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Abstract

ClinicalTrials.gov has been archiving clinical trials since 1999, with > 165,000 trials at present. It 

is a valuable but relatively untapped resource for understanding trial design patterns and acquiring 

reusable trial design knowledge. We extracted common eligibility features using an unsupervised 

tag-mining method and mined their temporal usage patterns in clinical trials on various cancers. 

We then employed trend and network analysis to investigate two questions: (1) what eligibility 

features are frequently used to select patients for clinical trials within one cancer or across 

multiple cancers; and (2) what are the trends in eligibility feature adoption or discontinuation 

across cancer research domains? Our results showed that each cancer domain reuses a small set 

of eligibility features frequently for selecting cancer trial patients and some features are shared 

across different cancers, with value range adjustments for numerical measures. We discuss the 

implications for facilitating community-based clinical research knowledge sharing and reuse.
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1 Introduction

Knowledge management and standards-based clinical research design are two related 

tasks of high priority for the field of clinical research informatics since its inception. 

One type of clinical research, the randomized controlled trial, has long been accepted as 

the gold standard for generating high-quality medical evidence. Therefore, much effort 

has been devoted to developing formal representations for clinical trial protocols [1–5], 

clinical trial eligibility criteria [6, 7], or common data elements for clinical trial data 

collection [8–10]. Most of these efforts have resulted in ontologies or expert systems for 

supporting computational reuse of clinical trial eligibility criteria. However, due to the lack 

of interoperability among such ontologies or standards [11–13] and the high cost of text 

knowledge engineering for clinical research protocols, there has been limited adoption of 

these methods by the clinical research community for improving the computability of new 

clinical trial designs, which are usually written as lengthy, free-text paper documents.
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Meanwhile, studies have also revealed the great need of the clinical research community for 

clinical research knowledge reuse [14, 15], as reflected by the fact that eligibility criteria 

texts for patient selection are often similar, and sometimes identical, across different studies 

within the same disease domain or across different disease domains [15, 16]. Little is 

known about knowledge reuse patterns in clinical trial designs for patient selection, either 

within or across diseases, but such knowledge could potentially inform the construction of 

valuable trial design knowledge bases that address clinical researchers’ needs for knowledge 

reuse. Moreover, the availability of ClinicalTrials.gov [17], the largest public clinical trial 

repository with over 165,000 trials for thousands of diseases as of April 2014, presents a 

valuable opportunity for using Big Data analytics to discover eligibility criteria knowledge 

reuse patterns from clinical trial summary text.

This paper reports the results of a preliminary attempt to analyze such patterns. Using cancer 

clinical trial eligibility criteria as an example, we employed network and trend analysis to 

address these two research questions: (1) what eligibility features are frequently used to 

select patients for clinical trials of one cancer type or across multiple cancer types; (2) what 

are the temporal patterns in adopting or rejecting frequently used eligibility features? We 

then discuss the implications for supporting knowledge reuse and sharing for clinical trial 

eligibility criteria designs in the future.

2 Methods

2.1 Selecting an Example Problem Domain: Cancer

Entering a disease name in the “Condition” field on the online search form provided by 

ClinicalTrials.gov can retrieve all clinical trial summaries for a specific medical condition. 

Given the global priority of cancer research, we decided to focus on clinical trial eligibility 

criteria for all cancers. Therefore, we retrieved and downloaded all the eligibility criteria text 

and information about their cancer types.

2.2 Mining Common Eligibility Features (CEFs) from Text

On ClinicalTrials.gov, all clinical trial eligibility criteria are stored and presented as 

unstructured text. We applied an unsupervised tag mining method [18] to extract discrete 

concepts from eligibility criteria text. The text was processed to remove special characters 

and punctuation and to build all the possible n-grams (i.e., continuous sub-sequences 

of n words). N-grams composed of only English stop words or irrelevant grammatical 

structures were removed. Each n-gram was matched against the Unified Medical Language 

System (UMLS)[19] Metathesaurus and retained only if at least one of its substrings 

was a recognizable UMLS concept. Moreover, we considered only those UMLS concepts 

appearing in semantic categories most relevant to the clinical trial domain. For example, 

“malignancy within the past 5 years” would be considered a valid n-gram because at 

least one word, “malignancy”, was present in the part of the UMLS lexicon considered, 

even if the entire sentence were not. Each n-gram term found in the UMLS lexicon 

was also normalized according to its preferred Concept Unique Identifier (CUI). Using 

the CUIs increased the density of concepts and enabled the handling of synonyms, since 

similar concepts are aligned to the same preferred term by the UMLS specification (e.g., 
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“atrial fibrillation” and “auricular fibrillation” are both mapped to “atrial fibrillation”). This 

allowed identifying semantically unique eligibility features. Since each CUI may be mapped 

to more than one UMLS semantic type, we also assigned to each n-gram a distinctive 

UMLS semantic type by performing semantic type disambiguation using previously defined 

semantic preference rules [20]. After this process, each clinical trial’s eligibility criteria 

were summarized by a set of UMLS CUI-based n-grams representing the criteria’s relevant 

features. On this basis, we retained the n-grams appearing in at least 20% of all cancer trials 

and considered them common eligibility features (CEFs).

2.3 Trend Pattern Generation for CEFs and Cancers Pairs, Respectively

We analyzed the pairwise trend similarity between CEFs. A CEF’s occurrences over the 15 

years formed a vector. We used the correlation coefficient significance test [21] to measure 

the correlation between any two vectors of the same length (e.g., length = 15 for CEFs) as 

follows:

Cor(X, Y) =
∑i = 1

n (xi − x)(yi − y)

∑i = 1
n (xi − x) ∑i = 1

n (yi − y)

The CEFs that occur in less than three years were excluded because their temporal patterns 

were meaningless. The remaining CEFs’ occurrences were normalized. We picked a P-

value of 0.001 after preliminary experiments so that we only allowed 0.1% of chance for 

the identified correlation to be wrong. Using this P-value, according to the Correlation 

Coefficient Significance table, by using a degree of freedom of 13 since the length of each 

vector is 15, a significant relationship should have its correlation coefficient greater than 

0.7603.

After identifying significant relationships in CEF pairs, we developed a temporal pattern 

matching method to automatically identify correlated CEF pairs based on their frequency 

changes in the 15 years. We divided the 15-year time interval into 14 consecutive 

subintervals. For each interval spanning two consecutive years (e.g., 2008–2009) for a 

certain CEF, we labeled it increasing, decreasing, or stable. We arrived at the temporal 

pattern for a CEF by concatenating the patterns in all 14 intervals.

To best match the real pattern of CEFs’ frequencies, after manual test, we assigned each 

interval a specific category as follows: if a CEF’s frequency in year (n+1) was 120% that 

of year n, we classified the pattern as “increasing”; if the frequency was < 80% that of the 

previous year, we classified the pattern as “decreasing”; if the frequency was between 80% 

and 120% of that of the previous year, we labeled the pattern as “stable”.

The trend patterns enabled the retrieval of pairs of CEFs of the following four types of match 

patterns: (a) exact, i.e., all concatenated intervals have the same pattern; (b) opposite, i.e. all 

concatenated intervals have opposite patterns; (c) offset, i.e., the pattern matches with a lag 

of one or two years; and (d) approximate, i.e. a match for between 12 and 13 subintervals 

(i.e., a number smaller than 14 but not too off).
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In addition, for quantitative CEFs such as A1c, creatinine, creatinine clearance, or body 

mass index, we plotted their value range distribution among all the cancer trials to visualize 

how patients of different value ranges for the selected eligibility features are included for 

cancer trials.

2.4 Trend Summarization

We further developed piecewise functions to summarize the usage trend of the CEFs 

between years 1999 and 2013 by multiple sub-functions, each applying to a certain time 

interval of the main function’s domain (a subdomain). Our analysis included the following 

three steps. First, we calculated the usage of each CEF in each cancer type X in each 

year n, which ranges from 1999 to 2013. Second, to reduce the dimensions of the problem 

space, for each CEF, we partitioned the entire 15-year period into three 5-year intervals – 

1999–2003, 2004–2008, and 2009–2013 – and calculated the average occurrences of the 

CEF for all cancer types within each sub-interval to get three values Xearliest, Xmiddle, Xlatest 

using this formula:

Xc = 1
n ∑

i = 1

n
fi

where subscript c is the earliest, middle, or latest time interval, n is the number of years 

in each interval (in this case n=5), i indicates each year in the time interval, and fi is 

the occurrence of the CEF in the given year i for the given cancer type X. The possible 

relationships among these three measurements are illustrated in Fig. 1. Fig. 1(a) indicates 

Xearliest < Xmiddle < Xlatest, while Fig. 1(b) indicates Xmiddle < Xearliest < Xlatest. Finally, we 

named three temporal patterns: increasing, decreasing, and stable, which match Fig. 1 (a–c), 

Fig. 1(d–f), and Fig. 1 (g) respectively. We defined what accounts for larger than, smaller 

than, and equal to respectively by comparing the difference among Xearliest, Xmiddle, and 

Xlatest to a delta selected programmatically.

2.5 Network Analysis and Hierarchical Clustering

Using the information about the correlations among CEFs and similarities among cancers, 

we constructed the network of cancers and CEFs and calculated the network density and 

the centrality of each CEF (i.e., the count of cancers using this CEF at any time) or each 

center (i.e., the count of distinct CEFs used in trials of this cancer). We developed a 2-by-2 

matrix of cancer type versus distinct CEF, in which the value of each cell was 0, −1, or 

1, indicating that the CEF was classified as stable, decreasing, or increasing, respectively. 

Then, we hierarchically clustered cancer types by their similarity in (a) corresponding CEF 

centrality and (b) CEF trend patterns, respectively, using hierarchical clustering algorithm 

of MATLAB program. The pairwise distance between cancer types was measured using 

Jaccard Distance [22], which measures the percentage of nonzero elements that differ as 

follows:

J(Ci, Cj) = Ci ∪ Cj − Ci ∩ Cj
Ci ∪ Cj
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where Ci and Cj feature vectors of the cancer types, with i, j being 1, 2,.., 95, i ≠ j. The 

smaller the Jaccard distance, the more similar were Ci and Cj.

3 Results

We identified 5,886 distinct CEFs that appeared in at least 20% of 99,109 cancer trials 

covering 95 cancer types. Their total occurrences in cancer trials were 54,927. The average 

number of CEFs used in a cancer research domain is 578.17. A total of 1,919 CEFs were 

used in research studies for only one cancer. We refer to these CEFs as cancer type-specific 

CEFs. On average, 78.72% of CEFs remain stable over time.

Fig. 2 plots the occurrences of CEFs of decreasing, increasing, or stable patterns in the 

95 cancers. In all the cancers, most of the CEFs have stable usage patterns. Sixty-one 

cancers (64.2%) had more CEFs of increasing patterns than of decreasing patterns during 

the 15-year time period. Clinical trials for carcinoma of unknown primary site used the most 

CEFs, followed by skin and breast cancer, while trials for oropharyngeal cancer used the 

fewest CEFs, most with stable uses. These results imply that the uses of CEFs in cancer 

research are stable over time in general.

The top 15 cancers ranked by the number of CEFs are carcinoma of unknown primary 
origin, skin cancer, breast cancer, gastrointestinal cancer, nonmelanoma skin cancer, 
embryonal cancer, Kaposi’s sarcoma, gynecologic cancers, bone cancer, AIDS-related 
cancer, leukemia, intraocular melanoma, lymphoma, lung cancer, and gallbladder cancer, 
where Kaposi’s sarcoma and AIDS-related cancer are the same concept with different 

semantic representations.

The top 15 CEFs ranked by the number of cancers using them are gender = both, minimum 
age = 18, platelets adverse event, transaminases, therapeutic brand of coal tar, Karnofsky 
performance status, serum creatinine level, SGOT - glutamate oxaloacetate transaminase, 
alanine transaminase, allergy severity – severe, creatinine clearance, heart diseases, cardiac 
arrhythmia, operative surgical procedures, and pharmaceutical preparations.

Fig. 3 displays the trends of three sample CEFs: (1) hypersensitivity; (2) creatinine; and 

(3) creatinine clearance. Since 2005, hypersensitivity has been adopted by clinical trials 

for up to 41% cancer types as a CEF, while previously its usage ranged between 5% and 

10%. Meanwhile, starting in 2006, creatinine clearance has gradually replaced creatinine to 

indicate kidney function for the trials of between 18% and 27% of cancers.

Fig. 4 shows the similar trends of (a) creatinine clearance for female cancer and breast 

cancer research and (b) serum creatinine level for pancreatic cancer and brain cancer 

research, as well as the opposite trends between CEFs pregnancy test negative and non-
infiltrating lobular carcinoma for skin cancer research.

Fig. 5 plots the collective value distribution for the numerical CEF creatinine clearance in all 

cancer trials. Such information can help the designers of a new clinical trial see what values 

have been used in existing trials.
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Fig. 6 shows the hierarchical clustering view of all the 95 cancer types. Green areas indicate 

CEFs with increasing adoption in the corresponding cancer, red areas indicate CEFs with 

decreasing adoption, and black areas represent stable CEFs. The cancer types on the left 

side of Fig. 6 remain unchanged. For example, the number of CEFs with changing patterns 

in both pharyngeal cancer and throat cancer was 1, where the former was the subtype of 

the latter. The Jaccard distance between these two cancer types was 0, which means that 

the classification results of the CEFs used in these cancer types are the same. The total 

numbers of classified CEFs in the skin and breast cancers were 210 and 250, respectively. 

The Jaccard distance between these two cancer types was 0.46, which means that they share 

54% of the CEFs that have the same trends in both cancers.

As shown in Fig. 7, five clusters within which cancer types with similar centrality were 

grouped. Green areas indicate CEFs with increasing adoption in the corresponding cancer, 

red shows CEFs with decreasing adoption, and black represents stable CEFs. The leftmost 

cluster (linked by red lines on the top) includes breast cancer, skin cancer, women cancer, 

cervical cancer, head and neck cancer, colon cancer, and rectal cancer, gastrointestinal 

cancer, lung cancer, and non-small cell lung cancer.

We took the top 30 scored cancer-pairs and built a network based on their connections, as 

shown in Fig. 8. Each cancer-pair’s score was assigned by calculating the prevalence of the 

pairwise-relatedness of each two cancers among all CEFs. It can be seen that biologically 

related cancers are clustered into same group. The group for women cancers, for circulatory 

system related cancers, and for alimentary system-related cancers were all closely clustered. 

The similarity between skin cancer and breast cancer was previously reported [23].

4 Discussion

4.1 Literature-Based Results Evaluation

Our network analysis shows that some CEFs are important for a specific cancer, e.g. 

“communicable diseases” is a cluster center for acute lymphoblastic leukemia. Prior research 

has shown that infection plays a very important role in children acute lymphoblastic 

leukemia [24]. Although we used a rigorous definition of correlation, the top 30 cancer 

pairs’ scores were very high—over 50 out of 378 CEFs, which means they were correlated 

in nearly 15% of all the CEFs, indicating that the correlated cancers may have some 

strong intrinsic relation and potentially a biological relation. Since cancers in different body 

systems are well grouped together, e.g. women cancer, group for circulatory system related 

cancer, group for alimentary system-related cancers, future studies are warranted to test the 

existence of biological relations among these identified correlated cancers. For example, 

astrocytoma is a neurologic cancer inside brain; our results showed this connection. Prior 

research studies have confirmed the relation between breast cancer and skin cancer. In 

general, some of the results confirmed both biological knowledge and existing research 

findings.
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4.2 Reusable Eligibility Features in Cancer Trials

The results show that in most of cancer trials, 67.40% of their CEFs were shared with 

other trials on different cancers. This phenomenon may be due to the common procedure 

of clinical trials or the similar conditions for all cancers. The cancer type-specific CEFs 

contain special information while common CEFs reveal the similarity in eligibility feature 

selection among different cancer trials. The cancer-specific CEFs tend to be distributed 

unevenly across all cancers, which may be associated with several possible explanations. 

It may be due to the measurability for a certain disease or the level of communication by 

the researchers in this domain or even the popularity of the disease research. Those factors 

may cause the high variation of cancer-specific CEFs. As a result, one can argue that those 

CEFs may contain less useful information. However, when we develop the cancer research 

knowledge network using the CEFs, the cancer-specific CEFs could contain information that 

could be useful in differentiating research among different types of cancers. For common 

CEFs, they are more robust and sometimes are reflections of the common procedures of the 

cancer domain.

4.3 Implications for Clinical Research Standards Development

The field of biomedical informatics, including the subfield of clinical research informatics, 

is becoming burdened by the proliferation of clinical research information standards, 

available or under development, and their consequent sparse adoption by clinical researchers 

and vendors. To supplement the current top-down model of “standards development by 

experts followed by dissemination to users”, we propose a temporal knowledge acquisition 

method for uncovering frequently used data elements in clinical research text to facilitate 

community-based knowledge sharing and empirically founded standards development. 

We hypothesize that this method can identify content frequently used by the research 

community and thereby increase the adoption of standards derived “from researchers and for 

researchers”.

4.4 Limitations and Future Work

This study has several limitations that we hope will motivate future work. First, in this study, 

we focused on discrete, UMLS-recognizable common eligibility features, such as A1c, 

creatinine clearance, and serum creatinine level. We based this decision on the limitation in 

our current text-mining technique that can only extract n-grams without syntactic processing 

at the sentence level. We did not extract contextual clinical outcome variables, such as “heart 
attack after stroke within the past 5 years”, whose reuse patterns may be more useful to 

clinical trial investigators. One of our future directions is to enhance our tag mining method 

to capture such long phrases and analyze their trends and cancer trials with similar patterns 

for such long phrases.

Second, persistent data quality deficiencies in the ClinicalTrials.gov remain a barrier to such 

studies. We observed dependencies among cancer names used in ClinicalTrials.gov, such 

as “women cancers”, “breast cancer”, and “ovarian cancer”; the former is a more general 

concept to the latter two. Such dependencies can interfere with aggregation studies across 

cancers. More work is needed to improve the indexing of clinical trials by precise medical 

condition terminologies on ClinicalTrials.gov.
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Moreover, the eligibility criteria for clinical trials almost always expressed as separate 

inclusion and exclusion criteria. In this study, we combined them together for several 

reasons. First, they all contain certain level of information indicating the conditions of 

interest. Second, there is no standard for how researchers should state the eligibility section 

for ClinicalTrials.gov. Thus, it is hard to clearly separate the inclusion from exclusion 

criteria.

Our lab has recently developed a database called COMPACT (Commonalities in Target 

Populations of Clinical Trials) using the text-mining results from ClinicalTrials.gov. We 

downloaded all the XML-format trial files from ClinicalTrials.gov. We made all the 

structured characteristics of trials readily computable by extracting them from trials and 

storing them in a relational database. Using COMPACT, we can refine the trend and network 

analysis of CEFs by specifying various characteristics of trials, such as phase, study type 

(interventional/observational), and intervention type (i.e., drug, device, and procedure). 

For example, we can analyze the trend of CEFs of phases-3 medication intervention 

trials involving female patients 75 years old or older with COMPACT. This resource can 

potentially make the analyses reported in this paper more fine-grained and more readily 

available for medical conditions other than cancer. In the future, we will perform such 

analyses with the hope of discovering granular patterns in the eligibility criteria designs for 

various diseases.

5 Conclusions

We contributed an analytical method to identify the most common eligibility criteria of 

cancer clinical trials and to identify those criteria with increasing or decreasing adoption 

patterns in different cancer studies over time. This method can potentially generalize to 

other disease domains. Our data-driven approach to acquiring clinical research knowledge 

from text has the potential to supplement existing expert-based methods for clinical research 

standards development and hence may increase the likelihood of the adoption of those 

standards.
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Fig. 1. 
The seven (a–g) possible relationships among Xearliest, Xmiddle, Xlatest, where the x-axis 

represents time, while the y-axis represents the occurrence of a CEF across all cancer studies 

during the selected time period (earliest: 1999–2003, middle: 2004–2008, and latest: 2009–

2013)
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Fig. 2. 
Distributions of the CEF occurrences with decreasing or increasing patterns in the 95 cancer 

types: X-axis represents cancer type, Y-axis represents counts of CEFs in the trials for that 

cancer

Weng et al. Page 11

Smart Health. Author manuscript; available in PMC 2016 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Trends of (a) hypersensitivity, (b) creatinine, and (c) creatinine clearance in cancer trials. 

The y-axis indicates 95 cancer types and x-axis indicate years 1999–2013. Each blue bar 

indicates that CEF appears in at least 20% of the trials of the cancer type for the year.
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Fig. 4. 
(a) the similar trends of creatinine clearance between women cancer and breast cancer; (b) 

the similar trends of serum creatinine level between pancreatic cancer and brain cancer; (c) 

the opposite trends of pregnancy-test negative and non-infiltrating nobular carcinoma in skin 

cancer research
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Fig. 5. 
Value range distribution for a numerical CEF, creatinine clearance, in all cancer trials
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Fig. 6. 
The hierarchical clustering view of all 95 cancer types clustered by their similar CEF trends 

(*: the red circle highlights breast and skin cancers)
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Fig. 7. 
The hierarchical clustering view of the cancer types that had at least 99 CEFs grouped by 

their similar centrality, i.e., count of CEFs connected to each cancer
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Fig. 8. 
Example correlated cancers linked together
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