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Abstract

Chronic failure to suppress intake during states of positive energy balance leads to weight gain and 

obesity. The ability to use context – including interoceptive satiety states – to inhibit responding to 

previously rewarded cues appears to depend on the functional integrity of the hippocampus. 

Recent evidence implicates energy dense Western diets in several types of hippocampal 

dysfunction, including reduced expression of neurotrophins and nutrient transporters, increased 

inflammation, microglial activation, and blood brain barrier permeability. The functional 

consequences of such insults include impairments in an animal’s ability to modulate responding to 

a previously reinforced cues. We propose that such deficits promote overeating, which can further 

exacerbate hippocampal dysfunction and thus initiate a vicious cycle of both obesity and 

progressive cognitive decline.

Introduction

There is mounting neuroanatomical and behavioral evidence that the hippocampus is a 

primary brain substrate for the control of food intake (for reviews see [1, 2]). For example, 

the hippocampus receives neural input from brain areas involved with the detection of 

metabolic signals, the perception of internal cues, taste, and reward. It is also the site of 

receptors for a multitude of neurochemical signals (e.g., cholecystokinin, leptin, insulin, 

glucose, ghrelin) that are known to contribute to energy intake and body weight regulation. 

In addition, hippocampal neurons project to multiple brain areas that are important 

substrates for energy balance and ingestive behavior [3, 4]. Furthermore, the hippocampus is 
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critically involved with cognitive processes (e.g., memory, decision-making) that animals 

may use to determine when to eat [5, 6]. Accordingly, it should not be surprising that 

interference with hippocampal functioning would have adverse consequences for the control 

of eating and appetitive behavior.

Recent evidence shows that consuming energy dense “western” diets has harmful effects on 

the hippocampus [7–9]. We and others have proposed that intake of such diets could invoke 

a vicious cycle (see F.1) of hippocampal dysfunction and impaired inhibitory cognitive 

control of responding to environmental food cues, resulting in excess intake, obesity, and 

further hippocampal dysfunction [2, 10–12]. In this review we describe the associative 

underpinnings of this vicious cycle and highlight recent findings pointing to the 

neurobehavioral mechanisms that may initiate and perpetuate it.

The Model

Functions of the hippocampus

The hippocampus is recognized as an important substrate for the encoding and retrieval of 

both spatial and several nonspatial forms of memory [13]. Recent data indicate that the 

hippocampus is also needed for decision-making processes, especially those involved with 

response selection in the face of conflicting or ambiguous information [14]. For example, 

the hippocampus has been implicated in resolving approach-avoidance discrepancies in 

situations in which two opposing response tendencies are experienced simultaneously [15, 

16]. Other findings suggest adaptive response selection is based on the contribution of the 

hippocampus to the context-dependent inhibition of approach tendencies [14, 17, 18]. The 

retrieval of situationally-appropriate memories by contextual cues and the reduction of 

interference by memories formed in other contexts are also considered functions of the 

hippocampus [19, 20].

Contextual control of conflict resolution in ingestive behavior

The model diagrammed in F.2 (adapted from [11]) shows how interoceptive “satiety” states 

may serve as contextual stimuli that animals can use to resolve ambiguities associated with 

whether or not to perform appetitive responses. Specifically, that diagram indicates that food 

and food-associated environmental stimuli are embedded concurrently in two conflicting 

associations. The excitatory association enables food cues to retrieve the memory (formed 

when animals eat food when they are not food sated) of hedonically-positive post-ingestive 

consequences. The retrieval of this memory promotes appetitive responding to food-related 

external cues.

However, food cues do not always signal that the post-ingestive consequences of intake will 

be positive. For example, when an animal’s energy needs have been satisfied (i.e., they are 

food sated), the post-ingestive consequences may be neutral, or even aversive. This 

circumstance results in the formation of an inhibitory association that opposes the capacity 

of the excitatory association to excite the memory of the post-ingestive reward. Thus, when 

encountering external food cues animals must resolve the ambiguity produced by these 

conflicting associations to determine whether or not to engage in appetitive behavior. 

According to F.2, animals can solve this problem because their satiety signals act as 
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contextual stimuli [21] that retrieve the memory of the inhibitory association, thereby 

antagonizing the ability of the excitatory association to retrieve the reward memory. The 

conflict is thus resolved in favor of refraining from engaging in appetitive and 

consummatory behaviors. As discussed above, this role for satiety signals describes a 

hippocampal-dependent function.

Supporting data

Hippocampal insult disrupts the inhibitory control of feeding

The case of Henry Moliason (a.k.a. H.M.) provided early evidence for hippocampal 

involvement in the control of intake [22] Following bilateral medial temporal lobectomy that 

damaged his hippocampus, H.M. not only exhibited anterograde amnesia so severe that he 

was unable to recall a meal he consumed a few minutes earlier, he would consume a second 

full meal minutes later and rate himself no more satiated after, compared to before, eating. 

Subsequent studies showed that rats with hippocampal damage more selective than H.M.’s 

increase their meal frequency [23], exhibit greater response perseveration on progressive 

ratio schedules [24] and show impairments in their ability to discriminate among their 

deprivation states [25, 26].

Recent findings also substantiate hippocampal involvement in feeding behavior. For 

example, temporary inactivation of the dorsal hippocampus in rats decreases intermeal 

intervals [27], suggesting a diminished capacity for satiety signals to inhibit intake during 

the period following a meal. Furthermore, the conversion of circulating triglycerides to fatty 

acids increases following food intake, providing a source of satiety signals detectable in the 

brain [28]. Interference with this conversion in the dorsal hippocampus increases weight 

gain in rodents [29]. In the ventral hippocampus, activation of receptors for the anorectic 

peptides leptin and GLP-1 decreases food intake and appetitive behavior based on food 

rewards [30, 31], whereas direct administration of the orexigenic hormone ghrelin (which 

presumably antagonizes satiety signaling) increases meal frequency and the ability of 

environmental food-related cues to stimulate eating [32]. These results suggest that 

interference with the hippocampal processing of either anorectic or orexigenic promotes 

positive energy balance.

Imaging studies in humans also provide evidence that the hippocampus is included among a 

group of feeding-related brain substrates that are influenced by both interoceptive satiety 

signals and external food cues. For example, consistent with the rodent findings noted 

above, a recent fMRI study with humans showed that the effect of satiation on the 

hippocampal response to palatable and energy-dense food was specifically associated with 

the meal’s ability to increase triglyceride, and reduce ghrelin, levels [33]. Hippocampal 

activation is also modulated as a function of obesity and feeding state by interoceptive 

signals of gastric distension [34] and by visual images of foods [35].

Such findings supports the associative model depicted in F.2, by providing evidence that (a) 

the hippocampus is sensitive to physiological signals that are informative about energy state; 

(b) appetitive behavior is altered by manipulations that influence the detection of those 

signals hippocampal receptors; (c) that hippocampal activation in responses to food-related 
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cues is modulated by those signals; and (d) that disruption of hippocampal function has 

adverse effects on the ability to detect or use energy state cues to control the power of food 

cues to evoke eating and appetitive behavior after energy homeostasis has been achieved.

Links between diet, obesity and hippocampal dysfunction

Saturated fat and simple sugar intake is strongly associated with weight gain, and diets high 

in these macronutrients are common throughout the United States [36, see F.3], Europe [37], 

and other Western and Westernized societies with high obesity rates. There is increasing 

evidence that consumption of these “Western Diets” (WD) can induce cognitive deficits and 

perturb hippocampal function. Recent evidence indicates that even relatively short-term 

consumption of a WD is associated with signs of hippocampal pathology. For example, 10 

days maintenance on a WD led to reduced hippocampal and hypothalamic mRNA 

expression of GLUT1 and MCT1, genes involved in the transport of glucose and 

monocarboxylates (e.g., ketones, lactate, pyruvate), respectively [38]. Elevated levels of cell 

death in the hippocampus have also been reported after three days of WD exposure [39].

Extended maintenance on a WD leads to more pronounced neurological consequences. It 

has been known for some time that WD can lead to neuroinflammation [40–45] and reduced 

hippocampal and hypothalamic levels of brain-derived neurotrophic factor (BDNF) [46–48], 

a protein that serves to promote neurogenesis, synaptic transmission, and memory 

performance [46, 49–51]. Current research has demonstrated that sustained WD access can 

also impair long-term potentiation (a potential cellular mechanism for learning and memory) 

in the hippocampus and greater hippocampal formation [52, 53]. Further, WD consumption 

induces microglial activation in the hippocampus, which is improved following roux-en-y 

gastric bypass surgery and caloric restriction [54, 55]. Contemporary research by our 

laboratory has established that WD maintenance can alter the blood-brain barrier (BBB), a 

critical interface between the cirulatory and nervous systems. This BBB damage is indicated 

by reduced expression of the tight-junction proteins that comprise the BBB [56], and 

increases in BBB permeability to molecular tracers such as sodium fluorescein. These 

pathologies are most pronounced in the hippocampal formation [56, 57], which is believed 

to be especially vulnerable to insult as a result of its high nutrient demands and pronounced 

cellular plasticity [58].

It is currently unclear whether these pathological events influence each other, or occur 

independently. Neuroinflammation, for instance, has been shown to induce 

neurodegeneration [41, 59, 60] and BBB remodelling [61–63] under some circumstances. 

However, BBB damage (and the subsequent infiltration of blood-borne toxins) can also 

promote inflammation, microglial activation, and cell death; for this reason, BBB 

breakdown is hypothesized to contribute to the progression of neurodegenerative conditions 

such as Alzheimer’s disease and multiple sclerosis [64].

Maintenance on a WD impairs performance on hippocampal-dependent tasks

Consistent with evidence of hippocampal injury, WD-fed rodents are selectively impaired at 

numerous hippocampal-dependent tasks. The earliest of these reports indicated that diet 

could alter spatial performance in the Morris Water Maze [47, 65]. Subsequent reports 
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confirmed and expanded these findings, first indicating that WD maintenance led to 

increased spatial reference and working memory errors on a radial-arm maze [66] and more 

recently demonstrating delayed acquisition and a bias toward a non-spatial “response” 

strategy on a two-arm choice task [67].

Another recent study showed that WD-fed rats that become obese, exhibit elevated 

hippocampal expression of the cytokine IL-1β, and show impairments on tasks of contextual 

fear conditioning. This behavioral effect was normalized after maintenance on standard 

laboratory chow or antagonism of the IL-1 receptor, indicating cytokines may influence 

hippocampal-dependent cognition, though the mechanism behind this effect is not yet 

known [42]. Recently, it has been demonstrated that performance on hippocampal-

dependent relational memory was perturbed in children with high levels of abdominal 

adiposity [68], or high saturated fatty acid intake [69], indicating these effects translate to 

humans and may impact individuals even at a young age.

We have also observed impairments in hippocampal-dependent serial feature negative (sFN) 

discrimination performance [see 70] after WD exposure [56]. This finding is of special 

interest because sFN perforamnce appears to require rats to learn a set of associative 

relations analogous to that shown in F.2, except that external cues are substituted for satiety 

signals [11]. Performance of the same rats on a hippocampal-independent simple 

discrimination problem involving the same reinforcer and response requirements was not 

impaired by WD, indicating that motivational or physical deficits did not underlie impaired 

sFN performance. Recent evidence suggests WD intake is associated with a distinct 

temporal pattern of sFN deficits. Performance is temporarily impaired after short-term (10 

day) access, remits, then returns again after a more extended (e.g., 90 day) period [57]. 

These deficits often correlate with the pernicous brain changes associated with WD intake 

and obesity [56, 57, 71]. Our research program has observed the greatest degree of 

pathology (e.g., BBB permeability) in rodents that also showed hippocampal-dependent 

cognitive dysfunction and excess weight gain [57, 67, 72]. This suggests that these diets 

promote weight gain as a result of their ability to disrupt hippocampal function, and 

therefore the inhibitory control of food intake.

Further, WD-fed animals are less adept at using interoceptive food cues to exert 

discriminative control over appetitive behavior. In a recent example [73], rats were 

simultaneously trained to use interoceptive (deprivation state) and exteroceptive (tone, white 

noise) cues to predict the presence of a sucrose reward. Rats were then either maintained on 

chow or switched to the WD, the latter of which weakened the ability of deprivation state to 

modulate food intake. WD-fed rats maintained the ability to utilize exteroceptive cues to 

predict reward, suggesting that a WD dimishes the discriminatory power of internal cues, 

relative to external stimuli.

The “outward” spiral

Here, we have described a vicious cycle in which high-energy diets harm the hippocampus 

(see F.1). This progressively weakens the ability of satiety signals to inhibit the capacity of 

environmental food-related stimuli to elicit appetitive behaviors, and results in positive 
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energy balance, weight gain, and further harm to the hippocampus. We have described how 

this cycle may be initiated by WD consumption or the obesity that results from WD 

maintenance. However, it could commence with hippocampal injury resulting from disease, 

trauma, exposure to environmental toxins, or other factors. Rather than damaging the 

hippocampus directly, the effects of a WD, toxic substances, or illnesses could also alter 

hippocampal function indirectly by compromising the integrity of the BBB.

This model does not deny the possibility that, in addition to the dampening of inhibitory 

controls, external cues have become more powerful and prevalent elicitors of appetitive 

behavior. So-called obesogenic environments, which are rife with cheap, palatable, energy-

dense foods, are common throughout the industrialized world. Residents of these 

communities are bombarded with advertising and marketing materials that serve as almost 

constant reminders to eat [74–77]. However, we suggest that at least part of the rise in the 

power of environmental stimuli to evoke intake is a reduced ability of interoceptive satiety 

signals to offset that power.

In addition to obesogenic environmental stimuli, western and westernized societies contain 

numerous external cues designed to inhibit intake, such as nutritional information labels, 

public service announcements describing the health risks associated with obesity, frequent 

advertisements for dietary interventions, and widespread cultural penchants for slimness. 

Given the continuing obesity pandemic, the effectiveness of these “obesolytic” cues can also 

be questioned [but see 75, 78]. It may be that, like external cues in sFN discrimination 

problems, WD intake also reduces the ability of obesolytic environmental stimuli to 

antagonize the eating evoked by obesogenic environmental cues. This speculation suggests 

that interference with hippocampal-dependent mechanisms may diminish the potential for 

both interoceptive and exteroceptive stimuli to inhibit appetitive and consummatory 

behaviors.

Regardless of its etiology, new findings summarized here indicate that the “outward spiral” 

may arise based, at least in part, on WD-induced pathologies that interfere with hippocampal 

function. In rats, this interference can be observed after relatively brief exposure (90 days or 

less) to a WD and may be manifested in the form of reduced ability to use interoceptive 

satiety signals to counter the power of food-related environmental stimuli to evoke 

appetitive and eating behaviors.
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Highlights

• The hippocampus is a substrate for the contextual stimulus control of behavior.

• Satiety signals are contextual cues that underlie the inhibitory control of eating.

• The Western diet (WD) is associated with hippocampal pathology and 

dysfunction.

• Both hippocampal damage and WD impair discriminative control by satiety 

cues.

• WD may induce a vicious cycle of overeating and hippocampal-based memory 

decline.
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F.1. 
A vicious cycle model of obesity and cognitive decline.
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F.2. 
An associative model of energy intake and body weight regulation.
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F.3. 
Average macronutrient consumption for US adults, 2011–2012
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