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Abstract
The utilization of storage lipids and their associated fatty acids (FA) is an important means

for organisms to cope with periods of food shortage, however, little is known about the

dynamics and FA mobilization in benthic copepods (order Harpacticoida). Furthermore,

lipid depletion and FA mobilization may depend on the ambient temperature. Therefore, we

subjected the temperate copepod Platychelipus littoralis to several intervals (3, 6 and 14

days) of food deprivation, under two temperatures in the range of the normal habitat temper-

ature (4, 15°C) and under an elevated temperature (24°C), and studied the changes in FA

composition of storage and membrane lipids. Although bulk depletion of storage FA

occurred after a few days of food deprivation under 4°C and 15°C, copepod survival

remained high during the experiment, suggesting the catabolization of other energy

sources. Ambient temperature affected both the degree of FA depletion and the FA mobili-

zation. In particular, storage FA were more exhausted and FA mobilization was more selec-

tive under 15°C compared with 4°C. In contrast, depletion of storage FA was limited under

an elevated temperature, potentially due to a switch to partial anaerobiosis. Food depriva-

tion induced selective DHA retention in the copepod’s membrane, under all temperatures.

However, prolonged exposure to heat and nutritional stress eventually depleted DHA in the

membranes, and potentially induced high copepod mortality. Storage lipids clearly played

an important role in the short-term response of the copepod P. littoralis to food deprivation.

However, under elevated temperature, the use of storage FA as an energy source is

compromised.

Introduction
Many aquatic habitats are shaped by a pulsed seasonal primary production which implies a
restricted food availability for various herbivores at certain times. One strategy to cope with
these natural cycles of food intake is the efficient storage and utilization of energy reserves
[1,2]. Lipids contain the highest energy content compared with carbohydrates and proteins [3]
and are a major energy storage product of cladocerans and copepods [4]. Storage lipids are
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especially well studied in copepods inhabiting extreme environments i.e. polar and deep-living
copepods. In these species they provide crucial energy for reproduction, periods of low food
supply, obtaining food, escaping predation and for vertical migration [3,5]. In situations of
negative energy balance such as fasting, storage lipids are metabolized so that fatty acids (FA)
become available as metabolic fuel to prolong survival [4,6]. Whether the process of FA mobili-
zation from storage lipids is selective, remains open to debate [7]. Furthermore, in case prefer-
ential FA mobilization is reported, the pattern differs among crustaceans with respect to the
preferential utilization [8] or retention [9] of polyunsaturated FA (PUFA). Especially, the
dynamics of the essential FA, EPA (20:5ω3) and DHA (22:6ω3) in food deprived crustaceans,
have received considerable attention [10–12] in view of their beneficial physiological effects in
multiple consumers [13,14].

In contrast to planktonic crustaceans such as cladocerans [10,15] and freshwater copepods
[8], almost nothing is known about the dynamics of storage lipids and, in particular, the FA
mobilization in harpacticoid copepods. The limited knowledge on storage lipids in harpacti-
coid copepods, but see [16,17], contrasts with their dominant role in benthic food webs. After
free-living nematodes, harpacticoid copepods are usually the second most abundant metazoan
taxon of the meiobenthos and their importance as prey for higher trophic levels has been dem-
onstrated [18]. Furthermore, the trophic position of copepods as first-level consumer [19] and
their potential FA upgrading capacity [20], suggest their importance in the transfer of energy
and essential FA to higher trophic levels.

Therefore we subjected a temperate harpacticoid copepod to several intervals of food depri-
vation (3, 6 and 14 days) and screened the membrane and storage lipids for their associated FA
content and composition. Starvation studies may indicate which energy sources are utilized by
crustaceans under specific conditions and they provide clues on the biochemical pathways
involved in these processes [1]. Our species of interest is the sluggish, non-swimming harpacti-
coid copepod Platychelipus littoralis (Family Laophontidae Brady 1880). Due to its restricted
mobility, this species is directly linked to the local conditions on a microspatial scale [21]. Envi-
ronmental temperature strongly affects the metabolic rate in ectotherms [22] and can affect the
rate of lipid breakdown [23], and may determine which FA are preferentially metabolized dur-
ing fasting [8]. Therefore, the starvation response of P. littoralis was studied under two temper-
atures, in the range of the normal habitat temperature (4, 15°C), and also under an elevated
temperature (24°C). This strategy allowed to investigate:

1. the importance of storage lipids for copepod survival in response to food deprivation,

2. whether selective FA mobilization from storage lipids occurs in P. littoralis specimens and if
it is temperature-dependent,

3. the changes in membrane FA content and composition, which inform on the copepod’s
thermal adaptation and physiological condition.

The starvation response of P. littoralis will be interpreted in a broader ecological context
with respect to its natural habitat.

Material and Methods

Experimental set-up
The harpacticoid copepod Platychelipus littoralis was collected at the Westerschelde estuary
(51°21’N, 3°43’E, the Netherlands) from the top sediment layer in a small intertidal creek at the
Paulina saltmarsh (May 2015 –average temperature: 12±1°C). Permits for the field work were
approved and obtained by Provincie Zeeland, the Netherlands; Directie Ruimte, Milieu en
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Water. Within hours after collection, copepods were extracted alive using sediment decanta-
tion. Subsequently, adult specimens were randomly collected, excluding ovigerous females,
with a glass pasteur pipette using a Wild M5 binocular. All copepods were kept overnight in
glass jars with some sediment aliquots at 15±1°C prior to the start of the experiment. Tripli-
cates of 20 and 100 copepods were stored at -80°C for further dry weight and lipid fraction-
ation (FA analysis), respectively. After thawing, samples for dry weight measurements were
obtained by rinsing copepods several times in MilliQ water to remove adhering particles and
by transferring them to pre-weighted aluminum cups (6 x 2.5 mm, 20 ind.). Samples were
kept overnight in an oven at 100°C and were weighted using a microbalance (Mettler, Toledo,
XP56). Units of 120 copepods were stored in Petri dishes (surface area = 26.4 cm2, 20 ml)
and incubated at 4°C, 15°C and 24°C (±1°C), under a 12:12 h light-dark regime (25 to
50 μmol photons m-2 s-1). The copepods were kept in artificial seawater (Instant Ocean syn-
thetic salt, salinity: 25, filtered over 0.2 μmMillipore filters) in order to guarantee complete
food deprivation. After one day of starvation, copepods were transferred to new Petri dishes
and (acclimated) artificial seawater to remove their fecal pellets. This procedure was per-
formed every three days over the course of the experiment to compensate for potential evap-
oration and salinity changes, especially under 24°C. After 3, 6 and 14 days of starvation
three units were randomly chosen at each incubation temperature. Copepod mortality was
recorded and surviving copepods were stored at -80°C for later dry weight measurements
and lipid fractionation (FA analysis). The experiment was terminated when survival rate was
around 50% in one of the three temperature treatments.

Lipid fractionation and FA analysis
Total lipids of copepods were extracted with a modified Bligh and Dyer extraction [24]. Subse-
quently, the total lipid extract was fractionated on a silicic acid column (Merck) into different
polarity classes by sequential eluting with chloroform (containing neutral lipids, NLFA), ace-
tone and methanol (containing polar lipids, PLFA) [25]. Derivatization of PLFA in the metha-
nol fraction to FAMEs (fatty acid methyl esters) was obtained using a mild alkaline
methanolysis as in [26]. FA associated with the acetone and chloroform fractions were deriva-
tized using a modified method after [27]. Here, the boron trifluoride-methanol reagent was
replaced by a 2.5% H2SO4-methanol solution, since the BF3-methanol can cause artifacts or
loss of PUFA [28]. FAME of 19:0 (Fluka 74208) was added as internal standard. FAMEs were
concentrated to 200 μl hexane and thereafter, injected and analyzed using a Hewlet Packard
6890N gas chromatograph coupled to a HP 5973 mass spectrometer as in [20]. The samples
were run in splitless mode injecting 1μl at an injector temperature of 250°C using an HP88 col-
umn (Agilent J&W; Agilent). The oven temperature was programmed at 50°C for 2 min, fol-
lowed by a ramp at 25°C min-1 to 175°C and then a final ramp at 2°C min-1 to 230°C with a 4
min hold. The FAMEs were identified by comparison with the retention times and mass spec-
tra of authentic standards and mass spectral libraries (WILEY, own library) and analyzed using
the software MSD ChemStation (Agilent Technologies). Quantification of individual FAMEs
was accomplished by the use of a component FAME and BAME (Bacterial Acid Methyl Esters)
mix (Supelco #47885 and #47080 respectively, Sigma-Aldrich) and completed with additional
standards (Larodan). The quantification function of each individual FAME was obtained by
linear regression of the chromatographic peak areas and corresponding known concentrations
of the standards (ranging from 25 to 200 μg ml-1). Shorthand FA notations of the form A:BωX
were used, where A represents the number of carbon atoms, B gives the number of double
bonds, and X gives the position of the double bond closest to the terminal methyl group. FA
concentrations were standardized to mg dry weight (mg DW).
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Data analysis
Copepod survival (%), membrane FA content (summed FA mass fraction from polar lipids)
and storage FA content (summed FA mass fraction from neutral lipids) were log transformed
in order to fulfill the assumptions for normality and homogeneity of variance which are
required for the ANOVA tests (IBM SPSS Statistics Version 22). In case of significant differ-
ences, Tukey HSD post-hoc tests were applied to detect pairwise differences, using 95% confi-
dence limits. In case the assumptions were not met after log transformation, non-parametric
tests (PERMANOVA) were performed using Primer 6 Version 6.1.11 and 1.0.1 [29].

Prior to the statistical analysis, relative FA concentrations (%) of membrane and storage lip-
ids were arcsine square root transformed in order to meet the assumptions for normality and
homogeneity of variance which are required for the principal component analysis (PCA)
(Primer 6 Version 6.1.11 and 1.0.1). Only FA with less than 20% of zero values were included
in the PCA analysis. PCA for membrane and storage FA composition were run separately but
included all time measurements (day 0, starvation after 3, 6 and 14 days). Eigenvalue variation
explained by PC1 was 57% and 69% for the membrane and storage FA composition, respec-
tively. In line with previous work [8,30], the sample scores on the PC1 were further used for
statistical analysis as the new variable ‘PC1score’, as they represent the major trends in FA
composition. Subsequently, the PC1scores for membrane and storage FA composition were
related with each individual FA (proportion) by calculating the Spearman’s rho correlation
coefficient (IBM SPSS Statistics Version 22).

One-way tests compared membrane and storage FA contents, PC1score values of mem-
brane and storage FA composition in copepods prior to (day 0) and after short-term food dep-
rivation (3 days) under different temperatures. Two-way tests for the factors temperature (4,
15 and 24°C) and time (3, 6 and 14 days) were conducted for copepod survival, membrane and
storage FA contents, PC1score values of membrane and storage FA composition, to reveal
long-term food deprivation effects. Ultimately, dynamics in EPA and DHA content were tested
with two-way tests. In particular, two-way tests compared the EPA and DHA content associ-
ated with membrane or storage lipids in copepods prior to (day 0) and after short-term food
deprivation (3 days) under different temperatures. Furthermore, any long-term effects of food
deprivation on the EPA and DHA content associated with membrane or storage lipids were
revealed with two-way tests for the factors temperature and time.

Results

Copepod survival
Dead copepods were already observed after 3 days of food deprivation under 24°C (survival 97
±4%). However, copepod survival decreased only significantly after 14 days of starvation at
24°C (56±9%) compared with 4°C (99±2%) and 15°C (95±3%) (all p<0.01 for temperature;
time and their interaction).

Membrane and storage FA content
At the onset of the experiment, copepods contained a membrane FA content of 18.9±0.6 μg
FA/ mg DW which decreased significantly after short-term (3 days) food deprivation under
each temperature (p<0.01) (Fig 1A). Moreover, the membrane FA content differed signifi-
cantly among all temperature treatments (pairwise tests, all p<0.05) with the highest content
at 4°C (11.5±1.1 μg FA/ mg DW), followed by 24°C (7.4±1.2 μg FA/mg DW) and 15°C (4.3
±0.4 μg FA/ mg DW). Prolonged starvation (between day 3 and day 14) further reduced the
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membrane FA content for all temperatures, while the significant effect of ambient temperature
remained (p<0.01 for temperature; p<0.05 for time; no interaction).

The original storage FA content (115.1±9.9 μg FA/ mg DW) decreased significantly after 3
days of starvation (p<0.01) with the strongest reduction observed at 15°C (9.1±4.8 μg FA/ mg
DW), followed by 4°C (23.1±1.1 μg FA/ mg DW) and 24°C (76.1±7.1 μg FA/ mg DW) (pair-
wise tests, all p<0.01) (Fig 1A). Prolonged starvation (from day 3 to day 6) further reduced the
storage FA content under 4°C and 24°C but the overall temperature effect remained (all p
<0.01 for temperature; time and their interaction).

Membrane and storage associated EPA and DHA content
Short-term food deprivation reduced the original membrane EPA and DHA content (5.3
±0.2 μg EPA/ mg DW and 6.6±0.02 μg DHA/ mg DW) significantly under each temperature
(pairwise tests, all p<0.05) (Fig 1B and 1C). The smallest decrease was observed at 4°C (3.1
±0.2 μg EPA/ mg DW and 4.2±0.3 μg DHA/ mg DW) followed by 24°C (1.7±0.3 μg EPA/ mg
DW and 2.9±0.6 μg DHA/ mg DW) and 15°C (1.1±0.06 μg EPA/ mg DW and 1.7±0.1 μg
DHA/ mg DW) (pairwise test, all p<0.05) (Fig 1B and 1C). Prolonged starvation further
reduced the membrane EPA and DHA content, but the significant temperature effect remained
(both p<0.01 for temperature; both p<0.05 for time; no interaction).

The original storage EPA and DHA content (31.0±2.6 μg EPA/ mg DW and 4.1±0.4 μg
DHA/ mg DW) were significantly reduced after short-term food deprivation under each tem-
perature (pairwise tests, all p<0.05) (Fig 1B and 1C). The strongest EPA and DHA reductions
were observed at 15°C (2.4±1.3 μg EPA/ mg DW and 0.3±0.2 μg DHA/ mg DW) followed by
4°C (6.1±0.2 μg EPA/ mg DW and 0.8±0.02 μg DHA/ mg DW) and 24°C (15.9±0.5 μg EPA/
mg DW and 2.3±0.2 μg DHA/ mg DW) (pairwise tests, all p<0.01). However, long-term star-
vation equalized the storage EPA and DHA content between 4°C (4.0±1.1 μg EPA/ mg DW
and 0.5±0.2 μg DHA/ mg DW) and 24°C (6.1±2.5 μg EPA/ mg DW and 1.0±0.4 μg DHA/ mg
DW) compared with 15°C (1.6±0.4 μg EPA/ mg DW and 0.2±0.06 μg DHA/ mg DW) (all p
<0.01 for temperature and time; both p<0.05 for interaction).

Membrane FA composition
First, the original membrane FA composition remained unchanged after 3 days of food depri-
vation as indicated by the membrane PC1score values (Fig 2A). Thereafter, alterations
appeared but they were temperature-dependent (p<0.01 for temperature and time; p<0.05
for interaction). In particular, long-term exposure under 15°C and 24°C, significantly altered
the original membrane FA composition, while no significant changes were observed under
4°C, likely due to the large standard error values (pairwise tests, both p<0.05).

Prior to the experiment, the membrane FA composition was dominated by HUFA (highly
unsaturated FAs i.e. FA� 20 carbon atoms and� 3 double bonds; 67.4±0.7%), followed by
SFA (saturated FAs; 22.0±0.5%) and MUFA (mono unsaturated FAs; 10.3±0.3%) (Table 1).
Food deprivation under cold conditions maintained the HUFA%, while a subtle increase in
MUFA% at the expense of SFA% occurred. These shifts in FA classes were caused by the
increase in relative concentrations of 18:1ω7c and DHA at the expense of 16:0 and 18:0
(Table 1), and the significant contributions of DHA, 16:0 and 18:0 (all p<0.01) also appeared
from Fig 2B. In contrast, exposure to 15°C and 24°C increased the SFA% and MUFA% at the

Fig 1. The lipid profile of the copepod P. littoralis prior (day 0) and after 3, 6 and 14 days of food deprivation at different temperatures (4, 15 and
24°C). (A) the storage and membrane FA content (μg FA/ mg DW) (±SD), (B) EPA content (20:5ω3; μg EPA/ mg DW) (±SD), (C) DHA content (22:6ω3; μg
DHA/ mg DW) (±SD) both associated with the storage and membrane lipids. Grey and white bars represent storage and membrane lipids, respectively.

doi:10.1371/journal.pone.0151779.g001
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expense of HUFA% (Table 1). Under 15°C, the shifts in FA classes were caused by the increase
in relative concentrations of 16:0 (after an initial decrease), 18:0, 18:1ω7c, 20:4ω6 and DHA at
the expense of EPA (Table 1). This was largely confirmed by the significant contributions of
16:0, 18:0, 20:4ω6, EPA (all p<0.01) and 18:1ω7c (p<0.05) on Fig 2B. Under 24°C, the
changes in membrane FA composition were most pronounced as HUFA% dropped to 54.8
±1.6% by the end of incubation. Initially, increases in relative concentrations of 18:0, 18:1ω7c,
20:4ω6 and DHA, at the expense of EPA were observed (Table 1). However, towards the end of
the experiment, the relative concentration of 16:0 and 16:1ω7 increased while DHA decreased
substantially (all p<0.01) (Fig 2B).

Fig 2. Membrane FA composition of the copepod P. littoralis prior (day 0) and after 3, 6 and 14 days of food deprivation at different temperatures
(4, 15 and 24°C). (A) The PC1score values (±SD) for membrane lipids are displayed with (B) the Spearman’s rho correlation coefficients of individual FAs (%)
used for the PCA with the correlation significance levels (*p <0.05; **p <0.01).

doi:10.1371/journal.pone.0151779.g002

Table 1. Membrane FA composition (% ±SD) of the copepod P. littoralis prior (day 0) and after 3, 6 and 14 days of food deprivation at different tem-
peratures (4, 15 and 24°C); tr, traces (<1%); other FAs, sum of all FAs <1% in all treatments.

4°C 15°C 24°C

(%) Day 0 Day 3 Day 6 Day 14 Day 3 Day 6 Day 14 Day 3 Day 6 Day 14

14:0 tr tr _ tr _ _ _ _ _ 1.1±1.0

16:0 16.5±0.3 15.0±1.2 14.7±0.3 13.6±1.5 14.5±1.3 15.4±3.1 17.4±0.5 16.1±1.0 16.8±2.9 19.3±0.4

16:1ω7 5.0±0.3 5.0±1.0 4.6±0.5 4.9±0.5 4.8±0.8 4.8±1.4 5.9±0.7 4.6±0.2 4.9±0.6 8.8±1.8

18:0 4.9±0.2 4.3±0.3 4.0±0.2 3.7±0.1 5.9±0.3 6.2±0.3 6.1±0.4 6.8±0.1 7.5±0.4 6.7±0.2

18:1ω7c 4.6±0.2 6.1±0.4 6.7±0.8 7.8±0.2 6.2±0.6 6.9±0.8 7.5±0.4 5.5±0.2 6.4±0.2 9.4±2.1

20:4ω6 1.6±0.1 1.6±0.1 1.7±0.1 1.7±0.05 2.2±0.3 2.3±0.1 2.3±0.1 2.0±0.1 2.3±0.3 2.9±0.4

20:5ω3 27.7±0.2 27.1±1.2 27.5±0.3 27.4±1.1 24.7±1.2 24.4±1.1 22.7±0.5 22.8±0.5 21.6±1.0 22.6±1.2

22:5ω3 2.2±0.2 1.9±0.1 1.6±0.1 1.8±0.2 2.1±0.2 _ _ 2.0±0.4 1.9±0.3 _

22:6ω3 34.7±1.1 36.8±1.2 37.2±1.6 38.4±1.2 38.8±1.1 40.0±4.1 38.1±1.0 39.5±1.3 38.1±3.2 29.2±1.1

other FAs 2.5±0.2 1.9±0.2 2.0±0.2 tr tr _ _ tr tr _

SFA% 22.0±0.5 19.8±1.3 19.0±0.4 17.5±1.6 20.8±1.3 21.5±2.8 23.5±0.8 23.0±0.8 24.5±3.1 27.1±1.3

MUFA% 10.3±0.3 11.7±1.1 12.0±1.4 13.3±0.5 11.5±1.2 11.8±2.0 13.4±1.1 10.7±0.02 11.6±0.6 18.1±2.5

HUFA% 67.4±0.7 68.1±2.3 68.7±1.3 69.3±2.1 67.7±2.5 66.7±4.9 63.1±0.4 66.3±0.8 63.9±3.7 54.8±1.6

doi:10.1371/journal.pone.0151779.t001

Temperature Affects the Use of Storage Fatty Acids

PLOS ONE | DOI:10.1371/journal.pone.0151779 March 17, 2016 7 / 16



Notably, at intermediate time (6 days) under 15°C and 24°C, the membrane FA composi-
tion (PC1score values for membrane lipids) was characterized by large standard deviation val-
ues (Fig 2A).

Storage FA composition
Regarding the original storage FA composition, short-term food deprivation under 15°C and
24°C induced significant modifications (pairwise tests, both p<0.05) (Fig 3A). Moreover, the
storage FA composition of copepods exposed to 24°C deviated significantly from 4°C and 15°C
(pairwise tests, both p<0.05). Eventually, long-term food deprivation resulted in significant
differences in storage FA composition among all temperatures (p<0.01 for temperature; no
time or interaction) (pairwise tests, all p<0.05).

At the onset of the experiment, FA associated with storage lipids were rather evenly distributed
among PUFA (polyunsaturated FAs i.e. FA with> 1 double bond; 38.5±0.8%), MUFA (36.5
±0.8%), HUFA (33.4±0.8%) and SFA (24.9±1.3%) classes (Table 2). Short-term food deprivation
under 15°C and 24°C altered the original membrane FA composition, but trends were opposite.
Under 15°C, the changes were modest i.e. a subtle increase in HUFA% and decrease in SFA%,
caused by an increase in the relative concentrations of 18:1ω7c, 20:4ω6 and 22:5ω6 at the expense
of 16:0 (Table 2) (all p<0.01 Fig 3B). Long-term food deprivation under 15°C maintained or
magnified these changes (Fig 3A), and additionally, reduced the relative EPA concentration
(Table 2) (p<0.05 Fig 3B). Short-term food deprivation under 24°C increased the SFA% (39.9
±6.1%) at the expense of the other FA classes (Table 2) and this pattern was caused by the increase
in relative concentrations of 16:0, 18:0 at the expense of 16:1ω7 (all p<0.01), EPA and DHA
(both p<0.05) (Fig 3B). Prolonged food deprivation under 4°C and 24°C resulted in large stan-
dard deviation values of the storage FA composition (PC1score values for storage lipids) (Fig 3A).

Discussion

Role of storage lipids for copepod survival
Starvation resistance depends on the amount of energy reserves and the way a species allocates
them to reproduction, growth and metabolism [31,32]. Storage lipids may be composed of wax

Fig 3. Storage FA composition of the copepod P. littoralis prior (day 0) and after 3, 6 and 14 days of food deprivation at different temperatures (4,
15 and 24°C). (A) The PC1score values (±SD) for storage lipids are displayed with (B) the Spearman’s rho correlation coefficients of individual FAs (%) used
for the PCA with the correlation significance levels (*p <0.05; **p <0.01).

doi:10.1371/journal.pone.0151779.g003
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esters and triacylglycerols (TAG) which serve as long- and short-term energy deposits, respec-
tively. In particular, wax esters are the dominant storage lipid in many deep-living and polar
zooplankton taxa [3]. To our knowledge, the presence of wax esters as primary storage lipid
has been observed only in one harpacticoid species in association with diapause [16]. Although
the storage lipid content comprised a large part of the total FA content in P. littoralis i.e. 80%, 3
days of food deprivation reduced the storage content substantially, thereby suggesting TAG to
be the main storage lipid in this harpacticoid species. Similar short-term storage depletion has
been observed in other invertebrates such as Crassostrea gigas postlarvae [33] and Calanus hel-
golandicus [34].

When food deprivation occurs, the organism’s response is integrated at all levels of organi-
zation and is directed towards survival of the species [32]. The transition from fasting to starva-
tion is thought to occur after massive degradation of adipose tissue to fuel most bodily
metabolism [32]. In the current experiment, the transition likely occurred after 3 days of food
deprivation as the storage content was substantially reduced under 4°C and 15°C with factors 5
and 13, respectively. However, the drop in storage FA content was not coupled with an
increased copepod mortality and consequently, this lag period i.e. from day 3 to day 14 sug-
gested catabolism of other energy sources during starvation. The relative importance of several
metabolic reserves and the order of utilization varies among species [1,35]. In some crusta-
ceans, proteins appear the main energy source during food deprivation [36,37] or lipids [38–
40] or both simultaneously [36].

In contrast to storage (neutral) lipids, membrane (polar) lipids are usually conserved in
food deprived crustaceans due to their role as structural components of cell membranes
[1,41,42]. This deviates from the substantial decrease in original membrane FA content,
observed after short-term food deprivation. Although these reductions are minor compared
with the depletion of storage FA, they diverge from previous observations where the membrane

Table 2. Storage FA composition (% ±SD) of the copepod P. littoralis prior (day 0) and after 3, 6 and 14 days of food deprivation at different temper-
atures (4, 15 and 24°C); tr, traces (<1%); other FAs, sum of all FAs <1% in all treatments.

4°C 15°C 24°C

(%) Day 0 Day 3 Day 6 Day 14 Day 3 Day 6 Day 14 Day 3 Day 6 Day 14

14:0 2.5±0.1 2.7±0.2 2.4±0.8 2.6±0.1 2.3±0.2 2.5±0.2 2.6±0.4 2.3±0.4 2.0±0.2 2.2±0.3

16:0 19.2±0.6 18.0±0.2 18.9±0.7 19.6±2.4 17.6±0.6 17.9±0.5 16.7±0.7 25.4±2.4 23.9±2.5 29.6±4.2

16:1ω7 33.0±0.8 34.0±1.3 34.2±0.7 31.9±2.8 33.5±0.7 33.7±1.5 31.7±1.9 26.1±3.7 25.5±2.9 20.7±7.2

16:2 1.5±0.1 1.5±0.1 1.5±0.1 1.3±0.02 1.5±0.03 1.5±0.2 1.3±0.1 1.1±0.1 1.2±0.1 tr

18:0 2.2±0.6 1.8±0.3 2.4±0.4 4.8±3.4 1.3±0.3 2.1±0.9 1.8±0.3 10.7±3.9 10.5±3.6 18.5±9.4

18:1ω9c tr tr tr tr 1.0±0.1 1.0±0.1 1.1±0.1 1.0±0.1 1.2±0.3 1.4±0.3

18:1ω7c 1.8±0.03 1.9±0.2 1.8±0.2 2.0±0.2 2.4±0.2 2.3±0.1 2.3±0.1 1.6±0.3 1.7±0.3 1.6±0.4

18:4ω3 1.1±0.03 1.1±0.05 1.1±0.1 1.0±0.03 1.2±0.03 1.1±0.1 1.0±0.04 tr tr tr

20:4ω6 tr 1.8±0.5 1.2±0.6 1.8±1.3 2.1±0.7 3.1±0.3 6.5±3.6 1.0±0.3 1.4±0.8 1.2±0.3

20:5ω3 27.0±0.6 26.5±1.0 25.6±0.4 24.6±1.4 26.4±0.7 23.5±0.9 21.9±1.3 21.0±1.5 22.1±3.4 15.8±5.0

22:5ω6 tr 1.0±0.03 1.7±0.5 1.7±0.5 1.8±0.4 3.6±1.4 5.0±0.1 tr tr tr

22:5ω3 1.2±0.03 1.0±0.04 1.0±0.1 1.0±0.1 1.0±0.05 tr _ 1.0±0.1 1.0±0.2 tr

22:6ω3 3.5±0.1 3.5±0.1 3.3±0.2 3.3±0.2 3.8±0.1 3.3±0.1 3.1±0.3 3.0±0.1 3.2±0.7 2.6±0.7

other FAs 5.2±0.1 4.5±0.1 4.0±0.1 3.5±0.1 4.4±0.7 3.6±0.5 5.1±2.3 4.7±0.1 4.8±0.2 3.7±0.5

SFA% 24.9±1.3 23.1±0.3 24.4±0.7 27.8±5.9 22.0±1.0 23.3±1.0 22.0±1.0 39.9±6.1 37.9±6.6 51.8±13.7

MUFA% 36.5±0.8 37.2±1.4 37.5±0.5 35.2±2.5 37.7±0.8 38.1±1.7 38.1±2.2 29.4±3.8 29.3±2.8 24.5±7.0

PUFA% 38.5±0.8 39.7±1.2 38.1±0.7 37.0±3.5 40.3±0.4 38.6±1.3 39.9±2.4 30.6±2.3 32.8±3.8 23.7±6.9

HUFA% 33.4±0.8 34.5±1.1 33.0±0.5 32.4±3.2 35.3±0.2 34.4±1.2 36.5±2.2 26.8±1.9 29.1±3.4 20.9±5.8

doi:10.1371/journal.pone.0151779.t002
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FA content stayed relatively constant in 10-days starved copepods [8]. A higher observation
frequency during the first 3 days of food deprivation, capturing the bulk depletion of storage
and membrane FA, would have yielded more information on their depletion order and also the
depletion rate under different ambient temperatures. The decrease in membrane FA content
could have resulted from the degradation of cell organelles as was previously observed in the
enterocytes of 4-day starved Daphnia magna specimens [31]. In particular, after depletion of
whole body resources, the rough endoplasmic reticulum and dictyosome (Golgi complex) were
reduced, potentially reflecting the diminished demand for digestive enzymes. Eventually, the
cell height was reduced by up to one-fifth of its height. The reduction of membrane FA content
was smaller under cold exposure. Higher quantity of intracellular membranes under cold con-
ditions was previously observed and is thought to compensate for the reduced diffusivity con-
stants by reducing the diffusion path length of metabolites [43,44].

Ambient temperature had a clear effect on the net energy balance of starved copepods. In
particular, the storage FA content in starved copepods exposed to 4°C remained almost double
compared with the 15°C treatments, indicating that the metabolic cost of living increases with
temperature [22,45]. However, the lipid response of copepods exposed to heat stress clearly
deviated from this concept. At elevated temperature, the organism’s function is limited due to
the mismatch between the demand for oxygen by the tissues and the supply of oxygen by the
cardiovascular system [46]. Under heat stress, a switch to partial anaerobiosis may occur [47],
resulting in a limited decrease of the copepod’s storage FA content. In contrast to carbohy-
drates and free amino acids that can be oxidized aerobically or anaerobically, lipids are pre-
dominantly catabolized in aerobic pathways [48]. This transition to partial anaerobiosis occurs
well before the onset of lethal temperatures but heralds a time-limited situation, where tempo-
rary survival is restricted to a few days or weeks. The critical temperature that evokes the transi-
tion to partial anaerobiosis correlates with the environmental temperatures in the marginal
populations of many aquatic ectotherms [48]. The biogeographic range of the harpacticoid P.
littoralis is restricted to Northern Europe [49] and North-America [50] and this identifies P. lit-
toralis as a temperate species typical for northern latitudes. Given the temperature range in its
natural habitat, 4°C to 20–22°C in the Westerschelde estuary [51], the 24°C treatment repre-
sented a summer extreme and likely approached the critical temperature, evoking heat stress in
the copepod.

Temperature-dependent storage FA mobilization
Another question that rises is how the FA profile of a consumer changes when lipid stores are
mobilized rather than deposited. Currently, no general consensus exists on the issue of differ-
ential FA mobilization. In vitro studies using white adipocyte cells from rats confirmed selec-
tive FA mobilization [52], while no temporal change in overall FA composition was observed
in natural long-term fasting studies in several phocid and otariid pinniped pups and juveniles
[7]. These divergent responses may indicate different physiological states as some species are
confronted with natural cycles of food deprivation, or food deprivation is part of their natural
history and they are therefore exposed to fasting rather than starvation [53]. According to [6],
FAs are mobilized more readily when they are short, unsaturated and when their double bonds
are closer to the methyl end of the chain. Although the exact mechanism of selective FA mobili-
zation remains unclear, hypotheses include selectivity of the rate-limiting enzyme (hormone
sensitive lipase) towards storage FA in the process of lipolysis and differential lipid partition of
TAG molecules at the lipid-water interphase based on their polarity. From a caloric point of
view, longer FA chains allow for more efficient lipid utilization since every FA has to be acti-
vated by one ATP for catabolism, independent of its chain length [54].
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In the current study, short-term starvation under 15°C and 24°C induced pronounced
changes in the original storage FA composition. Despite strong compositional changes under
heat stress, lipid depletion was modest. Therefore, the observed compositional changes likely
reflected additional heat-stress induced responses. In particular, mitochondrial ROS (reactive
oxygen species) formation might increase with temperature, as was demonstrated in a eury-
thermal marine ectotherm [55]. ROS species have the potential to damage cellular macromole-
cules such as lipids, proteins and DNA [46]. Among the different FA classes, PUFA are most
prone to lipid peroxidation [56,57] and once lipid peroxide radicals are formed, an autocata-
lytic chain of lipid peroxidation can be initiated. Furthermore, the EPA and DHA in mitochon-
drial membranes would enhance susceptibility to damage by ROS, generated through oxidative
phosphorylation [58]. This process might be linked with the observed drop in relative PUFA,
HUFA and in particular EPA, in storage lipids of starved copepods exposed to heat stress.
Therefore, evaluation of selective FA mobilization will be restricted to the responses under 4°C
and 15°C as these are within the habitat temperature range and were characterized by the most
pronounced lipid mobilization. Food deprivation under 15°C evoked the strongest composi-
tional changes in storage FA, in contrast to 4°C, and this indicated the temperature-depen-
dence of selective FA mobilization. Although the proportions of individual FA changed
significantly, no clear shifts among FA classes were observed as was the case in other starvation
studies focusing on crustaceans. For example, [8] reported the utilization of PUFA and certain
MUFA at the expense of SFA in a freshwater calanoid copepod. In contrast, [9] observed pref-
erential PUFA retention and use of MUFA and SFA in an amphipod species during fasting,
although this study made no distinction between lipid fractions. Long-term food deprivation
maintained or increased the compositional FA changes and therefore identified a time-aspect
in the mobilization process. Noteworthy was the lag period of EPA depletion in the storage lip-
ids of copepods. The initial EPA% was maintained during the first days of food deprivation but
decreased eventually with smallest reduction under 4°C. The EPA requirement appeared
higher under cold conditions which is in line with previous work on Daphnia pulex [10]. Long-
term food deprivation under the temperature extremes increased the standard error of the
copepod storage FA composition. High inter individual variability was previously attributed to
the use of individuals from natural populations [8,9] and consequently, might also apply to this
study.

Altered membrane structure and function
The membrane FA composition of P. littoralis harpacticoids collected from the field was domi-
nated by DHA (±35%), followed by EPA (±30%) and 16:0 (±17%). Although DHA slightly pre-
vailed the membranes compared to EPA, both essential FA were rather equally present.
Regarding the membrane FA composition of other first-level consumers, this harpacticoid spe-
cies can be positioned between cladocerans and calanoid copepods. In particular, DHA (0.9–
2.1%) is almost absent in membranes of cladocerans in contrast to EPA (12–23%) [59], while
the contribution of DHA (±35%) to the membranes of calanoids (e.g. northern-latitude Cala-
nus species [60], the freshwater calanoid Eudiaptomus gracilis [8]) is almost twice the contribu-
tion of EPA (±17%).

When exposed to fasting, certain organisms might be able to modulate the FA composition
of their cell membranes to slow down metabolism and to prolong survival as energy stores pro-
gressively decrease [8,61]. In addition, cold stress or heat shock can alter the membrane prop-
erties of ectotherms such that, unless they are corrected quickly, damage and possibly, death
may occur [62]. Although profound changes in membrane FA composition appeared only
after long-term food deprivation, subtle shifts in FA classes were already observed after 3 days.
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In particular, cold exposure is thought to increase the membrane lipid order but can be com-
pensated by first and second cis-double bond insertions in membrane FA [62]. This may
explain the increase and decrease of the MUFA% and SFA%, respectively, in the copepod’s
membrane under 4°C. Noteworthy was the temperature-dependent EPA% response. Cold
exposure conserved EPA, while an immediate decrease was observed under 15°C. Under heat
stress, this decrease was even more pronounced. A similar response was observed for storage
associated EPA% and this suggests a tight link between both lipid fractions and has been pro-
posed previously [63]. Cell membrane lipids experience a natural turnover [43], thereby acting
as an additional driver for storage FA mobilization. Consequently, ambient temperature might
indirectly affect the storage FA composition, through the link with membrane FA, although
the storage FA composition is mainly affected by the diet [64]. Indeed, mobilized storage FA
are also used for the turnover of cell membranes and as precursors of lipid mediators (eicosa-
noids) [52]. EPA and ARA are precursors of eicosanoids i.e. short-lived hormone-like sub-
stances which have opposite effects in inflammation and immune related processes [65,66].
ARA-derived eicosanoids promote inflammation while those from EPA are rather anti-inflam-
matory [65]. Consequently, it is not surprisingly that the EPA/ ARA ratio decreased pro-
foundly in copepods subjected to food and heat stress. In contrast to the EPA%, short-term
food deprivation increased the original DHA% regardless of the temperature. This indicates
DHA selective retention and is in line with the findings of [11]. DHA is thought to produce an
optimal acyl-chain packing array for the functioning of transmembrane proteins involved in
the excitatory response [66]. Moreover, dietary DHA appeared important for the survival, eye
development and pigmentation in halibut larvae [13]. Preferential retention of essential FA in
unfavorable conditions is of great importance for maintaining the cell’s biochemical compe-
tency [9]. However, on the long term, food deprivation combined with heat exposure resulted
in a sharp decline of the DHA% and a high copepod mortality. In view of the essential role of
DHA for the organism’s health, it is plausible that the sharp decline in the DHA% evoked the
increased copepod mortality.

Ecological significance
The use of energy reserves differs among species and is not only related to the biochemistry
and physiology of nutrition but also to the living environment of the crustaceans [1,9]. The
harpacticoid P. littoralis inhabits a temperate, intertidal zone year round and its capacity for
thermal acclimatization is therefore expected to be high. Previous research investigating the
harpacticoid species assemblage at the Paulina intertidal salt marsh (Westerschelde estuary)
suggested that food availability i.e. mainly microphytobenthos, does not limit overall copepod
abundance but that shifts in resource composition and/ or other environmental variables drive
assemblage composition [21,67]. However, the spatial heterogeneity of microphytobenthos
[68–70] in combination with the limited mobility of P. littoralis and the absence of planktonic
larval stages [71] may lead to periodical events of food limitation, especially in view of the selec-
tive feeding behavior of harpacticoid copepods [72–74]. Furthermore, occasional food limita-
tion caused by disproportionally high grazing pressure has been reported [75]. P. littoralis
showed some starvation resistance which appeared from the use of storage lipids during the
first days of food deprivation and the DHA retention in the copepod’s membrane.

Under heat stress, storage lipids appeared inefficient as energy source and copepods might
have switched to partial anaerobiosis which is usually less efficient. Although this response
extends the time period of survival, it seriously compromises activities like foraging and repro-
duction or performances like growth. In the intertidal zone, exposure to heat stress and possi-
bly oxygen deficiency may occur during daytime at low tide for some species [47] but is also
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time-limited due to the tidal regime. Nevertheless, our results suggest that a rise in oceanic
warming, accompanied by increased temperature fluctuations and frequency of temperature
extremes [76], might rule out the use of storage lipids as short-term energy source and render
P. littoralis specimen more vulnerable to periods of food limitation.
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