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Abstract

Given a pair of sample estimators of two independent proportions, bootstrap methods are a 

common strategy towards deriving the associated confidence interval for the relative risk. We 

develop a new smooth bootstrap procedure, which generates pseudo-samples from a continuous 

quantile function. Under a variety of settings, our simulation studies show that our method 

possesses a better or equal performance in comparison with asymptotic theory based and existing 

bootstrap methods, particularly for heavily unbalanced data in terms of coverage probability and 

power. We illustrate our procedure as applied to several published data sets.
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1. Introduction

Comparing two independent groups on a binary response variable is a typical issue in 

medical statistics. Relative risk, which is defined as the ratio of two proportions, is a 

commonly used parameter to measure the association in the context of 2 × 2 contingency 

table. Estimation of the relative risk and the corresponding 100(1−α)% confidence interval 

relies on the point estimator of each proportion and the associated method used to derive the 

confidence interval. It is well known that the maximum likelihood estimator (MLE) for a 

proportion may break down under many situations, and hence the corresponding esitmator 

for the relative risk is ill behaved. For instance, the ratio of two MLE estimates is not 

defined when one of them is equal to 0. Several other estimators of the proportion have been 

proposed to overcome the difficulties brought on by small sample size and/or small event 

probabilities. The general ad-hoc adjustment to the MLE estimate is to add extra pseudo 

observations, half of each type to the original data. For example, the sample proportion after 

adding 0.5 of a success and 0.5 of a failure to each treatment group corresponds to the 

Bayesian posterior mean when the proportion takes the Jeffreys prior Beta(1/2, 1/2). We will 
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call this the Jeffreys estimator. Similarly, modifying the sample proportion after adding 1 

success and 1 failure corresponds to the Bayesian posterior mean when the proportion takes 

the non informative prior Beta(1, 1). Modifying the sample proportion after adding 2 

successes and 2 failures, which is discussed by Agresti and Coull (1998), is approximate to 

the midpoint of Wilson’s score interval (Wilson, 1927). We will call this the score estimator; 

see a thorough discussion and comparison of point estimators for a single binomial 

proportion in Agresti and Coull (1998), Newcombe (1998), and Brown et al. (2001). In 

addition, Hirji et al. (1989) illustrate the application of the Median Unbiased Estimator 

(MUE) for binary data, which is calculated from the distribution of sufficient statistic for the 

proportion. Specific equations of above-mentioned estimators are provided in later sections.

The textbook confidence interval for relative risk was derived by Katz et al. (1978) via 

asymptotic theory, where the log-transformed sample relative risk is shown to be 

approximately normally distributed. Koopman (1984) proposed a score confidence interval 

by inverting the Pearson chi-square test of 2 × 2 contingency table. Another family of 

confidence intervals is defined as the highest posterior density interval of π1/π2 in context of 

Bayesian theory. The performance of Bayesian confidence intervals was thoroughly 

investigated by Agresti and Min (2005). Recently, Price and Bonett (2008) proposed a novel 

confidence interval estimator via normal approximation of the Bayesian posterior 

distribution of the logarithm of relative risk. Their method performs better than the 

Koopman’s classic score method under many situations in terms of coverage probability, 

interval width and minimum coverage probability. The currently available confidence 

intervals were compared and discussed by Fagerland et al. (2011).

The focus of this article is to develop a new resampling methodology for constructing 

confidence intervals for the relative risk. Given a specific set of point estimator of two 

proportions,  and , it is straightforward to construct a confidence interval using the 

asymptotic normally distributed log-transformed sample relative risk . A confidence 

interval for relative risk can also be obtained via fully specification of the probability 

distribution for the bootstrap sample space. This “exact bootstrap” method has been 

extensively illustrated in Parzen et al. (2002), Lin et al. (2009), and Carter et al. (2010). 

Here, we aim to propose a novel confidence interval for relative risk via a smooth bootstrap 

procedure, where pseudo data are generated from a smooth sample quantile function defined 

in Wang and Hutson (2011). Towards this end, consider a discrete random variable X with 

probability mass function Pr(X = xj:d) = pj, where xj:d(1 < d < ∞) is the jth smallest distinct 

value. A smooth definition of population quantile function for X given a fixed finite d is 

defined as

(1.1)

where

(1.2)
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with d′ = d + 1, , P0=0 and Bp,q(·) is the beta cumulative distribution function 

with two shape parameters p and q. The main advantage of this definition, compared to the 

classic discrete quantile function definition, is that the uth quantiles across different 

distributions can be separated over the whole interval u ∈ (0, 1). We propose that the 

utilization of the smooth quantile function in context of standard bootstrap methodology can 

yield better confidence intervals for relative risks in terms of coverage probabilities.

The rest of this article is organized as follows. In Sec. 2, our smooth bootstrap procedure to 

construct a 100(1 − α)% confidence interval for relative risk between two proportions is 

formally introduced. In Sec. 3, simulation results are presented for evaluating the coverage 

probabilities of our smooth bootstrap confidence intervals in comparison with those of the 

confidence intervals mentioned above. In Sec. 4, the proposed approach is applied to several 

different binary data sets.

2. A Smooth Bootstrap Based Confidence Interval for Relative Risk

The derivation of our confidence interval for relative risk relies on the smooth quantile 

function introduced by Wang and Hutson (2011). Towards this end, consider a random 

variable X from a Bernoulli distribution Ber(π), the smooth quantile function of X is defined 

as

(2.1)

where B3u,3(1−u) is the beta cumulative distribution function with two shape parameters 3u 

and 3(1 − u). Equation (2.1) is a special case of the smooth quantile function at (1.1) defined 

in Wang and Hutson (2011) with d = 2.

Consider a random sample X = X1, X2, …, Xn from a Bernoulli distribution Ber(π). The 

sample proportion, , is the maximum likelihood estimator of the population proportion 

π. Since the MLE estimator and its associated asymptotic confidence interval have poor 

statistical performance given small n and/or π, for the rest of this article we will focus on the 

above-mentioned three single binomial proportion estimators, namely, Jeffreys, score and 

MUE estimator, in order to introduce and assess our smooth bootstrap method. Given a 

specific proportion estimate  derived from a random sample X = X1, X2, …, Xn, The 

sample counterpart of the quantile function at (2.1) can be readily obtained by plugging , 

that is,

(2.2)

Corollary 2.1

Let . Then as n → ∞,
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(2.3)

where .

In reality, σ2 can be estimated readily by substituting π for . The sample quantile function 

at (2.2) has a better convergence as compared with the classic discrete sample quantile. 

Readers are referred to Wang and Hutson (2011) for proof of Corollary 2.1 and more large 

sample properties of the sample quantiles defined at (2.2).

The main goal of this article is to develop a smooth bootstrap for constructing confidence 

intervals for relative risks, where pseudo data sets X* are generated from the sample quantile 

function (2.2). Unfortunately, the estimation of a proportion from generated continuous 

pseudo values is not straightforward since the mean μQ(x) of the quantile function is not 

direclty equal to the proportion π. Given a fixed proportion π, the population mean 

conditional on the quantile function definition at (2.1) can be expressed as

(2.4)

The relationship between π and μQ is graphically displayed in Fig. 1. Thus, given a single 

value of  based on a bootstrap sample X*,  can be estimated by numerically 

inverting Eq. (2.4).

Let X1 = x1, X2 = x2, …,  and Y1 = y1, Y2 = y2, …,  be two binary samples 

from Bernoulli distributions, Ber(π1) and Ber(π2), respectively. The smooth bootstrap based 

100(1 − α)% confidence interval for ralative risk RR = π1/π2 may be calculated based on the 

following algorithm.

1. Calculate the point estimators  and  of π1 and π2, respectively. We suggest 

aforementioned adjusted estimators as an alternative to usual sample proportions.

2. For b = 1, …, B.

Generate n1 and n2 uniformly distributed observations , 1 ≤ i ≤ n1 and 

, 1 ≤ j ≤ n2 from unif(0, 1), respectively.

Generate the corresponding quantiles , 1 ≤ i ≤ n1 and , 1 ≤ j ≤ n2 by 

using the estimated quantile function at (2.2) with respect to  and , 

respectively.

Calculate the mean  and 

Calculate , where  and  are obtained by numerically inversing 

equation (2.4).
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3.
Calculate the 100×(α/2) percentile  and the 100 × (1−α/2) percentile 

. Then ( , ) is the 100 × (1 − α)% confidence interval of RR 

= π1/π2.

3. Simulation Study

Simulations studies were conducted in order to compare the performance of our smooth 

bootstrap method with asymptotic and exact bootstrap methods, in terms of coverage 

probability and power. Given a specific set of point estimator of two proportions,  and , 

the sample estimate of the relative risk can be simply expressed as . The large sample 

standard error of  is estimated by

(3.1)

and the associated 100(1 − α)% confidence interval is constructed as

(3.2)

where z1−α/2 is the 100(1 − α/2)% quantile of standand normal random variable. Carter et al. 

(2010) compared this large sample method in their simulation studies with their 

deterministic bootstrap method, where the bootstrap probabilities of (n1 + 1)(n2 + 1) 

elements of the sample space are fully specified. For more details, see Lin et al. (2009) and 

Carter et al. (2010).

It should be noted that the performance of the various methods for constructing confidence 

intervals for the relative risk relies on the method for the point estimation of the two 

respective proportions. Given an observed number x events out of n trials, three common 

point estimators of the population proportion π are considered in our simulation studies.

1. Jeffreys estimator, defined as .

2. The score estimator, defined as .

3. The MUE estimator, defined as , where  and  are obtained by 

solving  and , respectively.

In order to assess the performance of our proposed method under a variety of scenarios, the 

underlying binomial proportion for the first group was allowed to range from 0.02–0.98 by 

0.04 increment and four ratios, π1/π2 = 1, 2, and 4, between two groups are considered. 

Sample sizes of 10, 25, and 50 for each group are included with 1000 replications per 

simulation scenario. For each generated set of data, the Jeffreys, score, and MUE point 

estimates of π1 and π2 are calculated and the associated confidence intervals are calculated 

through the asymptotic (LS), exact bootstrap (E-boot), and our smooth bootstrap (S-boot) 

method. The coverage probabilities of aforementioned methods given different relative risks 

are displayed in Figs. 2–4. Particularly, Fig. 2 displays the coverage probabilities under the 

scenario π1/π2 = 1. The score estimator has a performance comparable to the Jeffreys 
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estimator. Hence, its results are not shown in order to make the figures more clear. Note that 

the diagonal subplots in Fig. 2 for the cases of two groups with equal sample sizes have 

similar shapes as Fig. 2 in Carter et al. (2010). For small (n = 10) to mediate (n = 25) sample 

sizes, the coverage probabilities of our proposed smooth bootstrap method are quite close to 

the desired nominal coverage probability of 95% over a large range of π1. For the large 

sample size of n = 50, the difference between the exact bootstrap and smooth bootstrap is 

negligible. Each bootstrap method is better than the asymptotic method in this case. All 

methods are conservative when binomial proportions are proximate to the boundaries in that 

their coverage probabilities are greater than the nominal level. The above observations are 

generally true for cases with either equal or unequal sample sizes. Note that the dotted lines 

in Figs. 2–6 is used as the reference which represents the confidence intervals derived with 

the combination of the usual sample proportion  and the asymptotic rule. Figures 3 

and 4 share similar pattern. In general, our smooth bootstrap method is closer to the nominal 

level of 95% than the other two methods. All methods are conservative when π1 is close to 

0. It is worth pointing out that the exact bootstrap method shows surprisingly low coverage 

probabilities given certain combinations of sample sizes, such as n1, n2 = (50, 10) in Fig. 3, 

and n1, n2 = (20, 10) and n1, n2 = (50, 10) in Fig. 4. This phenomena have been noted 

previously, e.g., see Carter et al. (2010).

The power levels, i.e., the frequency for which the confidence interval contains the 

alternative value for the relative risk different from π1/π2 = 1, is shown in Figs. 5 and 6 for 

π1/π2 = 2 and π1/π2 = 4, respectively. Given a specified sample proportion estimator, the 

power levels of our smooth bootstrap methods are generally higher than or equal to those of 

the exact bootstrap method, particularly for equal sample size. The large sample method 

usually has a worse performance than the two bootstrap method, except for the case of n1, n2 

= (10, 50).

The overall coverage probabilities for each method are summarized in Tables 1–3 for π1/π2 

= 1, 2, and 4, respectively. Each cell represents the average coverage probability across all 

values of π1. The Wald column represents the coverage probabilities of confidence intervals 

derived using usual sample proportion estimates  and asymptotic standard error. It is 

clear that this method usually provides conservative confidence intervals, which is partially 

due to the decision rule we adopt from Carter et al. (2010); the confidence interval is set to 

(0, ∞) if 0 event is observed in either group. Given any of the three alternative proportion 

estimators (MUE, score, and Jeffreys), the large sample method yields more conservative 

coverage probabilities than the two bootstrap methods under a major portion of scenarios 

included in our simulation study. Our smooth bootstrap method is slightly conservative and 

tends to be closer to the nominal level of 95% than the large sample method. The exact 

bootstrap method seems to be closest to the nominal level, but this is mainly due to the 

trade-off between relative high coverage at both boundaries and relative low coverage at the 

middle range. It is worth noting that due to the discrete nature of the exact bootstrap method, 

it could have a very poor performance given unequal sample sizes, such as n1, n2 = (20, 10) 

and n1, n2 = (50, 10) in this article.
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4. Example

We illustrate the application of our smooth bootstrap method via utilizing the example 

presented in Carter et al. (2010), which is derived from three interim reports of a clinical 

trial in order to compare the likelihood of a severe hypoglycemic event between intensive 

and standard glycemic control. The data are used by the original authors to illustrate MUE 

based relative risk estimators and exact bootstrap methods to construct the associated 

confidence intervals when only a very small number of events are observed in each group. 

This is traditionally a situation where MLE method for estimation is ill behaved. We re-

analyzed the data to compare different methods for constructing confidence intervals given a 

certain type of proportion estimator. Table 4 shows the 95% confidence intervals for the 

large sample (LS), exact bootstrap (E-boot) and new smooth bootstrap (S-boot) methods. 

Compared with the confidence intervals generated from large sample theory, those 

generated by the exact bootstrap method are much narrower, whereas those generated by the 

smooth bootstrap are much wider. We argue that confidence intervals generated from our 

smooth bootstrap are more appropriate for this kind of data given issues relative to the 

underlying discreteness of the other approaches in the small sample setting. Consider the 

first set of data with  and  events in each group, the probability of 

having this observation given π1 = 0.01 and π = 10−7 with RR = π1/π2 = 105 is as high as 

97%. Therefore RR = 105 deserves to be included into the final 95% confidence interval. 

Furthermore, note that the 95% Wilson score intervals for π1 and π2 given 0/3 and 0/4 are 

 and , respectively. A reasonable confidence interval of RR = 

π1/π2 would be approximated to

after certain multiple testing adjustment; see more details about constructing simultaneous 

confidence intervals for binomial proportions in Agresti et al. (2008). Towards this end, 

consider the third set of data with  and  events in each group, the 

95% Wilson score intervals for π1 and π2 are  and , 

respectively. The probability of observing more favorable data, such as  and 

, given π1 = 0.4 and π2 = 0.004 with RR = π1/π2 = 100 is as high as 

. We note that our method is consistent with 

the classic score method developed by Koopman (1984), from which the confidence 

intervals are derived as (0, ∞), (0, ∞), and (0.14, 11.22) for the three sets of data, 

respectively. Seemingly, both large sample and exact bootstrap methods give more credit to 

the data than it deserves.

Even though it is not the focus of this article, it is seen that the width of the confidence 

interval depends on the method of estimating the two proportions. Score estimators are 

usually associated with the narrowest intervals while MUE estimators are associated the 
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widest intervals. We also note that for relative frequent event rate, such as 4/12 vs. 5/15, the 

difference between the three methods are negligible.

5. Summary and Discussion

In this article, we develop a new resampling procedure to construct confidence intervals for 

the relative risk given pre-specified pairs of sample proportion estimators. The resulting 

confidence interval is “smooth bootstrap like” in terms of it properties with respect to the 

generation of pseudo-observations from a smooth quantile function defined in Wang and 

Hutson (2011). In our simulation studies, the performance of our smooth bootstrap method 

is usually better than the classic asymptotic theory based method and the commonly used 

exact bootstrap method, in terms of coverage probability and power. Particularly, when the 

two groups are seriously unbalanced, the coverage probabilities of confidence intervals from 

exact bootstrap method could be much lower than the nominal confidence level. As 

mentioned in Carter et al. (2010), this is possibly because the deterministic bootstrap sample 

space will be more defined by the larger group’s sample size.

Through a previously published example, we show that given very low event rate and small 

sample size, confidence intervals generated from smooth bootstrap method are much more 

wider than those from asymptotic method whereas those from exact bootstrap method are 

much narrower. We note that the results from our method are consistent with the classic 

score method proposed in Koopman (1984) and suggest conservative confidence intervals 

for this type of data. In addition, the smooth bootstrap method can be readily extended 

towards constructing the confidence intervals for odds ratios.

It should also be mentioned that the interval estimators considered in this note is a limited 

portion of currently available methods for relative risk, which are chosen towards assessing 

and evaluating the proposed smooth bootstrap method in comparison with the asymptotic 

rule and exact bootstrap method. Given a specific set of data, Koopman’s classic score 

interval and the exact unconditional interval proposed by Agresti and Min (2005) are 

generally recommended. We also recommend the method proposed by Price and Bonett 

(2008) with respect to its ease of being implemented and satisfactory performance 

comparable to the Koopman’s score method; see more comparisons and discussions about 

inference methodologies for relative risk in Price and Bonett (2008) and Fagerland et al. 

(2011).
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Figure 1. 
The relationship between the proportion π and the mean μQ.
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Figure 2. 
Empirical coverage probability given π1/π2 = 1.
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Figure 3. 
Empirical coverage probability given π1/π2 = 2.
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Figure 4. 
Empirical coverage probability given π1/π2 = 4.
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Figure 5. 
Empirical power given π1/π2 = 2.
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Figure 6. 
Empirical power given π1/π2 = 4.
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Table 4

95% confidence intervals for RR = π1/π2

MUE LS (0.012, 145) (0.098, 176) (0.11, 14.6)

E-boot (0.21, 8.06) (0.35, 13.89) (0.13, 11.46)

S-boot (3.96e-05, 25500) (0.023, 15800) (0.019, 82.3)

Score LS (0.051, 28) (0.2, 28) (0.17, 8.62)

E-boot (0.33, 3.05) (0.38, 5.36) (0.29, 4.65)

S-boot (4.84e-05, 22200) (0.11, 1410) (0.066, 22.4)

Jeffreys LS (0.019, 83) (0.14, 91.3) (0.13, 11.3)

E-boot (0.23, 4.05) (0.4, 8.36) (0.17, 8.11)

S-boot (4.22e-05, 26700) (0.066, 13200) (0.033, 34.9)
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