_026815)

36 1e-07

70 KR816221 319 Parvoviridae ssDNA NS1 NS1 [Miniopterus schreibersii
parvovirus] (KC154061)

41 1e-14

61 KR337994 438 Picornaviridae +ssRNA polyprotein AEV polyprotein [Avian
encephalomyelitis virus]

(NC_003990)

34 4e-15

12 KR072975 1271 Picornaviridae
Sakobuvirus

+ssRNA polyprotein polyprotein [Feline sakobuvirus A]
(NC_022802)

58 6e-
126

13 KR072976 477 Picornaviridae
Sakobuvirus

+ssRNA polyprotein polyprotein [Kobuvirus
SZAL6-KoV/2011/HUN]

(KJ934637)

52 4e-12

14 KR072977 289 Picornaviridae
Sakobuvirus

+ssRNA polyprotein polyprotein [Feline sakobuvirus A]
(NC_022802)

66 3e-22

15 KR072978 273 Picornaviridae
Sakobuvirus

+ssRNA polyprotein VP3 [Feline sakobuvirus A]
(YP_008802588)

66 1e-34

16 KR072979 227 Picornaviridae
Sakobuvirus

+ssRNA polyprotein VP1 [Feline sakobuvirus A]
(YP_008802588)

59 2e-12

18 KR072981 466 Picornaviridae
Sakobuvirus

+ssRNA polyprotein 2C [Feline sakobuvirus A]
(YP_008802588)

59 3e-58

20 KR072982 767 Picornaviridae
Sakobuvirus

+ssRNA polyprotein 3D [Feline sakobuvirus A]
(YP_008802588)

65 3e-
117

22 KR072984 430 Picornaviridae
Sakobuvirus

+ ssRNA polyprotein 3D [Feline sakobuvirus A]
(YP_008802588)

73 1e-67

23 KR072985 469 Reoviridae
Rotavirus

dsRNA NSP2 nonstructural protein 2 [Bovine
rotavirus C] (AB874653)

69 3e-66

24 KR072986 412 Reoviridae
Rotavirus

dsRNA NSP3 nonstructural protein 3 [Bovine
rotavirus C] (AB874654)

45 6e-33

25 KR072987 928 Reoviridae
Rotavirus

dsRNA VP1 VP1 [Bovine rotavirus C]
(AB738412)

69 2e-
137

(Continued)
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members, and one sequence shared 52% amino acid identity with HAV VP2. Phylogenetic
analyses were based on the picornavirus polyprotein functional regions: P1, which encodes for
structural proteins, and P2-P3, which encode for proteins involved in replication [28]. The
analysis of partial P1 sequences identified here showed the fur seal picornavirus forming a
monophyletic group with the Hepatovirus and Tremovirus genera, but on a different branch
(Fig 5B). When partial sequences of P3 region were analyzed they still shared the same root,
with the fur seal picornavirus placed in a similar way (Fig 5C).

In addition to the above-mentioned picornaviruses, distinct members of this family were
found only in Subantarctic fur seals. With the exception of one sequence whose best BLASTx
hit had 52% of amino acid identity to a kobuvirus, all other contigs displayed the highest
amino acid identity to Feline sakobuvirus A (FSVA), which ranged from 58–73% with a total
coverage of 59% of its polyprotein (Fig 6A). One sequence displayed 59% of amino acid iden-
tity to FSVA VP1, and the amino acid identity of VP3 was of 66%. The sequence covering the
2C region had 59% of amino acid identity, while the two 3D sequences here identified ranged
from 65–73% of FSVA 3D region. Phylogenetic analyses of partial P2 and P3 regions (Fig 6B
and 6C, respectively) showed the fur seal picornavirus, temporarily named Fur seal sakobu-
virus (FSSV), clustered with FSVA, member of the Sakobuvirus genus.

Picobirnavirus
Picobirnaviruses are small, non-enveloped, bisegmented dsRNA viruses of the Picobirnaviridae
family. These highly variable viruses are classified in a sole genus, Picobirnavirus, which on its
turn is divided into two genogroups (I and II), based on sequence similarities of the RNA-
dependent-RNA-polymerase gene (RdRp) [32,33]. Sequences of picobirnavirus RdRp and cap-
sid protein were detected in the South American fur seal samples (Fig 7A), having the highest
similarity with members of genogroup I, with an amino acid identity ranging from 35–82%.
Phylogenetic analyses of the partial RdRp gene (743 bp, which corresponds to 44% of the RdRp
gene) confirmed that the fur seal picobirnavirus identified here clustered with members of gen-
ogroup I, with a nucleotide identity ranging from 60–68% (Fig 7B).

Rotavirus
Rotaviruses are non-enveloped segmented dsRNA viruses from the Reoviridae family. They
belong to the Rotavirus genus and their genomes contain 11 segments. Based on sequence and

Table 3. (Continued)

Contig
ID

Accession
number

Length
(nt)

Family/Genus Genome Product Best hit Amino acid
identity (%)

E-
value

26 KR072988 442 Reoviridae
Rotavirus

dsRNA VP3 VP3 [Human rotavirus C]
(HQ185645)

51 5e-41

27 KR072989 357 Reoviridae
Rotavirus

dsRNA VP3 viral protein 3 [Bovine rotavirus C]
(AB874621)

65 6e-46

28 KR072990 360 Reoviridae
Rotavirus

dsRNA VP7 outer capsid protein VP7 [Human
rotavirus C] (JQ177070)

59 9e-42

02 KR072992 2932 Caliciviridae
Sapovirus

+ ssRNA polyprotein polyprotein [California sea lion
sapovirus 1] (JN420370)

98 0.0

06 KR072994 1400 Caliciviridae
Sapovirus

+ ssRNA polyprotein polyprotein [California sea lion
sapovirus 1] (JN420370)

98 0.0

07 KR072995 2408 Caliciviridae
Sapovirus

+ ssRNA polyprotein and
VP2

polyprotein [California sea lion
sapovirus 1] (JN420370)

96 0.0

doi:10.1371/journal.pone.0151921.t003

Viral Diversity in Fur Seals

PLOS ONE | DOI:10.1371/journal.pone.0151921 March 17, 2016 10 / 24



Fig 3. Phylogenetic analysis of fur seal anellovirus. (A) Schematic representation of the genome of anelloviruses using as example the torque teno virus
(~3.8 kb). The blue bars represent the contigs from South American fur seal and the orange bars represent the contigs from Subantarctic fur seal. (B)
Neighbor-joining phylogenetic tree based on the alignment of partial amino acid sequences (233 aa) from the ORF1 of 21 anelloviruses. Human and simian
torque teno viruses were used as outgroup. The anellovirus sequences from South American fur seal identified in this study are labeled with black squares.
The GenBank accession numbers of the viral sequences are shown in parentheses.

doi:10.1371/journal.pone.0151921.g003
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serological analyses of the structural protein VP6, there are seven species, also known as
groups, of rotaviruses (A-G), and recently a new group H has been proposed [34]. Rotavirus
sequences were detected in the Subantarctic fur seal (Fig 8A) with an amino acid identity from
45–69% to group C rotaviruses. The phylogenetic analysis, performed with a partial VP1
sequence, covering 30% of the complete gene, confirmed closer relatedness to group C rotavi-
ruses (Fig 8B). The VP1 gene, which encodes the RdRp, is well conserved within the genus and
may be also used for to differentiate rotavirus species [35,36].

Fig 4. Phylogenetic analysis of fur seal parvovirus. (A) Schematic representation of the genome of parvoviruses using as example the tusavirus (~4.4
kb). The blue bars represent the contigs from South American fur seal and the orange bars represent the contigs from Subantarctic fur seal. (B) Neighbor-
joining phylogenetic tree based on the alignment of partial amino acid sequences (261 aa) from the NS1 protein of 17 parvoviruses. Seal parvovirus and
California sea lion sesavirus were used as outgroup. The parvovirus sequence from Subantarctic fur seal identified in this study is labeled with a black square.
The GenBank accession numbers of the viral sequences are shown in parentheses.

doi:10.1371/journal.pone.0151921.g004

Viral Diversity in Fur Seals

PLOS ONE | DOI:10.1371/journal.pone.0151921 March 17, 2016 12 / 24



Fig 5. Phylogenetic analysis of fur seal picornavirus. (A) Schematic representation of the genome of picornaviruses using as an example the hepatits A
virus (~7.4 kb). The blue bars represent the contigs from South American fur seal and the orange bars represent the contigs from Subantarctic fur seal. (B)
Neighbor-joining phylogenetic tree based on the alignment of partial amino acid sequences (219 aa) from the P1 region of the polyprotein of 13
picornaviruses. Porcine kobuvirus was used as outgroup. (C) Neighbor-joining phylogenetic tree based on the alignment of partial amino acid sequences
(122 aa) from the P3 region of the polyprotein of 12 picornaviruses. Human cosaviruswas used as outgroup. The picornavirus sequences from South
American fur seal identified in this study are labeled with a black square. The GenBank accession numbers of the viral sequences are shown in parentheses.

doi:10.1371/journal.pone.0151921.g005
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Hepevirus
Hepeviruses are non-enveloped, positive sense ssRNA viruses from the Hepeviridae family,
which is divided in two genera: Orthohepevirus and Piscihepevirus [37,38]. In this study, a
sequence of 661bp with low amino acid identity (27%) to the polyprotein gene of hepe-
viruses was detected in the South American fur seal (Fig 9A). Phylogenetic analysis of par-
tial sequences of the polyprotein of hepeviruses and hepevirus-like viruses was performed
(Fig 9B).

Fig 6. Phylogenetic analysis of fur seal sakobuvirus. (A) Schematic representation of the sakobuvirus genome using Feline sakobuvirus A (~7.8 kb—
NC_022802) as a reference. The orange bars represent the contigs from Subantarctic fur seal. (B) Neighbor-joining phylogenetic tree based on the
alignment of partial amino acid sequences (409 aa) from the P2 region of the polyprotein of 11 picornaviruses. Sicinivirus 1 was used as outgroup. (C)
Neighbor-joining phylogenetic tree based on partial amino acid sequences (255 aa) from the 3D region of the polyprotein of 13 picornaviruses. California sea
lion sapelovirus 2 was used as outgroup. The sakobuvirus sequences from the Subantarctic fur seal from this study used in phylogenetic analyses are
labeled with a black square. The GenBank accession numbers of the viral sequences are shown in parentheses.

doi:10.1371/journal.pone.0151921.g006
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Sapovirus
The genus Sapovirus consists of non-enveloped, positive sense ssRNA viruses of the Caliciviri-
dae family. At present, five genogroups have been recognized based on VP1 sequence analyses
[39]. Sapovirus sequences were detected in the Subantarctic fur seal samples and results include
contigs covering over 90% of the California sea lion sapovirus 1 (CslSaV1) genome (Fig 10A)
while sharing 98% amino acid identity and 89% nucleotide sequence identity. Phylogenetic
analysis of complete VP1 gene and nearly complete VP2 are shown in Fig 10B and 10C,
respectively.

Fig 7. Phylogenetic analysis of fur seal picobirnavirus. (A) Schematic representation of the genome of picobirnaviruses using as an example the human
picobirnavirus (~4.2 kb). The blue bars represent the contigs from South American fur seal. (B) Neighbor-joining phylogenetic tree based on the alignment of
partial nucleotide sequences (743 bp) from the RdRp gene of 17 picobirnaviruses. Human picobirnavirus GII was used as outgroup. The picobirnavirus
sequence from South American fur seal identified in this study is labeled with a black square. The GenBank accession numbers of the viral sequences are
shown in parentheses.

doi:10.1371/journal.pone.0151921.g007
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Discussion
This study has detected enteric viruses in the fecal samples of two species of fur seals that occur
in the coast of Rio Grande do Sul, South of Brazil. Such viruses belong to families whose

Fig 8. Phylogenetic analysis of fur seal rotavirus. (A) Schematic representation of the genome of rotaviruses using as an example the group C rotavirus
(~17.9 kb). The orange bars represent the contigs from Subantarctic fur seal. (B) Neighbor-joining phylogenetic tree based on the alignment of partial amino
acid sequences (307 aa) from the RpRd (segment 1) of 19 rotaviruses. Sequences of groups B, G and H were used as outgroup. The rotavirus sequence
from Subantarctic fur seal identified in this study is labeled with a black square. The GenBank accession numbers of the viral sequences are shown in
parentheses.

doi:10.1371/journal.pone.0151921.g008
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members are either apathogenic or known to cause disease in mammals. Anelloviruses were
detected in both species of fur seals examined. Based on anelloviruses demarcation criteria,
ORF1 sequences must have a divergence higher than 56 and 35% for genus and species, respec-
tively [25].The sequences with the highest similarity to seal anelloviruses displayed a 60%
divergence, suggesting that we found a new genus of Anelloviridae. For the sequences with
higher similarity to Torque teno sus virus 1a, the divergence was of 26%, which may indicate
they belong to the same genus, Iotatorquevirus. Anelloviruses, which in most cases are not
associated to any particular disease, have been detected in seals and sea lions involved in mor-
tality events and virus-specific seroconversion of seals has been demonstrated, suggesting that
such animals are indeed susceptible to a productive infection following natural contact with
the virus [11,40–42].

Parvovirus sequences were detected in the two species of fur seals. Members of a same
genus within the Parvoviridae should share at least 30% amino acid identity in the predicted
NS1 sequence, and less than 30% identity when compared to other genera [26]. Although only
partial sequences from NS1 were detected in both species, all of them share more than 30%
amino acid identity with members of the Protoparvovirus genus, which was also shown by phy-
logenetic analysis, suggesting a new species within the genus. Parvoviruses have been detected
in pinnipeds [43,44], and members of different genera, including bocaviruses, dependoviruses
and a novel parvovirus named Sesavirus have been detected in California sea lions [11,45].

Fig 9. Phylogenetic analysis of fur seal hepevirus-like. (A) Schematic representation of the genome of hepeviruses using as an example the hepatitis E
virus (~7.2 kb). The blue bar represents the contig from South American fur seal. (B) Neighbor-joining phylogenetic tree based on the alignment of partial
amino acid sequences (182 aa) from the polyprotein of 15 hepeviruses. Hepelivirus and Fesavirus 2 were used as outgroup. The hepevirus-like virus
sequence from South American fur seal identified in this study is labeled with a black square. The GenBank accession numbers of the viral sequences are
shown in parentheses.

doi:10.1371/journal.pone.0151921.g009
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Parvoviruses cause infections that can manifest through a variety of illnesses including leuko-
penia, myocarditis, gastroenteritis, as well as asymptomatically, and have been detected in
healthy and debilitated pinnipeds [44–48]. Parvoviruses are also known to be transmitted
between wild and domestic species [49,50].

Picornaviruses, which have been found in marine mammals [51], have also been detected in
this study. Here, two distinct picornaviruses were detected: one more similar to HAV and AEV
and other similar to FSVA. According to the Picornaviridae genus demarcation criteria, differ-
ent genera should share less than 40%, 40% and 50% amino acid identity in P1, P2 and P3,

Fig 10. Phylogenetic analysis of fur seal sapovirus. (A) Schematic representation of the genome of sapoviruses using California sea lion sapovirus 1
(~7.5 kb—JN420370.2) as a reference. The orange bars represent the contigs from Subantarctic fur seal. (B) Neighbor-joining phylogenetic tree based on
complete nucleotide sequences from the VP1 gene of 9 caliciviruses.Human noroviruswas used as outgroup. (C) Neighbor-joining phylogenetic tree based
on the alignment of nearly-complete nucleotide sequences from the VP2 gene of 9 caliciviruses. Human noroviruswas used as outgroup. The sapovirus
sequences from Subantarctic fur seal from this study used in phylogenetic analyses are labeled with a black square. The GenBank accession numbers of the
viral sequences are shown in parentheses.

doi:10.1371/journal.pone.0151921.g010
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respectively [30]. Analyses of partial sequences of the polyprotein of the picornavirus similar to
HAV and AEV showed that the amino acids identities to members of Hepatovirus and Tremo-
virus genera were below these cut-offs. The only exception was one sequence that shared 52%
amino acid identity with HAV VP2. A higher identity in this region, however, can be expected
within members ofHepatovirus and Tremovirus according to previous studies [31]. Based on
these values, a possible novel picornavirus more closely related to HAV and AEV was detected
in both fur seal species.

In addition, a new putative species within the recently recognized genus Sakobuvirus was
identified in the Subantarctic fur seal, here named Fur seal sakobuvirus (FSSV). These share an
amino acid identity of at least 50% with Feline sakobuvirus A when comparing all polyprotein
coding regions, indicating that FSSV belongs to the same genus. To date, FSVA was the sole
member of the genus; the genome reported here corresponds to the first description of a sako-
buvirus in another animal species, which was first found in cat feces [52].

Other potential novel enteric virus was also identified. A genogroup I picobirnavirus was
detected in South American fur seals. This fur seal picorbirnavirus is distinct from the Otarine
picobirnavirus previously found in California sea lions [53] and may represent a new species
within the genus. Picobirnaviruses have been detected both in asymptomatic and symptomatic
animals, including humans, and an etiologic association with diarrhea is not fully established.
However, coinfections of picobirnaviruses with other enteric viruses are not uncommon, can
be opportunistic, and may also have a synergistic effect [54–57].

A rotavirus related to group C was found in Subantarctic fur seals. Group C rotaviruses
have been associated with sporadic outbreaks in humans and other animals such as pigs and
bovines [58–61]. Other studies have detected rotaviruses in marine mammals: anti-group A
rotavirus antibodies were first found in Galapagos sea lions and fur seals [62] and RNA
sequences from rotaviruses related to lineage B were also detected in California sea lions [11].
Here, results show that more groups of rotaviruses, other than groups A and B, can circulate in
marine mammals.

A hepevirus-like sequence was detected in South American fur seals. Hepeviruses, such as
Hepatitis E virus (HEV), have been detected in mammals and birds [37,63]. HEVs can cause
asymptomatic infections to acute hepatitis and are known zoonotic agents [64]. Recently, a
new member of theHepeviridae family was identified in cutthroat trout, a fish that occurs in
the Pacific ocean in North America [65] and unclassified hepevirus-like sequences named
hepelivirus and fesavirus-2 were detected in untreated sewage and cat feces, respectively
[66,67]. Phylogenetic analysis of the predicted partial polyprotein sequences of the hepevirus-
like identified here showed closer relatedness to other members of theHepeviridae family than
to the unclassified hepelivirus and fesavirus-2. Although its low amino acid identity (<30%)
might indicate a novel member of theHepeviridae family, more parts of the polyprotein would
need to be sequenced to better taxonomically allocate it.

A sapovirus was detected in samples from Subantarctic fur seals, which is genetically closely
related to CslSaV1 that was previously detected in a California sea lion with severe osteomyeli-
tis and nephrolithiasis [11]. Subantarctic fur seals are found in South Atlantic and Indian
oceans and our data shows that a very similar sapovirus circulates among fur seals from the
southern hemisphere, in addition to the ones that occur in the northern hemisphere. Calici-
viruses have been isolated from marine mammals and are known to cause vesicular lesions and
diarrhea in those animals [10,44,68]. Sapoviruses can cause gastroenteritis and have been asso-
ciated with diarrhea in animals [69–71].

Knowledge on viruses in wildlife is still a barely explored field. Occasionally, viral infections
have been associated to epidemics in marine mammals, such as anelloviruses infections, whose
pathogenic role remains to be determined [41,42]. Additionally, marine mammals may on
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occasions be exposed to humans, farm animals or pets, which may represent a risk of cross-spe-
cies transmission of pathogens and zoonoses [10]. Such risk of transmission to humans, for
example, was reported with an avian influenza virus isolated from harbor seals [72]. Besides, it
is not uncommon to find dogs in contact with carcasses of these animals found ashore, which
may give rise to emerging infectious diseases and transmission of known viruses, as already
reported with morbilliviruses [73]. An historical example of cross-species transmission
occurred with San Miguel sea lion virus that infects marine mammals. This calicivirus is nearly
identical to Vesicular exanthema of swine virus, eradicated in swine since 1956, and was able to
cause an identical disease in pigs fed with infected carcasses of pinnipeds [74]. Sequences of
viruses belonging to viral families known to be transmitted between wild, domestic and farm
animals were detected in the present study: parvoviruses, hepeviruses and caliciviruses.

Indisputably, factors such as diet, age and different geographical distributions factors could
have contributed to the virome profile of both fur seal species [75]. Based on their lengths and
weight, most of the fur seals were classified as juveniles—only one Subantarctic fur seal was an
adult animal–and one can expect that juvenil animals are more susceptible to viral infections
than adults [76]. Fur seals are carnivores and can feed on a variety of preys. Subtantarctic fur
seals mostly feed on fish and cephalopods whereas South American fur seals main diet consists
of fish and crustaceans [12,77,78]. Their diet can impact on the virome of each fur seal species
and could explain, for example, the detection of eukaryotic viruses that do not infect mammals.
The use of fecal samples can allow the detection of sequences that may be originated from dif-
ferent hosts rather than the fur seals. Rotaviruses and sapoviruses were only detected in Sub-
antarctic fur seals whereas picobirnaviruses and a hepevirus-like were only found in South
American fur seals. Sequences of anelloviruses, parvoviruses and picornaviruses were detected
in both species of fur seals. These have also been reported in seals from the northern hemi-
sphere, indicating the widespread distributions of viruses of such families in pinnipeds
[11,41,42,51]. Furthermore, the occurrence of a very genetically closely related sapovirus that
infects California sea lions in Subantarctic fur seals shows that viruses previously isolated in
the North can also circulate in the South, infecting pinniped populations over a large geograph-
ical range.

Although the nucleotide sequences reported in this study do not comprise full genomes, this
initial characterization contributes to the knowledge of the viral populations that occur in fur
seals, and has identified potential novel viruses that may be of interest for future studies. This is
the first study to use next generation sequencing to explore the viral diversity of southern hemi-
sphere marine mammals. The findings presented here are expected to help to understand how
viral infections in pinnipeds may impact the health of the pinniped population and its potential
as sources of viruses which may potentially infect other animal species.
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