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vidualised approach based on phenotypic patient character-
isation and diagnostic and pathophysiological stratification 
of myocardial disease processes. This review will describe 
these novel insights from a pathophysiological standpoint.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) 
currently accounts for more than 50 % of all heart failure 
patients, and its prevalence relative to heart failure with 
reduced ejection fraction (HFrEF) is rising at a rate of 
approximately 1 % per year, while HFpEF patients have 
only slightly lower mortality rates than HFrEF patients [1]. 
By 2020, the prevalence of HFpEF will exceed 8 % of per-
sons older than 65 years of age and the relative prevalences 
of HFpEF and HFrEF are predicted to be 69 and 31 %, turn-
ing HFpEF into the most common heart failure phenotype 
[1]. HFpEF is diagnosed in the presence of heart failure 
signs and/or symptoms, preserved systolic left ventricular 
(LV) function, with an LV ejection fraction (LVEF) > 50 % 
and LV end-diastolic volume index < 97  ml/m2 with evi-
dence of diastolic LV dysfunction [2]. In contrast to HFrEF, 
modern heart failure pharmacotherapy did not improve the 
prognosis in HFpEF and all large randomised HFpEF trials 
[3–7] have yielded neutral results. These neutral results of 
recent HFpEF trials were attributed to an incomplete under-
standing of HFpEF pathophysiology, suboptimal study 
designs, inadequate diagnostic criteria or statistical power, 
patient heterogeneity and poor matching of therapeutic 
mechanisms and primary pathophysiological processes [8]. 
In the past decade, clinical and translational research pro-
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Abstract  Heart failure with preserved ejection fraction 
(HFpEF) represents a complex and heterogeneous clini-
cal syndrome, which is increasingly prevalent and associ-
ated with poor outcome. In contrast to heart failure with 
reduced ejection fraction (HFrEF), modern heart failure 
pharmacotherapy did not improve outcome in HFpEF, 
which was attributed to incomplete understanding of HF-
pEF pathophysiology, patient heterogeneity and lack of 
insight into primary pathophysiological processes. HFpEF 
patients are frequently elderly females and patients dem-
onstrate a high prevalence of non-cardiac comorbidities, 
which independently adversely affect myocardial struc-
tural and functional remodelling. Furthermore, although 
diastolic left ventricular dysfunction represents the domi-
nant abnormality in HFpEF, numerous ancillary mecha-
nisms are frequently present, which also negatively impact 
on cardiovascular reserve. Over the past decade, clinical 
and translational research has improved insight into HF-
pEF pathophysiology and the importance of comorbidi-
ties and patient heterogeneity. Recently, a new paradigm 
for HFpEF was proposed, which states that comorbidities 
drive myocardial dysfunction and remodelling in HFpEF 
through coronary microvascular inflammation. Regarding 
the conceptual framework of HFpEF treatment, emphasis 
may need to shift from a ‘one fits all’ strategy to an indi-
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phosphorylation of the sarcomeric protein titin [19, 20]. 
Cardiomyocyte stiffness is mainly determined by the elastic 
sarcomeric protein titin, which functions as a bidirectional 
spring, responsible for early diastolic recoil and late dia-
stolic distensibility [19]. Titin-based cardiomyocyte stiffness 
results from dynamic changes in expression of stiff (N2B) 
and compliant (N2BA) isoforms, from isoform phosphoryla-
tion status and from oxidative changes of the N2B segment 
[19]. Phosphorylation of titin by protein kinase A (PKA) and 
PKG increase its compliance, thereby acutely lowering car-
diomyocyte stiffness (Fig. 1; [11–15]). Various studies, which 
procured endomyocardial tissue from patients with HFpEF, 
HFrEF and aortic stenosis, demonstrated significantly stiffer 
cardiomyocytes in HFpEF than in HFrEF and aortic stenosis 
patients [11–15]. This increased cardiomyocyte stiffness was 
related to increased titin N2B isoform expression, relative 
to HFrEF [12], and to reduced phosphorylation of titin [14]. 
Hypophosphorylation of titin resulted from lower myocardial 
PKG activity and reduced myocardial cGMP concentration 
in HFpEF compared with HFrEF and aortic stenosis [15]. 
The generation of the second messenger molecule cGMP 
results from activation of soluble guanylate cyclase (sGC) 
by nitric oxide (NO) and from activation of particulate GC 
(pGC) by natriuretic peptides (NPs) (Fig. 2; [20]). Once gen-
erated, cGMP activates PKG allowing PKG-mediated phos-
phorylation of a vast number of target proteins, exerting a 
wide range of downstream effects such as enhanced reuptake 
of calcium (Ca2+) into the sarcoplasmic reticulum, inhibi-
tion of Ca2+ influx, suppression of hypertrophic signalling 
through inhibition of G-protein coupled receptors and the 
transient receptor potential canonical channel (TRPC), inhi-
bition of ischaemia-reperfusion injury through phosphoryla-
tion of the ATP-sensitive potassium channel and stimulation 
of LV relaxation and LV distensibility by phosphorylation 
of troponin I (TnI) and the titin N2B segment (Fig. 2; [19, 
20]). Downregulation of myocardial cGMP-PKG signalling 
in HFpEF is related to reduced myocardial brain-type NP 
(BNP) expression and increased microvascular inflamma-
tion and oxidative stress, which impair both the NP-cGMP 
and NO-cGMP axes (Fig. 2; [15]). Reduced myocardial BNP 
expression in HFpEF could have resulted from a number of 
factors, including concomitant obesity and insulin resistance, 
which lower myocardial BNP expression [21] and concentric 
LV remodelling/hypertrophy, which reduces both systolic 
and diastolic LV wall stress [22]. In addition, low myocar-
dial BNP expression in HFpEF could also have resulted 
from increased expression of phosphodiesterase (PDE) type 
9, which breaks down cGMP specifically generated through 
the NP-pGC axis [23]. Impaired NO-cGMP signalling could 
have resulted from the increased inflammation and oxidative 
stress observed in HFpEF, which was inferred from the high 
prevalence of comorbidities such as hypertension, obesity 
and diabetes mellitus type 2 (Fig. 2; [15]).

vided exiting novel insights into HFpEF pathophysiology 
and the importance of comorbidities and patient heterogene-
ity, which could be of great interest for the design and inter-
pretation of future trials as will be discussed in this review.

Pathophysiology of diastolic LV dysfunction in 
HFpEF

Under physiological conditions, LV pressure rapidly 
decreases after systole, allowing fast diastolic LV filling at 
maintained low filling pressures. Diastolic LV dysfunction 
in HFpEF is evident from slow LV relaxation and elevated 
diastolic LV stiffness, which increase diastolic filling pres-
sures and limit cardiac performance at rest, during atrial pac-
ing and exercise [9, 10]. Insight into the pathophysiology 
of diastolic LV dysfunction in HFpEF has long been miss-
ing because of a lack of myocardial tissue obtained from 
patients with HFpEF. Over the past decade, several groups 
of investigators were able to obtain myocardial tissue from 
HFpEF patients revealing specific alterations in myocardial 
structure, function and intramyocardial signalling, which 
were relevant to the concentric LV remodelling and diastolic 
LV dysfunction characteristically observed in patients with 
HFpEF (Table  1; [11–18]). Structural alterations consisted 
of cardiomyocyte hypertrophy [12, 13] and varying degrees 
of myocardial interstitial fibrosis [11–13, 17, 18] and capil-
lary rarefaction [18], whereas functional alterations included 
increased cardiomycyte stiffness [11–15]. The same stud-
ies also demonstrated abnormal intramyocardial signalling, 
which was evident from endothelial cells expressing adhe-
sion molecules [13, 16], inflammatory cells secreting profi-
brotic transforming growth factor b (TGF-b) [16] oxidative 
stress increasing nitrotyrosine content [15, 16] and down-
regulation of myocardial cyclic guanosine monophosphate 
(cGMP)-protein kinase G (PKG) signalling [15]. Myocardial 
cGMP-PKG signalling is crucial for normal cardiovascular 
physiology, inhibiting maladaptive hypertrophy and enhanc-
ing cardiomyocyte compliance through PKG-mediated 

Table 1  Specific alterations in myocardial structure, function and in-
tramyocardial signalling demonstrated in HFpEF patients
Structural alterations Functional 

alterations
Intramyocardial signal-
ling alterations

Cardiomyocyte 
hypertrophy

Increased cardio-
myocyte stiffness

Endothelial cells 
expressing adhesion 
molecules

Interstitial fibrosis Impaired cardio-
myocyte relaxation

Inflammatory cells 
secreting TGF-b

Capillary rarefaction Oxidative stress 
increasing nitrotyrosine 
content
Downregulation of 
myocardial cGMP-
PKG signalling
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HFpEF pathophysiology [16, 27]. Myocardial inflammation 
was shown to contribute to extracellular matrix changes in 
HFpEF and both myocardial collagen and the amount of 
inflammatory cells correlated with diastolic LV dysfunction 
[16]. Endothelial dysfunction is highly prevalent in HFpEF 
and is related to reduced exercise capacity and worse out-
come [27]. Recently, a new paradigm of HFpEF was sug-
gested, which attributes an important role of comorbidities 
for myocardial dysfunction and remodelling in HFpEF 
(Fig. 3; [28]).

Comorbidities in HFpEF

HFpEF patients are generally older, more often female and 
have a high prevalence of cardiovascular and non-cardiovas-
cular comorbidities, such as obesity, metabolic syndrome, 
diabetes mellitus type 2, salt-sensitive hypertension, atrial 
fibrillation (AF), chronic obstructive pulmonary disease, 
anaemia and renal dysfunction [24–26]. Systemic inflam-
mation and endothelial dysfunction are important hallmarks 
of these comorbidities and are also importantly involved in 

KEY MESSAGE  HFpEF represents a heterogeneous clinical syndrome for which the conceptual framework of 
treatment may need to shift from a ‘one fits all’ strategy to an individualised approach based on phenotypic patient
characterisation and diagnostic and pathophysiological stratification of myocardial disease processes.  

Fig. 2  Mechanisms explaining 
downregulation of myocardial 
cGMP-PKG signalling in HFpEF. 
PDE5 phosphodiesterase type 5, 
PDE9 phosphodiesterase type 
9, SR sarcoplasmic reticulum, 
RGS2/4 regulator of G-protein 
signalling 2 and 4

 

Fig. 1  Cardiomyocyte cAMP and 
cGMP signalling pathways in-
volved in myofilament regulation 
and titin-based stiffness. Stimula-
tion of b-ARs activates Gs -AC-
mediated generation of cAMP, 
which stimulates PKA activity. 
cGMP is generated from activa-
tion of sGC by NO and from 
activation of pGC by NPs. cGMP 
stimulates PKG activity. Both 
PKA and PKG induce lusitropic 
effects through phosphorylation 
of TnI, and lower cardiomyocyte 
stiffness through phosphorylation 
of the titin N2B segment. Circled 
P’s indicate phosphorylatable 
sites. AC adenylyl cyclase, bAR 
beta-adrenergic receptor, cAMP 
cyclic adenosine monophosphate, 
G G-stimulatory protein, NPR na-
triuretic peptide receptor, PEVK 
unique sequence rich in proline, 
glutamic acid, valine and lysine
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hypertension, suggesting that comorbidities other than hyper-
tension may perpetuate these alterations. Indeed, diabetes 
mellitus [30] and obesity [30, 31] are known to be associated 
with MCD. In a recent study performing histological analysis 
of non-ischaemic myocardium from 57 patients undergoing 
coronary artery bypass graft surgery, obese patients had lower 
MCD [31]. Increased body mass index (BMI) was associated 
with higher pulmonary capillary wedge pressure (PCWP) 
and lower MCD was associated with both BMI and increased 
PCWP [31]. Myocardial capillary rarefaction in HFpEF may 
contribute to decreased maximal myocardial blood flow, 
impaired oxygen delivery and insufficient metabolic effi-
ciency, which contribute to diastolic LV dysfunction and a 
higher risk of heart failure in obese individuals [31].

Heterogeneity in HFpEF

HFpEF is difficult to define as illustrated by various diagnos-
tic classifications and inclusion criteria of clinical trials [8]. 
These factors contributed to heterogeneity of HFpEF patients 
recruited into trials and registries. Previously, no consensus 
was present on the optimal LVEF cut-off value and different 
cut-offs have been used across classifications and trials rang-
ing from LVEF ≥ 40 % to > 50 % [8]. Although diastolic LV 
dysfunction represents the dominant abnormality in HFpEF, 
ancillary mechanisms may also contribute, such as systolic 
LV dysfunction [32, 33], ventricular-vascular stiffening [34], 
impaired systemic vasodilatory reserve [35], chronotropic 
incompetence [33, 35], pulmonary hypertension [36] and 
right ventricular (RV) dysfunction (Fig. 4; [37, 38]).

Systolic dysfunction

Although ejection fraction is preserved, both chamber 
and myocardial contractility were subtly but significantly 
depressed in HFpEF, compared with hypertensive and 
healthy controls [32]. The extent of myocardial contractile 
dysfunction in HFpEF related to increased mortality, suggest-
ing that it may be a mediator or marker of more severe disease 
[32]. Even mild limitations in basal contractility may become 
more problematic with exercise stress [32, 33]. During exer-
cise, compared with controls, HFpEF patients demonstrated 
reductions in peak maximal oxygen uptake, chronotropic 
competence and relative increment in stroke volume and car-
diac output [33]. Time to peak diastolic filling increased in 
HFpEF patients, while it decreased in the control group [33].

Ventricular-vascular stiffening

Maintaining low ventricular and arterial elastance allows 
a dynamic range of volume transfer to be achieved during 
ejection with minimal change in pressure. Ventricular and 

The new paradigm of HFpEF

The new HFpEF paradigm proposes that comorbidities 
drive structural and functional remodelling in HFpEF 
through systemic endothelial inflammation [28]. Because of 
this proinflammatory state, coronary microvascular endo-
thelial cells produce reactive oxygen species, which limits 
NO bioavailability for adjacent cardiomyocytes. Impaired 
NO bioavailability results in downregulation of sGC-medi-
ated cGMP-PKG signalling, which augments cardiomyo-
cyte stiffness through hypophosphorylation of titin and 
increases cardiomyocyte hypertrophy because of impaired 
PKG-mediated antihypertrophic activity [28]. Furthermore, 
coronary microvascular endothelial inflammation favours 
subendothelial migration of leukocytes, which stimulates 
myofibroblast formation and interstitial collagen deposi-
tion. Both increased cardiomyocyte stiffness and interstitial 
fibrosis induce diastolic LV dysfunction [28].

Microvascular endothelial inflammation is also associ-
ated with myocardial capillary rarefaction [29], which was 
recently demonstrated in HFpEF myocardium [18].

Myocardial capillary rarefaction

A recent autopsy study demonstrated reduced myocardial 
capillary density (MCD) in HFpEF patients regardless of the 
severity of epicardial coronary disease, while the severity of 
myocardial fibrosis was inversely associated with MCD [18]. 
Both fibrosis and MCD were similar in those with or without 

Fig. 3  Comorbidities drive myocardial dysfunction and remodelling 
in HFPEF. IL-6 interleukin-6; sST2 soluble ST2; TNF-a tumour ne-
crosis factor alfa; VCAM vascular cell adhesion molecule. Modified 
with permission from [28]
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predicted mortality in HFpEF [36]. Chronic elevation of LV 
filling pressures induces LA remodelling and dysfunction, 
mixed pulmonary hypertension and ultimately, right ven-
tricular (RV) remodelling and dysfunction [38].

Right ventricular dysfunction

In an invasive study, right and left heart filling pressures, 
pulmonary artery pressures and right-sided chamber dimen-
sions were higher in HFpEF compared with controls, while 
LV size and ejection fraction were similar. RV dysfunction 
was present in 33 % of HFpEF patients and was caused by 
both RV contractile impairment and afterload mismatch 
from pulmonary hypertension [37]. RV dysfunction was 
also associated with symptom severity and greater comor-
bidity burden [37]. In a prospective study, approximately 
one-third of HFpEF patients had evidence of RV dysfunc-
tion and both reduced LV compliance and RV dysfunction 
and remodelling were the strongest pathophysiological pre-
dictors of adverse outcomes [38].

Phenotyping of HFpEF patients

The underlying phenotypic heterogeneity is likely far greater 
in HFpEF than in HFrEF and may be an important reason for 
the failure of HFpEF clinical trials [42]. For instance, HFpEF 
patients with pulmonary hypertension and RV systolic dys-
function responded favourably to the phosphodiesterase type 
5 inhibitor sildenafil [43], whereas sildenafil exerted no ben-
efit in HFpEF patients without concomitant RV dysfunction 
[6]. Recently, phenomapping analysis using statistical learn-
ing algorithms demonstrated that HFpEF patients recruited 
according to uniform diagnostic criteria could be divided 
into three main distinct subgroups, which differed markedly 
in clinical characteristics, cardiac structure and function, 
invasive haemodynamics and outcome, despite similar end-
systolic and end-diastolic elastances on LV pressure-volume 
analysis [42]. Therefore, understanding the phenotypic het-
erogeneity of HFpEF, which includes the aetiological and 
pathophysiologic heterogeneity of the syndrome, may allow 
more targeted and successful HFpEF clinical trials.

vascular stiffening increase with ageing, hypertension and 
diabetes and are abnormally elevated in HFpEF patients 
[34, 39]. Combined ventricular-arterial stiffening elevates 
blood pressure lability, amplifying blood pressure changes 
for any alteration in preload or afterload. Furthermore, com-
bined ventricular-arterial stiffening may also compromise 
endothelial-dependent vasorelaxation [39].

Impaired systemic vasodilatory reserve

Patients with HFpEF display attenuated exercise-mediated 
reductions in mean vascular resistance and arterial elas-
tance, coupled with abnormalities in endothelial function 
and dynamic ventricular-arterial coupling compared with 
hypertensive subjects and controls [35]. The extent of 
impaired flow-mediated vasodilation is related to exercise 
intolerance [35]. The healthy endothelium has antiprolifera-
tive and anti-inflammatory actions and regulates vascular 
tone by balancing production of vasodilators and vasocon-
strictors in response to a variety of stimuli [40]. In a pro-
spective cohort study, endothelial dysfunction was highly 
prevalent in HFpEF patients and independently correlated 
with future cardiovascular events [27].

Chronotropic incompetence

Chronotropic reserve is depressed in HFpEF [33, 35], which 
could be related to downstream deficits in b-adrenergic 
stimulation, because the increase in plasma catecholamines 
with exercise is similar in HFpEF and healthy controls [41]. 
Autonomic dysfunction may contribute to chronotropic 
incompetence, as baroreflex sensitivity is reduced and heart 
rate recovery impaired in HFpEF [41].

Pulmonary hypertension

In a community-based study, the prevalence of pulmonary 
hypertension, defined as pulmonary artery systolic pressure 
(PASP) > 35 mmHg, amounted to 83 % with a median PASP 
of 48 mmHg in a group of 244 HFpEF patients. In this study, 
PASP was significantly higher in HFpEF patients than in 
hypertensives without heart failure, whereas PASP strongly 

Fig. 4  HFpEF represents a 
heterogeneous syndrome, char-
acterised by multiple cardiovas-
cular and non-cardiovascular 
comorbidities

 



234 Neth Heart J (2016) 24:227–236

at an early stage, whereas therapeutic efficacy may be lost 
in HFpEF patients presenting at advanced or final stages. 
AF is likely to emerge as an indicator of advanced disease 
in HFpEF. A recent subgroup analysis of HFpEF patients 
recruited in the RELAX trial indeed showed presence of 
AF to be indicative of longstanding HFpEF [47]. In this 
study, HFpEF patients with AF were older than those in 
sinus rhythm, but had similar symptom severity, comorbid-
ities, and renal function. Despite comparable LV size and 
mass, AF was associated with worse systolic (lower EF, 
stroke volume, and cardiac index) and diastolic (shorter 
deceleration time and larger left atria) function compared 
with sinus rhythm. Patients with AF had higher PASP and 
increased NT-proBNP, aldosterone, endothelin-1, troponin 
I, and C-telopeptide for type I collagen levels, suggesting 
more severe neurohumoral activation, myocyte necrosis, 
and fibrosis [47]. Multi-biomarker assessment and cardiac 
imaging modalities could represent promising tools for 
diagnostic stratification to identify the underlying stage of 
myocardial disease in the individual HFpEF patient.

Identifying stage of myocardial disease

Biomarkers

Currently, only NPs are routinely used for diagnosis and 
risk stratification in HFpEF patients. Because HFpEF is 
characterised by inflammation, oxidative stress, endothelial 
dysfunction, alterations in intramyocardial signalling and 
matrix remodelling and capillary rarefaction, biomarkers 
reflecting these processes could aid in diagnostic and patho-
physiological stratification in HFpEF patients. Recently, 
several biomarkers were identified, which appeared to be 
promising diagnostic and prognostic tools in patients with 
HFpEF (Table 2; [48]).

Identifying the severity of myocardial dysfunction 
and remodelling in HFpEF

Recent HFpEF trials demonstrated structural cardiac 
remodelling in many HFpEF patients including concen-
tric LV remodelling and hypertrophy (59–77 %) and left 
atrial (LA) dilatation (59–66 %) [5, 7]. Recruitment of LA 
contractility during stress is impaired in HFpEF and may 
contribute to the transition from an asymptomatic state 
to HFpEF, while LA size also predicts clinical outcome 
[44]. Furthermore, translational studies investigating myo-
cardial tissue from HFpEF patients demonstrated varying 
degrees of cardiomyoycte hypertrophy, interstitial fibrosis 
and capillary rarefaction [11, 12, 18], implying distinct 
and possibly evolutionary stages of myocardial disease 
progression. Although all large HFpEF trials addressing 
renin-angiotensin-aldosterone system (RAAS) inhibitors 
failed to reach statistical significance for the primary out-
come, many of them reached borderline significance for 
a primary endpoint or statistical significance for second-
ary endpoints, subgroups or post-hoc analyses [3–5, 7, 45, 
46]. Because of these findings, the involvement of RAAS 
in HFpEF appears more subtle than in HFrEF, probably 
requiring up-front identification of subgroups of HFpEF 
patients rather than a ‘one fits all strategy’, which has hith-
erto been applied in HFpEF in analogy to HFrEF. Such 
a stratification approach with identification of myocar-
dial structural and functional abnormalities in individual 
HFpEF patients could be relevant for the determination 
of potential therapeutic responsiveness and selection of 
appropriate treatment strategies. For instance, the efficacy 
of RAAS inhibitors to improve adverse myocardial remod-
elling is likely very different in HFpEF patients with minor, 
modest or severe stages of myocardial hypertrophy, fibro-
sis and capillary rarefaction (Fig. 5; [12]). Indeed, RAAS 
inhibitors might be effective in HFpEF patients presenting 

Fig. 5  Distinct stages of structural myocardial disease in HFpEF. a–c, histological images of LV myocardium from HFpEF patients, demon-
strating minor (a), moderate (b) and severe (c) interstitial fibrosis
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