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Abstract Hutchinson—Gilford progeria syndrome
(HGPS) is an extremely rare premature aging disease pre-
senting many features resembling the normal aging pro-
cess. HGPS patients die before the age of 20 years due to
cardiovascular problems and heart failure. HGPS is linked
to mutations in the LMNA gene encoding the intermediate
filament protein lamin A. Lamin A is a major component
of the nuclear lamina, a scaffold structure at the nuclear
envelope that defines mechanochemical properties of the
nucleus and is involved in chromatin organization and epi-
genetic regulation. Lamin A is also present in the nuclear
interior where it fulfills lamina-independent functions
in cell signaling and gene regulation. The most common
LMNA mutation linked to HGPS leads to mis-splicing of
the LMNA mRNA and produces a mutant lamin A protein
called progerin that tightly associates with the inner nuclear
membrane and affects the dynamic properties of lamins.
Progerin expression impairs many important cellular pro-
cesses providing insight into potential disease mechanisms.
These include changes in mechanosignaling, altered chro-
matin organization and impaired genome stability, and
changes in signaling pathways, leading to impaired regula-
tion of adult stem cells, defective extracellular matrix pro-
duction and premature cell senescence. In this review, we
discuss these pathways and their potential contribution to
the disease pathologies as well as therapeutic approaches
used in preclinical and clinical tests.
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Introduction

Aging is a universal process in biological organisms that
is characterized by a time-dependent progressive decline
in cellular and tissue function. At the molecular and cel-
lular level, nine hallmarks have been proposed to contrib-
ute to the extremely complex, multifactorial process of
aging: genomic instability and defects in nuclear architec-
ture, telomere attrition, epigenetic alterations and chroma-
tin remodeling, loss of proteostasis, deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence,
stem cell exhaustion and altered intercellular communica-
tion (Lopez-Otin et al. 2013). Aging represents a major risk
factor for the development of several diseases including
cancer and cardiovascular and neurodegenerative diseases
(Campisi et al. 2011; Niccoli and Partridge 2012).

Several premature aging-like syndromes have been
described in humans, presenting many features that resem-
ble normal aging (Navarro et al. 2006). Progeroid syn-
dromes represent a group of rare genetic disorders with
features of premature aging (Ghosh and Zhou 2014; Pereira
et al. 2008). They are “segmental disorders” that affect
multiple organs and tissues and display some but not all
symptoms observed in physiological aging (Ghosh and
Zhou 2014; Sahin and Depinho 2010; Navarro et al. 2006).
Most of these syndromes have been well characterized, and
a number of associated genes and causative mutations have
been identified in recent years (Kudlow et al. 2007; Pereira
et al. 2008). Several heritable premature aging syndromes
have been linked to mutations in genes encoding DNA
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repair proteins such as Werner syndrome (WS), Cockayne
syndrome (CS), Bloom syndrome (BS), ataxia-telangiecta-
sia (A-T), xeroderma pigmentosum (XP) and Rothmund—
Thomson syndrome (RTS), suggesting that the mainte-
nance of genome integrity has a central role in human
aging (Navarro et al. 2006; Pereira et al. 2008). In addition,
mutations in the mitochondrial DNA (mtDNA) and impair-
ment of mitochondrial pathways were shown to lead to the
development of progeroid phenotypes in the mtDNA muta-
tor premature aging mouse model (Trifunovic et al. 2004;
Bratic and Larsson 2013).

A different group of genetic premature aging disorders
is linked to mutations in the genes encoding A-type lamins
or lamin-processing enzymes, including Hutchinson—Gil-
ford progeria syndrome (HGPS) and restrictive dermopa-
thy (RD) (Navarro et al. 2005; De Sandre-Giovannoli
et al. 2003). HGPS has attracted much attention not only
because of the severity of the disease, but also due to the
hypothesis that the expression of the disease-causing lamin
A variant called progerin may also be linked to the normal
aging process. While in the most common form of HGPS
a silent point mutation in the LMNA gene affects splicing
of prelamin A mRNA and leads to the production of the
disease-causing lamin A variant progerin (De Sandre-Gio-
vannoli et al. 2003; Eriksson et al. 2003), the sporadic use
of the same cryptic splice site in wild-type LMNA can lead
to the production of mis-spliced prelamin A mRNA and
progerin also in cells and tissues of aged healthy individ-
uals (Scaffidi and Misteli 2006; McClintock et al. 2007).
Furthermore, HGPS and normal aging share many cellular
phenotypes, such as abnormal nuclear shape, loss of epi-
genetic marks and increased DNA damage, as well as tis-
sue pathologies including reduced bone density and cardio-
vascular disease (Burtner and Kennedy 2010). Thus, better
understanding of the molecular pathogenesis underlying
progeroid syndromes can lead to a better understanding of
the normal human aging process. In this review, we sum-
marize the genetic cause of HGPS and consequences for
posttranslational lamin processing and lamin functions. We
also describe potential causative disease mechanisms and
how they may contribute to the cellular, tissue and organ-
ismal phenotypes. Finally, we briefly summarize potential
strategies for treatment of HGPS.

Nuclear lamins: biochemistry, functions and link
to disease

Lamins are type V intermediate filament proteins expressed
in all metazoan cells. They are the major building blocks
of the nuclear lamina, a complex filamentous meshwork
underneath the inner nuclear membrane (INM) (Dechat
et al. 2010a; Gruenbaum and Foisner 2015). Lamins share
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with their cytoskeletal counterparts the domain organiza-
tion, encompassing a ~45-nm-long central a-helical rod
domain flanked by two globular domains (Coulombe et al.
2001; Herrmann et al. 2007), but they contain additional
lamin-specific motifs and domains in the C-terminus,
such as a nuclear localization signal, a highly conserved
immunoglobulin (Ig)-like fold and in most cases a CaaX-
box (C = cysteine, a = aliphatic residue, X = any amino
acid) (Dechat et al. 2010a; Gruenbaum and Foisner 2015).
Based on their sequence similarities, biochemical and
structural properties and their expression patterns during
development, lamins are classified into A- and B-types.
B-type lamins are expressed throughout development,
whereas A-type lamins are weakly or not at all expressed
in early embryonic stages and in embryonic stem cells
(Eckersley-Maslin et al. 2013), but they are upregulated at
later stages during development (Gruenbaum and Foisner
2015). In mammals, LMNBI and LMNB?2 encode the two
major B-type lamins, lamin B1 and B2, respectively, and
LMNB?2 encodes an additional smaller germ cell-specific
isoform (lamin B3). A-type lamins are derived from a sin-
gle LMNA gene by alternative splicing, which gives rise to
the two major A-type isoforms (lamin A and the smaller
splice variant lamin C) and two less abundant isoforms,
the germ cell-specific lamin C2 and lamin AA10 (Broers
et al. 2006; Dechat et al. 2010a). Lamin B1 and B2 and
lamin A are expressed as prelamins and undergo several
steps of posttranslational processing at their C-terminal—
CaaX sequence (Young et al. 2005). The first three process-
ing steps are common to B-type lamins and lamin A and
include the addition of a farnesyl group to the C-terminal
cysteine residue by farnesyltransferase (FTase) followed
by cleavage of the -aaX tripeptide by FACEI/ZMPSTE24
or FACE2/Rcel proteases, and carboxymethylation of the
farnesylated cysteine residue by the isoprenyl-cysteine-
carboxy-methylatransferase (ICMT) (Rusinol and Sinensky
2006). The processing of B-type lamins stops at this step,
resulting in mature lamin B with a C-terminal farnesyl- and
carboxymethyl group. The hydrophobic farnesyl group
mediates strong interaction with the INM, leading to the
predominant localization of B-type lamins at the nuclear
periphery. In contrast, farnesylated prelamin A is further
processed by FACEI/ZMPSTE24, which removes the 15
C-terminal amino acids including the farnesylated and car-
boxymethylated cysteine residue (Pendas et al. 2002). As
a consequence, mature lamin A as well as lamin C, which
lacks a CaaX-box and never becomes farnesylated, lack
the hydrophobic farnesyl group and are therefore not only
found at the peripheral lamina associated with the INM,
but they can also localize to the nuclear interior (Dechat
et al. 2010b; Kolb et al. 2011; Moir et al. 2000; Naetar
et al. 2008). In proliferating cells, the nucleoplasmic pool
of lamin A/C accounts for 10-15 % of total lamin A/C and
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is highly mobile compared to lamin A/C at the periphery
(Moir et al. 2000).

Lamins have long been known as structural components
providing mechanical support for the nucleus (Gruenbaum
and Foisner 2015), and recent reports showed that lamins
define the mechanochemical properties of the nucleus
(Osmanagic-Myers et al. 2015); lamin A is responsible for
nuclear stiffness, and B-type lamins for nuclear elastic-
ity (Buxboim et al. 2014; Swift et al. 2013). Besides their
mechanochemical role, lamins have a multitude of addi-
tional functions, including chromatin organization, gene
regulation, DNA repair, and (mechano-) signaling (Amen-
dola and van Steensel 2014; Andres and Gonzalez 2009;
Dechat et al. 2010a; Dittmer and Misteli 2011; Gruenbaum
and Foisner 2015; Ho and Lammerding 2012).

The multitude of functions of nuclear lamins can, at
least in part, be explained by their interactions with a
plethora of lamin-binding proteins at the nuclear envelope
(Brachner and Foisner 2011; Gruenbaum and Foisner 2015;
Wilson and Foisner 2010). It is generally assumed that
ubiquitously expressed lamins together with their differen-
tially expressed binding partners form “functional units” at
the nuclear envelope responsible for diverse, tissue-specific
roles of lamins (Korfali et al. 2012; Worman and Schirmer
2015). In contrast to the huge number of lamin-binding
proteins at the nuclear envelope, only a few proteins are
known to interact with the mobile nucleoplasmic pool of
lamin A/C to form “functional units” in the nuclear inte-
rior. The best-characterized interaction partner of A-type
lamins in the nuclear interior is lamina-associated polypep-
tide (LAP) 2a (Dechat et al. 2000; Markiewicz et al. 2002;
Dorner et al. 2006; Naetar et al. 2008), a unique isoform of
the LAP2 family. Unlike the other LAP2 isoforms, which
are integral membrane proteins of the INM, LAP2a lacks
a transmembrane domain and localizes in the nuclear inte-
rior, where it interacts with and stabilizes nucleoplasmic
lamin A/C (Dechat et al. 2000; Naetar et al. 2008). Nucleo-
plasmic lamin A/C-LAP2a complexes have been impli-
cated in the retinoblastoma protein-mediated regulation of
cell proliferation and differentiation of tissue progenitor
cells (Dorner et al. 2006; Markiewicz et al. 2002; Naetar
et al. 2008) and in chromatin organization (Bronshtein
et al. 2015; Zhang et al. 2013).

Given the multitude of functions of the lamins, it is
not surprising that mutations in lamins and lamin-binding
proteins are associated with a variety of human diseases
exhibiting complex patterns of tissue-specific pathologies
(Broers et al. 2006; Worman 2012). The majority of dis-
eases are caused by mutations in the LMNA gene and are
collectively termed laminopathies. Until today more than
500 mutations have been described in LMNA (www.umd.
be/LMNA/) that give rise to four major groups of diseases
with overlapping pathologies, including striated muscle

diseases, lipodystrophic syndromes, peripheral neuropathy
and accelerated aging disorders (Worman 2012).

Hutchinson-Gilford progeria syndrome: genetics
and cellular and clinical phenotypes

Hutchinson—-Gilford progeria syndrome (HGPS) is an
extremely rare sporadic autosomal-dominant genetic dis-
order affecting 1 in 4-8 million newborns and displays
phenotypic features of premature aging (Ghosh and Zhou
2014; Gordon et al. 2014). Children with HGPS appear
normal at birth but start to exhibit many distinctive clini-
cal features within the first year of life. Classical progeria
symptoms include severe growth retardation, loss of hair
and subcutaneous fat, prominent eyes and scalp veins,
aged-looking skin, joint stiffness and reduced bone density.
As children get older they suffer from osteoporosis, ath-
erosclerosis and cardiovascular diseases as the most severe
aspect of the disease. HGPS patients die at an average age
of 14 years due to myocardial infarction, heart failure or
progressive atherosclerosis (Cau et al. 2014; Kieran et al.
2007; Muchir and Worman 2010).

Classical HGPS is caused by a de novo heterozygous
mutation (1824C>T, p.G608G) in exon 11 of LMNA (De
Sandre-Giovannoli et al. 2003; Eriksson et al. 2003), which
activates a cryptic splice donor site, resulting in the produc-
tion of a prelamin A mRNA that contains an internal dele-
tion of 150 base pairs. This transcript is translated into a
mutant lamin A protein termed progerin, which harbors a
deletion of 50 amino acids within its C-terminus including
the FACE1/ZMSPTE24 cleavage site (Eriksson et al. 2003).
As a consequence, progerin cannot undergo the final prote-
olytic processing step and permanently retains the C-termi-
nal farnesyl group, leading to its stable association with the
INM and predominant localization at the nuclear periphery
(Dechat et al. 2007; Davies et al. 2009).

Progerin is expressed in multiple tissues, mostly of mes-
enchymal origin including skin, bone, skeletal muscle,
adipose tissue, heart and large and small arteries (Gordon
et al. 2014). Expression of progerin induces various cellu-
lar defects in a dominant-negative manner, including highly
lobulated nuclei with thickened lamina, loss of peripheral
heterochromatin, accumulation of DNA damage, telomere
aberrations and mitochondrial dysfunction, leading to dif-
ferentiation defects and premature cellular senescence
(Bridger and Kill 2004; Brunauer and Kennedy 2015;
Goldman et al. 2004; Gonzalo and Kreienkamp 2015;
McCord et al. 2013; Scaffidi and Misteli 2008; Shumaker
et al. 2006; Vidak et al. 2015). In addition, progerin expres-
sion leads to decreased expression levels of lamin B1, het-
erochromatin protein 1 o (HPla) and LAP2a, and loss of
nucleoplasmic lamins (Fig. 1) (Cenni et al. 2011; Scaffidi
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PORGERIN DAPI

LAMIN A/C
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LAP2a

Fig. 1 Progerin expression causes loss of nucleoplasmic lamin A/C
and LAP2a in primary HGPS fibroblasts. Immunofluorescence analy-
sis of wild-type (WT) and HGPS primary human fibroblasts using anti-
progerin (red), anti-lamin A/C (green) and anti-LAP2a (green) anti-
bodies shows significant decrease in the nucleoplasmic pool of A-type
lamins and LAP2a levels upon progerin expression. Scale bar 10 um

and Misteli 2005; Miller et al. 2013; Scaffidi and Misteli
2008; Vidak et al. 2015). These changes together with the
abnormal nuclear morphology are often used as cellular
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disease markers to test therapeutic strategies in cell and
mouse models (Cao et al. 2011b; Capell et al. 2005; Fong
et al. 2006; Scaffidi and Misteli 2005).

In addition to the classical 1824C>T HGPS mutation,
other heterozygous, homozygous or compound heterozy-
gous mutations in LMNA have been reported, such as T10]I,
AS57P, L59R, R133L, L140R, S143F, E145K, V169fsX176,
D300N, E578V and R644C and c.412G>A (Kirschner
et al. 2005; Csoka et al. 2004; Chen et al. 2003; Caux et al.
2003; Jacob et al. 2005; Mory et al. 2008; McPherson et al.
2009; Doh et al. 2009; Renard et al. 2009; Doubaj et al.
2012; Kane et al. 2013), all causing atypical progeroid
syndromes (APS). APS mutations affect similar tissues
(bone, skin, hair and body fat) and cause similar patholo-
gies (growth retardation, alopecia, tight skin and beaked
nose) as classical HGPS, but the course and severity of
the symptoms vary greatly (Garg et al. 2009; Doubaj et al.
2012). Compound heterozygous mutations in FACE, lead-
ing to the complete loss of function of ZMPSTE24 protease
and accumulation of farnesylated prelamin A causes auto-
somal recessive restrictive dermopathy (RD), a progeroid
syndrome associated with neonatal death (Navarro et al.
2005). In 2011, a new autosomal recessive syndrome was
identified and named Nestor—Guillermo progeria syndrome
(NGPS) (Cabanillas et al. 2011). Patients with NGPS dis-
play several pathologies similar to HGPS but with a slow
clinical course and relatively long survival. NGPS is
caused by a homozygous missense mutation in BANF/ that
encodes barrier-to-autointegration factor (BAF), a chroma-
tin protein, which directly interacts with lamins and lamin-
binding proteins and has been implicated in chromatin
organization (Margalit et al. 2007).

Mouse models of HGPS

In the search for molecular disease mechanisms of HGPS,
several progeroid mouse models have been created.
One of the first of these mouse models was generated by
knocking-in a mutant Lmna allele (Lmna'’®) that produces
exclusively progerin but no wild-type lamin A and lamin
C (Yang et al. 2005). This knock-in mouse model displays
phenotypes similar to HGPS children including loss of hair
(alopecia) and subcutaneous fat, osteoporosis and prema-
ture death, but no cardiovascular defects were reported. In
contrast, a transgenic mouse model that carries the mutated
G608G human LMNA allele on a bacterial artificial chro-
mosome (G608G BAC) develops progressive loss of vas-
cular smooth muscle cells (VSMCs), a feature described
also in HGPS patients, but did not show most of the other
pathologies (Varga et al. 2006). Another mouse model,
in which a point mutation in Lmna caused loss of exon 9
(Lmna™>3%FL53% also known as LmnaA9), also displayed



Histochem Cell Biol (2016) 145:401-417

405

phenotypes overlapping with HGPS (Mounkes et al. 2003;
Hernandez et al. 2010), but the mechanism is still unclear
and may differ from that of the classical HGPS.

These mouse models phenocopy some of the phenotypes
observed in the HGPS patients, but they do not recreate the
exact molecular changes occurring at the LMNA locus in
HGPS patients. Therefore, Osorio et al. created a mouse
knock-in strain that carries a HGPS mutation in the mouse
Lmna gene (Lmna®?%%; 1827C>T; Gly609Gly) and pro-
duces progerin due to abnormal splicing of the endogenous
Lmna mRNA like in HGPS patients (Osorio et al. 2011).
These mice phenocopy the main clinical manifestations of
human HGPS and open new avenues towards investigating
the splicing defect in HGPS and identification of drugs that
may correct faulty splicing of prelamin A mRNA in HGPS.

In addition to these transgenic mice expressing prog-
erin ubiquitously, several mouse models with tissue-spe-
cific progerin expression have been generated. A trans-
genic mouse model that contains a human G608G LMNA
minigene mutant under the control of a tet-operon (teto-
pLAY%G) allowed tissue-specific and inducible expression
of progerin by crossing them with transgenic mice express-
ing the transactivator in specific tissues (Sagelius et al.
2008). Expression of progerin in keratin 5-expressing cells
in the epidermis caused loss of subcutaneous fat, fibrosis of
the dermis, incomplete development of sebaceous glands,
dental problems, hair thinning, decreased stem cell popu-
lation in epidermal tissues and impaired wound healing
ability, supporting the hypothesis that an impaired regen-
eration capacity of epidermal stem cells may contribute to
the HGPS phenotype (Rosengardten et al. 2011). The oste-
oblast-specific expression of progerin reduced bone density
and caused spontaneous fractures most likely due to an
abnormal osteoblast differentiation (Schmidt et al. 2012).
In contrast, expression of progerin in the aged brain, which
usually expresses low levels of lamin A/C, caused some
structural nuclear abnormalities but no signs of impaired
brain function were detected (Baek et al. 2015).

Deletion of Zmpste24, the metalloproteinase involved
in the posttranslational maturation of prelamin A, results
in the expression of farnesylated prelamin A and produces
various progeroid phenotypes in mice. Zmpste24~'~ mice
are normal at birth, but within 4-6 weeks of age they
start to display many of the progeroid phenotypes such as
growth retardation, alopecia, loss of adipose tissue, multi-
ple spontaneous bone fractures, abnormal nuclear morphol-
ogy and premature death, as well as muscular dystrophy
and dilated cardiomyopathy (Bergo et al. 2002; Pendas
et al. 2002). The latter phenotypes may also be linked to
the fact that no mature lamin A is produced in these mice,
while HGPS phenotypes may be caused by the accumula-
tion of farnesylated prelamin A. In support of this hypoth-
esis, blocking prelamin A farnesylation in these mice by

farnesyltransferase inhibitors (FTIs) improves some of
the HGPS phenotypes (Fong et al. 2006). Furthermore, a
knock-in mouse model that exclusively expresses non-
farnesylated prelamin A (Lmna""“A9"PLA0) shows no prog-
eroid phenotypes but develops severe cardiomyopathy
(Davies et al. 2010). In contrast, observations in Lmna/"%*
mice that FTI treatment ameliorates but not completely
abolishes progeria phenotypes suggested that the non-
farnesylated form of progerin may retain some toxic fea-
tures relevant for HGPS. To test this hypothesis, a mouse
model exclusively expressing the non-farnesylated form
of progerin (Lmna™®) was generated by replacing the
cysteine in the CaaX motif in the Lmna'’ allele with a ser-
ine (CSIM — SSIM). Interestingly, homozygote and het-
erozygote Lmna™ % mice showed similar, but less severe
progeroid phenotypes than those described for Lmna'™®
mice (Yang et al. 2008). To exclude that the cysteine-to-
serine substitution may itself be toxic, an alternative non-
farnesylated progerin-expressing mouse model was gener-
ated by deleting the isoleucine in the CSIM motif to create
a protein ending in CSM rather than SSIM (Lmna“"H%).
Surprisingly, Lmna®™¢ mice showed no noticeable prog-
eroid defects, suggesting that cysteine-to-serine substitu-
tion in the Lmna""® mouse model may be toxic, although
the authors do not exclude the possibility that toxicity of
progerin is linked to the 50 amino acid deletion in its C-ter-
minus independent of farnesylation and the deletion of the
isoleucine in CSIM may neutralize the toxicity of the pro-
tein (Yang et al. 2011b).

Molecular and cellular mechanisms contributing
to the HGPS pathologies

HGPS-causing mutations have been shown to affect many
fundamental cellular processes, but how these contribute
to the described pathologies is not completely understood.
In most cases, we do not even know the detailed molecular
mechanisms how progerin expression affects the molecular
processes found to be impaired in HGPS. However, based
on what is known about lamin A/C and progerin biochem-
istry, function and interactions (Kubben et al. 2010a, b),
one may hypothesize about potential pathways and mecha-
nisms (Fig. 2) discussed below.

Mechanical defects in HGPS

The presence of the farnesyl group in progerin is thought
to be a predominant toxic feature in the pathogenesis of
the disease. In healthy cells, A- and B-type lamins form
distinct homopolymers and micro-domains at the nuclear
periphery (Shimi et al. 2008), but this segregation may be
lost in HGPS cells (Delbarre et al. 2006) due to the stable
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Mechanical defects

Cell - extrinsic mechanisms
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—@ |NM protein
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@ Transcriptionfactor
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=== LADs

Proliferation
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Fig. 2 Cellular functions affected by the expression of the lamin A
mutant protein progerin. Progerin accumulates at the nuclear mem-
brane/lamina leading to reduced levels of nucleoplasmic lamin A/C—
LAP2a. These changes in lamin dynamics affect mechanical proper-
ties and mechanosignaling, lead to dissociation of heterochromatic

association of permanently farnesylated progerin with the
membrane (Dechat et al. 2007). Progressive progerin accu-
mulation at the INM during cellular aging of HGPS cells
(Eriksson et al. 2003; Fong et al. 2006; Goldman et al.
2004; Varela et al. 2005) leads to immobilization of wild-
type lamin A at the lamina, thickening and increased stiff-
ness of the lamina, prominent lobulation of the nuclear
envelope, and clustering of nuclear pores (Dahl et al. 2006;
Goldman et al. 2004). Overall, these alterations disrupt the
structural and functional integrity of the nuclear lamina
and may render cells more susceptible to damage through
physical stress (Verstraeten et al. 2007; Zhang et al. 2011).
While in wild-type cells nuclei respond to shear stress
by up-regulation and re-distribution of A-type lamins
(Buxboim et al. 2014; Philip and Dahl 2008; Swift et al.
2013), this rearrangement does not work properly in HGPS
cells (Dahl et al. 2006). This defect is of particular impor-
tance in tissues that are exposed to mechanical stress such
as vasculature, bone and joints, which also present some
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lamina-associated domains (LADs) in the genome from the lamina,
and impair signaling pathways and gene expression, all contributing
to defects in self-renewal and differentiation of adult stem cells, the
production of a faulty extracellular matrix (ECM) and cell senescence

of the most prominent pathologies in HGPS (Gordon et al.
2014; Zhang et al. 2011). In accordance, HGPS skin fibro-
blasts and VSMCs display increased mechanosensitivity
under biomechanical strain (Verstraeten et al. 2008), which
may then lead to the observed severe depletion of arterial
VSMCs in progeria patients and some progeria mouse
models (Stehbens et al. 1999; Varga et al. 2006).

Altered adaptation of progerin-expressing cells to
high sheer stress may also be caused by progerin’s nega-
tive effect on the expression of many proteins involved in
mechanotransduction and cytoskeletal organization, as well
as extracellular matrix proteins (ECM) (Song et al. 2014;
Brassard et al. 2015). In accordance with this, accumulation
of progerin in the ascending aorta of Lmna®?%¢ knock-in
mice causes reduced expression of the cytoskeleatal protein
vimentin (Song et al. 2014). As vimentin has a major role
in maintaining cellular integrity and affects apoptotic path-
ways (Song et al. 2014; Moisan and Girard 2006; Barker
et al. 2010), the impaired vimentin expression may lead to
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defects in mechanotransduction and mechanosignaling in
progerin-expressing VSMCs (Song et al. 2014; Brassard
et al. 2015). Furthermore, progerin expression was shown
to impair linker of the nucleoskeleton and cytoskeleton
(LINC) complexes at the nuclear envelope through the
stabilization and accumulation of SUN1, a LINC compo-
nent in the INM, and reducing SUN1 mobility (Chen et al.
2014). As the LINC complex is essential for nucleocy-
toskeletal coupling and mechanotransduction (Osmanagic-
Myers et al. 2015), an impaired LINC complex may further
contribute to impaired shear stress response in the vascula-
ture of HGS patients.

Impaired chromatin organization

A-type lamins can directly interact with DNA and his-
tones (Gruenbaum and Foisner 2015), and together with
a number of lamin A-binding chromatin proteins, such as
members of the LEM domain protein family (Brachner and
Foisner 2011; Solovei et al. 2013), they have been impli-
cated in higher-order chromatin organization, heterochro-
matin formation and epigenetic regulation (Amendola and
van Steensel 2014; Dechat et al. 2009; Gonzalez-Suarez
and Gonzalo 2010). A-type lamins contribute to the teth-
ering of heterochromatic genomic regions, termed lamina-
associated domains (LADs) to the nuclear lamina (Meule-
man et al. 2013; Peric-Hupkes et al. 2010) but they also
interact with promoter regions of genes, thereby affecting
gene expression during cell differentiation (Lund et al.
2013; Ronningen et al. 2015).

It is therefore not surprising that progerin-expressing
HGPS nuclei display significant changes in chromatin,
such as loss of peripheral heterochromatin, a decrease in
the repressive histone marks H3K9me3 and H3K27me3
and an increase in H4K20me3 (Columbaro et al. 2005;
Kubben et al. 2012; McCord et al. 2013; Scaffidi and Mis-
teli 2005; Shumaker et al. 2006). It is currently unknown
how progerin affects chromatin organization mechanisti-
cally, but several reports showing an effect of progerin on
epigenetic modifier and chromatin regulator proteins may
provide clues towards potential mechanisms. For exam-
ple, progerin expression causes upregulation of the meth-
yltransferase Suv39hl, while Suv39hl depletion delays
senescence of HGPS cells and prolongs lifespan of Zmp-
ste24™'~ mice (Liu et al. 2013). Furthermore, progerin-
expressing cells have reduced levels of heterochromatin
protein 1 (HP1) a (Scaffidi and Misteli 2008) and of sev-
eral proteins of the nucleosome remodeling NuRD com-
plex (Pegoraro et al. 2009; Meshorer and Gruenbaum 2009;
Prokocimer et al. 2013). Interestingly, inactivation of the
NuRD complex in wild-type cells can also induce aging-
associated chromatin defects resembling those observed
in HGPS patients. Changes in chromatin organization and

epigenetic regulation in progeria cells may in turn have a
profound impact on gene expression and genome stability,
thereby contributing to many disease phenotypes (Prokoci-
mer et al. 2013).

Most of the lamin A/C chromatin interaction studies so
far have focused on the nuclear lamina, but, given the dual
location of A-type lamins at the nuclear lamina and in the
nuclear interior, it is tempting to speculate that nucleoplas-
mic lamins together with their binding partner LAP2o may
interact with and regulate chromatin throughout the nucleus
(Gesson et al. 2014). In support of this, a recent study
demonstrated that only 30 % of all cellular LADs in the
genome associate with the nuclear envelope in a given cell,
while the rest localizes in the nuclear interior, but LADs are
stochastically reshuffled to the nuclear lamina in each cell
cycle (Kind et al. 2013). This indicates that lamin A-LAD
interaction may also occur in the nuclear interior. In line
with this model, lamin A/C-deficient cells show increased
mobility of chromatin in the nuclear interior (Bronshtein
et al. 2015), indicating that lamin A may cross-link chro-
matin fibers. Moreover, several recent findings indicate that
A-type lamins interact also with genomic regions outside
of the LADs (Lund et al. 2013, 2015; Ronningen et al.
2015). Furthermore, LAP2a has been found to interact with
chromatin at a genome-wide level and to affect chromatin
interaction of high-mobility group N protein 5 (HMGNS),
a non-histone protein involved in higher-order chromatin
organization (Zhang et al. 2013). As progerin expression
reduces levels of nucleoplasmic lamin A/C and LAP2a
(Dahl et al. 2006; Scaffidi and Misteli 2005; Vidak et al.
2015), it is conceivable that chromatin organization in the
nuclear interior is particularly affected in HGPS. In support
of this, re-expression of LAP2a in HGPS cells was found
to rescue proliferation of the cells, most likely due to the
rescue of the impaired chromatin organization at telomeres
(Chojnowski et al. 2015) and at genomic regions harboring
ECM genes (Vidak et al. 2015).

Genome instability

Progerin expression may also affect genome stability by
negatively affecting DNA damage repair pathways (Liu
et al. 2005). HGPS cells and cells derived from Zmp-
ste24™'~ mice display impaired recruitment of the DNA
double-strand break (DSB) repair factors p53-binding
protein 1 (53BP1) and Rad50 and Rad51 to the sites of
DNA damage (Liu et al. 2005; Manju et al. 2006), result-
ing in the accumulation of DSBs (Musich and Zou 2011;
Richards et al. 2011). Progerin expression also affects
the expression and localization of the nucleotide excision
repair protein XPA (Xeroderma Pigmentosum comple-
mentation group A) at DNA lesions, resulting in persistent
activation of DNA damage response checkpoint kinases
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ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-
related (ATR) protein (Manju et al. 2006; Gonzalo and
Kreienkamp 2015). Persistent DNA damage in turn acti-
vates tumor suppressor p53 and promotes senescence, one
of the phenotypes described as hallmarks of HGPS (Col-
lado et al. 2007).

Deficiencies in DSB repair and telomere dysfunction
are major contributors to genome instability in aging cells
(Hoeijmakers 2009; Blasco 2005). Dysfunctional telomeres
are recognized as DSBs and activate the non-homologous
end joining (NHEJ) repair pathway (di Fagagna et al. 2003;
Gonzalo and Kreienkamp 2015). Persistent telomere dys-
function and shortening of telomeres below a critical length
cause permanent growth arrest known as replicative senes-
cence (Gonzalo and Kreienkamp 2015). HGPS cells were
found to undergo accelerated telomere shortening when
grown in culture (Decker et al. 2009), and ectopic expres-
sion of progerin in wild-type fibroblasts leads to accumu-
lation of DNA damage at telomeres (Benson et al. 2010;
Cao et al. 2011a), both resulting in proliferation arrest
and senescence. Accordingly, re-expression of telomer-
ase improves proliferation and extends HGPS cellular
lifespan (Kudlow et al. 2007; Benson et al. 2010; Cho-
jnowski et al. 2015), suggesting that telomere dysfunction
underlies genomic instability and premature senescence
in progerin-expressing cells (Gonzalo and Kreienkamp
2015). The molecular mechanisms leading to telomere dys-
function upon progerin expression are poorly understood.
Recent studies suggest a role of LAP2a in stabilizing tel-
omere and chromatin structure by increasing the epigenetic
H3K27me3 histone mark, preventing progerin-associated
DNA damage and rescuing premature senescence (Cho-
jnowski et al. 2015).

Altered regulation of signaling pathways

Lamins serve as scaffolds for various signaling molecules
and transcription factors, thereby regulating their activity
(Gruenbaum and Foisner 2015; Osmanagic-Myers et al.
2015). This scaffolding function has a dual role. On the one
hand, lamins serve as a platform enabling efficient activa-
tion of signaling molecules, such as the extracellular-signal
regulated kinase (ERK)-dependent activation of transcrip-
tion factor c-fos at the lamina (Gonzalez et al. 2008). On the
other hand, they sequester various transcription factors and
their regulating molecules to the nuclear periphery attenu-
ating their function on target genes (Ivorra et al. 2006;
Scaffidi and Misteli 2008). Therefore, it is not surprising
that progerin expression causes misregulation of various
signaling pathways (Prokocimer et al. 2013) as shown in
numerous examples; the molecular mechanisms, however,
remain mostly obscure. Fibroblasts from the Lmna A9 pro-
geria mouse model have reduced Wnt/B-catenin signaling
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causing defects in the expression of ECM genes (Her-
nandez et al. 2010). Similarly, hair follicle stem cells in
Zmpste24~'~ mice have reduced levels of active B-catenin
(Espada et al. 2008). As wnt signaling is important for car-
tilage and bone development, an impaired wnt signaling
can contribute to the bone phenotype in HGPS patients.
Notch signaling, another important pathway for the regula-
tion of cell fate and stem cell differentiation during osteo-
genesis and adipogenesis (Hori et al. 2013), is also affected
in progerin expressing cells (Scaffidi and Misteli 2008).
Here, some insight into the potential molecular mechanism
of progerin’s effect on Notch-signaling has been provided:
Sequestration of the Notch co-activator SKIP (Ski-interact-
ing protein) by wild-type lamins is impaired by progerin,
leading to increased activation of major Notch downstream
effectors (HES1, HESS5, HEY1 and TLE1) (Scaffidi and
Misteli 2008). NF-kB, an important transcription factor
activated as a response to damage, stress and inflammation
(Ghosh and Hayden 2008) and during aging (Tilstra et al.
2012), was found to be hyperactivated in progeroid mice
(Zmpste24™~ and Lmna%®€ knock-in mice) (Osorio et al.
2012). Crossing Zmpste24~'~ mice with transgenic mice
displaying reduced NF-kB signaling (haploinsufficient for
the p65 (RelA) NF-kB subunit, RelA™™) or treatment of
mice with the NF-kB inhibitor sodium salicylate extended
life span and rescued skin and immunological phenotypes
(Kawahara et al. 2009; Osorio et al. 2012).

Complexes of nucleoplasmic A-type lamins and LAP2a
interact directly with retinoblastoma protein (pRb) a major
regulator of cell proliferation (Markiewicz et al. 2002;
Dorner et al. 2006), thereby affecting pRb localization
and stability (Johnson et al. 2004; Andres and Gonzalez
2009; Nitta et al. 2007) and expression of pRb target genes
(Dorner et al. 2006; Naetar et al. 2008). Genome-wide
expression studies in primary HGPS-derived dermal fibro-
blasts revealed an impaired pRb signaling network (Marji
et al. 2010). Thus, the loss of nucleoplasmic lamin A/C and
LAP2a in HGPS cells (Vidak et al. 2015) may be linked
to a deregulation of the pRb pathway in HGPS, leading to
impaired regulation of tissue stem cells (Naetar et al. 2008).
An impairment of pRb signaling may also be linked to the
reduced levels of heterochromatic histone marks in HGPS
in view of the described role of pRbD in stabilizing histone
methylation (Gonzalo et al. 2005).

Altered regulation of adult stem cells

Adult stem cells constantly replace non-functional and
dying cells in many tissues and an age-related decline in
their regenerative capacity is an important factor in biologi-
cal aging (Brassard et al. 2015). Several lines of evidence
suggest that A-type lamins may be involved in the regula-
tion of proliferation and differentiation of mesenchymal
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stem cells (MSCs) as well as tissue progenitor cells (Gotz-
man and Foisner 2006; Pekovic et al. 2007). MSCs are
adult stem cells important for the regeneration of many
tissues profoundly affected in HGPS such as bone, skin,
muscle and adipose tissue (Scaffidi and Misteli 2008;
Dreesen and Stewart 2011; Halaschek-Wiener and Brooks-
Wilson 2007). Naive MSCs derived from HGPS patients
express low progerin levels in vivo, but accumulate signifi-
cant amounts of progerin with increasing passages in vitro
(Wenzel et al. 2012). Both, adult stem cell self-renewal and
differentiation may be affected in HGPS through impaired
signaling and chromatin organization as described above.
In line with this, Zmpste 24~ and tetop-Lmna 008G K3TA+
progeria mouse models (see in chapter mouse models) dis-
play decreased numbers and altered proliferative capacity
of epidermal stem cells (Espada et al. 2008; Rosengard-
ten et al. 2011) and muscle-derived stem/progenitor cells
(MDPSCs) (Lavasani et al. 2012). Interestingly, intraperi-
toneal administration of MDPSCs from young wild-type
mice to progeroid mice leads to significant extension of life
span and health span (Lavasani et al. 2012), further sup-
porting the hypothesis that an impaired stem cell regulation
contributes to premature aging. Postnatal, but not embry-
onic fibroblasts, derived from the Lmna A9 progeria mouse
model, show proliferative arrest and premature senescence
(Hernandez et al. 2010). Why this phenotype is detectable
only in postnatal cells remains unknown, but it is likely
linked to an impaired extracellular matrix (ECM) produc-
tion (Hernandez et al. 2010).

Based on the emerging findings in HGPS, it is tempting
to speculate that a misbalance in stem cell self-renewal and
differentiation coupled with increased mechanical sensitiv-
ity could lead to stem cell exhaustion and inefficient repair
of the damaged tissues, contributing to many of the pheno-
types in HGPS (Gotzman and Foisner 2006).

ECM-mediated HGPS mechanisms

Several recent findings led to the newly emerging concept
that progerin expression may lead to impaired expression
of ECM components and formation of a faulty ECM, which
in turn may be causative for many of the cellular pheno-
types observed in HGPS. The ECM is well known to have
a major role in cell proliferation, differentiation, cell adhe-
sion and migration, and cell survival (Gattazzo et al. 2014,
Humphrey et al. 2014), and ECM production is also com-
promised during physiological aging (Yang et al. 2011a).
Abnormal ECM production and rearrangement during
development and tissue homeostasis result in many patho-
logical processes including tissue fibrosis and cancer.

Gene expression analyses in HGPS patient fibroblasts
showed a profound deregulation of ECM components
(Csoka et al. 2004), including decreased levels of ECM

remodeling enzymes such as metaloproteinases (MMPs)
(Harten et al. 2011; Vidak et al. 2015) and increased lev-
els of type IV and VI collagen and fibronectin (Colige et al.
1991; Maquart et al. 1988; Song et al. 2014). The impor-
tance of a faulty ECM in the development of HGPS phe-
notypes is supported by several observations: Proliferation
of human cells expressing progerin (Vidak et al. 2015) and
of mouse adult fibroblasts derived from LmnaA9 progeria
mice (Hernandez et al. 2010) is rescued upon growth on
ECM derived from wild-type cells. The most convincing
data supporting the role of the ECM in disease develop-
ment in vivo comes from Zmpste24 mosaic mice containing
similar proportion of Zmpste24-deficient (prelamin A-accu-
mulating) and Zmpste24-proficient (mature lamin A-con-
taining) cells in tissues (de la Rosa et al. 2013). Surpris-
ingly, these mice develop normally and maintain the same
proportion of mutant versus wild-type cells in their tissues
throughout life, indicating that progeroid Zmpste24 =~ cells
develop normally in a background providing normal ECM
and possibly other extrinsic factors.

Overall, a deregulation of ECM production and remod-
eling could account for both an impaired proliferation and
differentiation of osteoblasts and chondrocytes during car-
tilage development (Muchir and Worman 2010), as well as
an excessive ECM deposition in the vascular system caus-
ing increased arterial stiffness in HGPS (Olive et al. 2010).

Therapeutic approaches in progeria

Therapeutic approaches for HGPS treatment can be envis-
aged to work at different levels from genes to tissues,
including approaches to correct protein function, RNA
splicing and mutations in the LMNA gene, to cell replace-
ment strategies and treatments to reverse the cellular phe-
notypes (Gordon et al. 2014). The first therapy developed
for HGPS and already tested in clinical trials (Gordon et al.
2012) aimed at correcting the mutant protein. As the pres-
ence of the farnesyl group in progerin was proposed to be
the predominant deleterious and toxic component, efforts
were put into treatments blocking progerin farnesylation
through pharmacologically targeting the isoprenoid bio-
synthesis pathway (Young et al. 2005; Cau et al. 2014).
The initial treatment used drugs called farnesyltransferase
inhibitors (FTIs), previously developed as potential anti-
cancer drugs, which improve some disease parameters in
cultured cells (e.g., nuclear shape and proliferation) and
progeria mouse models (Fong et al. 2006; Toth et al. 2005;
Yang et al. 2005). Based on these preclinical tests a pro-
spective clinical trial was commenced at Boston Children’s
Hospital from 2007 to 2009 including 26 HGPS patients
(Gordon et al. 2012). Administration of the FTI drug lona-
farnib improved weight gain, bone structure and vascular
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stiffness, with some of the HGPS patients developing mild
drug-related side effects (Gordon et al. 2012). After the ini-
tiation of the first clinical trial, it was demonstrated that an
alternative prenylation pathway called geranyl geranylation
may be activated in the presence of FTIs, offering possi-
ble explanations for the only moderate efficiency of the FTI
treatment in preclinical trials (Yang et al. 2008). Therefore,
the pharmacological strategy was adjusted and tested in the
Zmpste 247~ progeria mouse model, using a combined
aminobisphosphonate (zoledronic acid) and statin (pravas-
tatin) treatment, inhibiting farnesyl-pyrophosphatase syn-
thase and the HMG-CoA reductase, respectively (Varela
et al. 2008). Based on promising results in preclinical tri-
als using the Zmpste 24~'~ progeria mouse model (Varela
et al. 2008), a second clinical trial combining statins and
aminobisphosphonates was initiated from 2008 to 2013 in
Marseille’ La Timone Children’s Hospital, but the results of
the study are not published yet (Cau et al. 2014).

Another approach for treatment aims at reducing prog-
erin protein levels rather than blocking progerin farnesyla-
tion. Two major cellular mechanisms are involved in remov-
ing misfolded, mutant or aggregated proteins, proteasomal
degradation and autophagy. Although a detailed study on
potential pathways involved in progerin degradation has not
been done so far, several observations suggest that progerin
may be removed by activating macroautophagy. Autophagy
is a cytoplasmic degradation machinery that targets dam-
aged proteins and organelles to lysosomal degradation and
is upregulated in times of stress such as starvation to pro-
vide a source of amino acids (Tanida et al. 2008). Treat-
ment with rapamycin, an inhibitor of the mammalian target
of rapamycin (mTOR) pathway, upregulates autophagy and
extends life span from yeast to mammals (Johnson et al.
2013; Jung et al. 2010; Madeo et al. 2010). Rapamycin
treatment of cultured HGPS cells increases progerin clear-
ance by macroautophagy-related pathways and reduces
some of the disease phenotypes, such as lobulated nuclei,
LAP2a levels and DNA damage (Cao et al. 2011b; Cenni
et al. 2011). Interestingly, it has been suggested that FTIs
may indirectly affect mTOR by inhibiting the farnesylation
of Rheb GTPase, an upstream activator of mTOR (Hanker
et al. 2010).

Sulforaphane, an antioxidant derived from -crucifer-
ous vegetables, which stimulates proteasome activity and
autophagy in normal and HGPS fibroblast cultures, was
also found to enhance progerin clearance by autophagy
and to reverse the cellular hallmarks of HGPS (Gabriel
et al. 2015). Furthermore, two recent studies suggested that
retinoids alone (Kubben et al. 2015) or in a combination
with rapamycin (Pellegrini et al. 2015) lower the amount
of progerin and rescue progeroid phenotypes in cultured
cells. These findings together suggest that compounds act-
ing by decreasing progerin levels in the cell could represent
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a potent tool for new treatments. Autophagy-activating
drugs could be particularly beneficial in progeria treatment,
but careful in vivo analyses have to be conducted before
including them in clinical trials.

An RNA-targeting therapeutic strategy aims at elimi-
nating or inhibiting alternative splicing of progerin pre-
mRNA. Introduction of a short (25-mer) antisense mor-
pholino oligonucleotide that can sterically block the cryptic
splice site in exon 11 of progerin pre-mRNA resulted in a
concentration-dependent decrease in progerin mRNA and
protein levels and in the reversion of cellular phenotypes
in cultured HGPS cells (Scaffidi and Misteli 2005). A simi-
lar strategy was successfully tested in vivo in Zmpste24~'~
and Lmna®5%?%/65%%C progeria mice, resulting in improved
body weight, extended lifespan and improvement of sev-
eral HGPS phenotypes (Osorio et al. 2011). This finding,
together with the increasing evidence that the use of oligo-
nucleotides for correction of splicing defects has growing
therapeutic applications, initiated a set up of a new clinical
trial that is currently under design (Cau et al. 2014).

Finally, a few approaches have been described to tar-
get cellular HGPS phenotypes. Resveratrol, an activator of
SIRT1, a deacetylase involved in many cellular processes
(Lavu et al. 2008), was found beneficial in the treatment of
Zmpste24~'~ mice (Liu et al. 2012). Resveratrol treatment
was previously shown to increase life span in yeast, worms,
and flies and to enhance health span in rodents (Baur et al.
2006; Howitz et al. 2003; Milne et al. 2007; Wood et al.
2004). The mechanism of the beneficial effect of resvera-
tol in HGPS mice is unclear, but it has been shown that
SIRT1 interacts with lamin A in wild-type cells (Liu et al.
2012). In the presence of progerin or prelamin A, SIRT1
exhibits reduced association with the nuclear matrix and
decreased deacetylase activity, leading to rapid depletion of
adult stem cells in Zmpste24~'~ mice. Resveratrol enhances
the binding of SIRT1 to A-type lamins, increases SIRT1
deacetylase activity and slows down body weight loss and
significantly extends the life span of Zmpste24~'~ mice
(Liu et al. 2012). However, another study conducted with
an osteoblast and osteocyte-specific progerin-expressing
mouse model (Schmidt et al. 2012) did not reveal a ben-
eficial effect of resveratrol (Strandgren et al. 2015). Thus,
more detailed studies are needed to find out whether res-
veratrol is a potentially promising drug for treatment of
HGPS.

Concluding remarks

The number of molecular biological studies aiming at the
identification of lamin-mediated molecular disease mecha-
nisms involved in HGPS increased tremendously following
the surprising discovery that LMNA is causally linked to the
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premature aging disease HGPS in 2003. Despite numer-
ous cellular pathways that were identified to be affected by
the expression of the mutant lamin A protein (Fig. 2), the
mechanistic details behind these effects are still unclear in
most cases. Knowledge based on what was already known
on lamin biology before the protein was linked to HGPS
and findings on novel roles of lamins in diverse pathways
in recent years allowed the launch of translational studies
and the efficient search for drug targets and therapeutic
approaches within a short time period. The results of the
first clinical trials taught us that some improvements of the
disease phenotypes can be achieved by FTI treatment, but
they also made clear that we need a much better under-
standing of the underlying disease mechanisms to be able
to tackle specific aspects of the disease in a more focused
approach. It will also be important to elucidate which of
the numerous pathways found to be impaired in HGPS are
most relevant for and causally involved in the pathologies,
and which ones are just bystanders.
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