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Stochastic distribution of small soil eukaryotes
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A central challenge in ecology is to understand the relative importance of processes that shape diversity
patterns. Compared with aboveground biota, little is known about spatial patterns and processes in soil
organisms. Here we examine the spatial structure of communities of small soil eukaryotes to elucidate
the underlying stochastic and deterministic processes in the absence of environmental gradients at a
local scale. Specifically, we focus on the fine-scale spatial autocorrelation of prominent taxonomic and
functional groups of eukaryotic microbes. We collected 123 soil samples in a nested design at distances
ranging from 0.01 to 64m from three boreal forest sites and used 454 pyrosequencing analysis of
Internal Transcribed Spacer for detecting Operational Taxonomic Units of major eukaryotic groups
simultaneously. Among the main taxonomic groups, we found significant but weak spatial variability
only in the communities of Fungi and Rhizaria. Within Fungi, ectomycorrhizas and pathogens exhibited
stronger spatial structure compared with saprotrophs and corresponded to vegetation. For the groups
with significant spatial structure, autocorrelation occurred at a very fine scale (o2m). Both dispersal
limitation and environmental selection had a weak effect on communities as reflected in negative or null
deviation of communities, which was also supported by multivariate analysis, that is, environment,
spatial processes and their shared effects explained on average o10% of variance. Taken together,
these results indicate a random distribution of soil eukaryotes with respect to space and environment in
the absence of environmental gradients at the local scale, reflecting the dominant role of drift and
homogenizing dispersal.
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Introduction

Niche-based and niche-neutral models constitute
two alternative but complementary paradigms for
understanding diversity patterns (Hubbel, 2001;
Chase and Leibold, 2003). Niche theory posits
that communities are shaped by deterministic
processes (that is, environmental selection and
niche partitioning) owing to different habitat prefer-
ences and fitness of species. According to neutral
theory, random fluctuations in species abundance
(ecological drift) and limited dispersal shape the
communities. Emerging evidence suggests that
both groups of processes jointly regulate ecological

communities (Chave, 2004) with varying relative
effects depending on geographic scales and strength
of environmental gradients (see Hanson et al., 2012)
and type of organism (body size, dispersal mode,
see Soininen et al., 2007). At smaller scales,
habitat heterogeneity declines, which generally
results in lower habitat preference and therefore
greater importance of stochastic processes over
deterministic factors (Legendre et al., 2009; Chase,
2014). However, the evolutionary and ecological
factors that influence dispersal of organisms may
also diminish with decreasing geographic scale
(Warren et al., 2014). Thus reducing the study
scale enables to control for both environmental
filtering and dispersal limitation as a result of
recruitment failure (Wang et al., 2013; Lowe and
McPeek), which minimizes the confounding effects
of unmeasured variables.

Diversity patterns provide evidence for the processes
underlying community assembly (Vellend, 2010).
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One of the most common patterns in ecological
communities is the negative relationship between
community similarity and spatial distance, known as
distance–decay of similarity (DDS; Nekola and
White, 1999; Poulin, 2003). DDS constitutes a
general pattern across different groups of organisms,
and it is widely employed to disentangle the relative
importance of neutral and niche processes in main-
taining biodiversity (Condit et al., 2002; Cottenie,
2005; Hanson et al., 2012; Stegen et al., 2013). DDS
results from the joint effects of environmental
selection and dispersal limitation coupled with
ecological (or evolutionary) drift. Drift acting alone
and high dispersal rates homogenize the community
and thus lead to weaker DDS patterns (Vellend,
2010). As a result, the rate and extent of DDS varies
across different organism groups with different
habitat preference and also organism type, that is,
body size and dispersal mode (Soininen et al., 2007).

In contrast to macro-organisms, microbes are
dispersed more easily owing to their smaller size,
which allows them to inhabit temporarily unsuitable
habitats. There is an old assumption that free-living
soil microbial eukaryotes do not face dispersal
limitation (Finlay, 2002), but several molecular
studies provide evidence for their biogeographic
patterns (for example, Green et al., 2004; Bahram
et al., 2013; Bates et al., 2013; but see Queloz et al.,
2011). Recent findings also suggest that similarly to
macro-organisms, microbes are influenced by neu-
tral processes (for example, Cottenie 2005; Hájek
et al., 2011; Astorga et al., 2012). Furthermore, some
studies provide evidence for limited dispersal and
biogeographic patterns in soil mesofauna (Wu et al.,
2011; Porco et al., 2012). Greater dispersal limitation
in soil matrix, compared with air, may lead to a
stronger spatial structure in soil biota compared with
aboveground organisms (Ettema and Wardle, 2002).
Although dispersal limitation is commonly consid-
ered a neutral process, the overlap between dispersal
and establishment success, which can result from
environmental filtering, complicates accurate esti-
mates of dispersal limitation per se (Lowe and
McPeek, 2014). Besides, dispersal may not be neutral
if species differ in traits related to dispersal abilities
or when dispersal is density dependent.

Differential dispersal abilities may lead to con-
trasting DDS patterns in macro-organisms and
microorganisms (Nekola and White, 1999; Soininen
et al., 2007; Hájek et al., 2011; Farjalla et al., 2012).
These studies provide evidence that the effect of
deterministic processes in community assembly
increases with increasing body size, while stochastic
processes are dominant in small organisms with
passive dispersal. Most of our knowledge about DDS
of various organisms is derived from meta-analyses
(Nekola and White, 1999; Soininen et al., 2007;
Hanson et al., 2012) that comprise studies with
different sampling grain and geographic scale, which
may strongly bias the understanding of DDS relation-
ships (Steinbauer et al., 2012). Thus simultaneous

analyses of DDS in organisms with different dis-
persal traits (owing to their varying size and active vs
passive motility) are needed for better understanding
the relative contribution of deterministic and neutral
processes (Soininen et al., 2007; Hájek et al., 2011;
Bie et al., 2012). Small-scale studies are subject to
fewer confounding factors such as climate, soil type,
random environmental fluctuations and history and
thus provide a good basis to determine neutral
stochasticity (drift and dispersal limitation per se;
Vellend et al., 2014).

Our knowledge about the spatial structure of
eukaryotic microbes is very limited. Only a few
studies have studied the DDS relationship at the fine
scale (Lekberg et al., 2007; Dumbrell et al., 2010).
These studies were performed along an environ-
mental gradient, which prevents assessing the effects
of neutral processes in shaping communities. By
using a spatially explicit experimental design, we
examined DDS patterns in the communities of soil
eukaryotic microbes and mesofauna that provide the
key ecosystem services, such as plant nutrition,
herbivory, decomposition and propagule dispersal
(Wardle, 2002). Our main goal was to examine the
stochastic component and thus to elucidate the
relative importance of stochastic (dispersal and
ecological drift) and deterministic factors (soil,
vegetation parameters) in structuring communities
of soil biota in the absence of environmental
gradients. Our hypothesis was that microbial com-
munities exhibit significant DDS due to their more
pronounced intrinsic spatially aggregated distribu-
tion (Morlon et al., 2008) as a result of the weak
environmental variation and thus its weak confound-
ing effect at homogeneous local habitats. Our second
aim was to define the range of spatial aggregation in
different microbial groups, with contrasting disper-
sal ability and body size. We simultaneously exam-
ined the spatial structure of protists, mesofauna and
the major taxonomic as well as functional groups of
fungi that differ in dispersal traits (for example,
passive spore dispersal in protists and fungi vs
mesofauna) and body size (1–103 μm in protists;
1 μm to 102m in fungi; 102–104 μm in mesofauna).
We carefully performed a neighbourhood analysis
(Canham et al., 2004) of the surrounding tree cover
and examined soil nutrients properties to account for
environmental effects.

Material and methods
Sampling and site characteristics
This study was carried out in three replicated sites in
mixed temperate forests in southern Estonia.
The Järvselja site (58°15' N, 27°19' E) represents
an old-growth forest (130 years) on Luvisols that
is dominated by Picea abies (L.) H.Karst. with
abundant Tilia cordata Mill., understorey. The
Maarjaküla site (58° 07' N, 27° 02' E) constitutes a
mixed forest of P. abies and Pinus sylvestris L.
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(age, 110 years) on podzols with abundant Vaccinium
myrtillus L. shrubs and moss layer. The Elva site
(58°11' N, 26°26' E) is a 100-year-old forest domi-
nated by P. sylvestris with P. abies undergrowth,
V. myrtillus shrub layer and mosses on podzols.
In each site, we established a 64× 64m2 plot in
homogeneous areas in terms of vegetation (that is,
tree basal area and plant community and coverage)
and topography. There were no noticeable environ-
mental gradients in these plots.

Within a single day in the summer of 2012, 41 soil
cores (5 cm diameter to 5 cm depth) were taken
from each plot in a nested design with base-2-
logarithmically increasing distance between samples
from 0.01 to 64m (Figure 1). Such a sampling
scheme enables to account for soil patchiness on a
millimetre scale (Zhou et al., 2004) and provides
sufficient replication for distance classes from 0.01
to 32m. The central sampling spot was randomly
selected with the constraint that it had to comprise a
uniform 40.25-m2 patch of microtopography and
ground vegetation and lie 41m from any surround-
ing tree (41 cm diameter at the base). Around each
sample, a 0.5 × 0.5m2 quadrat was established, and
the cover of understorey plant species was recorded.
Precise location of all trees and their diameter at
~ 1.5m height were determined to account for the
potential neighbourhood effects on spatial distribu-
tion of pathogens and mycorrhizal fungi (Bahram
et al., 2011; Gómez‐Aparicio et al., 2012). Soils were
kept at − 30 °C for 24 h to suspend motile organisms
before air-drying at 25 °C for 48 h. The soil samples
were pulverized and 0.2 g of soil dust was taken to
DNA extraction using the UltraClean 100 Kit (MoBio,
Carlsbad, CA, USA), following the manufacturer’s
instructions. The remaining soil was used for

chemical analysis of pHKCl and concentrations of
Ptotal, K, Ca, Mg, C, N, 15N and 13C (Supplementary
Table S1) as described in Tedersoo et al., (2012). In
each soil sample, the proportion of O, A and E
horizons were measured because of differences in
functional composition of soil microbes (Zhou et al.,
2004; Lindahl et al., 2007). There were only minor
differences in the thickness of soil layers within each
plot (mean± s.d.: Organic layer, 3.40 ± 1.08 cm;
Mineral layer, 1.60 ± 1.08 cm).

Molecular methods
We used the Internal Transcribed Spacer 2 (ITS2) as
a locus for DNA metabarcoding, which offers higher
resolution at species level compared with 18S rDNA
(Bates et al., 2013) and provides less primer bias
compared with mitochondrial cytochrome oxidase I
across multiple eukaryote kingdoms (Deagle et al.,
2014). PCR was carried out using a mixture of 11
modified ITS3ngs forward primers (in equimolar
concentration) and a degenerate ITS4ngs reverse
primer (Tedersoo et al., 2016; Supplementary Table
S2). PCR was performed with four replicates and
programmed as follows: an initial 15min at 95 °C,
followed by 30 cycles of 95 °C for 30 s, 55 °C for 30 s,
72 °C for 1min, and a final cycle of 10min at 72 °C.
These primers were modified to perfectly match the
prominent soil eukaryotes, including Fungi, Viridi-
plantae, Ciliophora, Rhizaria, Straminipila and
groups of mesofauna (such as Nematoda, Annelida
and Collembola). Both forward and reverse primers
were tagged with 1 of the 64 identifiers (10–12
bases). Negative (DNA extraction and PCR) and
positive controls (single fungal specimens) were
used throughout the experiment. The amplicons
were purified using EXO-saprotrophic enzymes
(Sigma, St Louis, MO, USA), normalized using a
SequalPrep Normalization Kit (Invitrogen Inc.,
Carlsbad, CA, USA), pooled and subjected to 454
adaptor ligation, emulsion PCR and 454 pyrosequen-
cing using the GS-FLX+ technology and Titanium
chemistry. Sequences were submitted to Short Read
Archive under accession number SRP045587.

Bioinformatics
Pyrosequencing reads were denoised by using the
default settings (average quality cutoff = 30; signifi-
cance level = –9) in Acacia (Bragg et al., 2012). Reads
were further trimmed using Mothur (Schloss et al.,
2009) by discarding regions with any ambiguous
nucleotides and 410-bp homopolymers. Reads with
mismatches to primer and tag combination and
o150 bp were removed. Chimeras were checked in
UCHIME (Edgar et al., 2011). The full ITS2 region
was extracted in the ITSx (Bengtsson‐Palme et al.,
2013). The extracted sequences were assembled into
Operational Taxonomic Units (OTUs) based on 97%
pairwise similarity using CD-hit 4.6.1 (Fu et al.,
2012). We evaluated different clustering algorithms

Figure 1 Schematic map of sampling design in each study site.
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(Uclust, Crop, CD-hit, Swarm and CAP3) by comparing
the outcomes with phylogenetic trees of selected
dominant genera (Tomentella, Russula). The phylo-
genetic trees were prepared under maximum like-
lihood model in RAxML 7.0.4 (Stamatakis et al.,
2008). Among available pairwise clustering methods,
CD-hit gave very similar results to that deduced from
the phylogenetic trees and resulted in the fewest
OTUs. Singletons were removed from downstream
analysis to eliminate potentially artefactual taxa
(Tedersoo et al., 2010). Blast searches were per-
formed against both NCBI and UNITE databases.
OTUs without any blast match or with o60%
identity to best blast matches were removed from
subsequent analyses. The taxonomy of OTUs was
determined based on 10 best matches against these
databases. The lifestyle of fungal OTUs was deter-
mined based on functional annotation of database
sequences (Tedersoo and Smith, 2013; Tedersoo
et al., 2014). Because of high abundance of
unidentified taxa in public databases, taxonomy of
OTUs with blast score o100 and identity o80%
were considered to be unknown.

Data analysis
Because of low representation in our data set, we
excluded Straminipila, Alveolata and arbuscular
mycorrhizal fungi from the analyses. We focussed
not only on mesofauna, Rhizaria and Chlorophyta as
well as major functional groups within Fungi such as
saprotrophs, ectomycorrhizal (EcM) symbionts and
plant pathogens but also on fungal taxonomic groups
(Ascomycota, Basidiomycota, Chytridiomycota and
Zygomycota s.lato). We used a modified Raup–Crick
dissimilarity metric that is independent of sample
size (Chase et al., 2011). This measure calculates
the proportion of observed dissimilarities across
samples that are higher than those estimated from
the null model (1000 randomized matrices); it ranges
from –1 to 1, with values near –1 (–0.95 to –1)
indicating homogenizing dispersal (that is, mass
effect), values near 1 (0.95 to 1) indicating environ-
mental selection and other values (–0.95 to 0.95)
indicating drift. Because beta diversity may result
from both species replacement (species turnover
component) and variation of species richness (nest-
edness component), we followed the approach of
Baselga (2010) to address both processes in parallel.
This approach enables partitioning variation that
results from either nestedness or species turnover
into individual distance matrices. Each group from
each site was analysed individually; however, for
simplicity, if possible, the average (± s.d. or con-
fidence interval (CI)) statistics of the three sites are
reported. Analyses were performed in Vegan, Ape,
Betapart and Ecodist packages of R (R Development
Core Team, 2007) and custom scripts in Python 2.7.

For each DDS relationship, we calculated the slope
of relationship that indicates the rate of spatial
turnover (Soininen et al., 2007). The overall spatial

structure was analysed by Mantel test. Using simple
Mantel correlograms and semivariograms (based on
the exponential fit of the relationship between
dissimilarity of samples vs spatial distance), we
calculated the spatial autocorrelation range, that is,
the distance up to which the composition of samples
is significantly more similar than expected (Robeson
et al., 2011). For each data set, we explored linear,
exponential or no significant fit according to deter-
mination coefficients. For the groups with significant
spatial autocorrelation, partial Mantel tests were
performed to examine the correspondence of indivi-
dual environmental variables with the observed
spatial autocorrelation.

Principal Coordinates of Neighbouring Matrices
vectors were calculated based on geographical
distances among samples to represent different
spatial scales (Borcard and Legendre, 2002). Varia-
tion partitioning was performed using the varpart
function of the package Vegan (Oksanen et al., 2013)
to disentangle the effects of major component
sources of variation, that is, vegetation, soil and
space. Variables from each category (that is, vegeta-
tion, soil, spatial) were forward selected (Po0.05)
before using in variation partitioning. For vegetation,
both plant community and neighbourhood effects of
surrounding trees were included. For soil variables,
pH and concentrations of P, K, C and N and C:N ratio
were included (Supplementary Table S1). Prior to
the analysis, soil variables were log-transformed to
approximate normal distribution. We tested the
spatial autocorrelation in soil variables and vegeta-
tion (separately for trees and understorey vegetation)
using Moran’s I correlograms. We further explored
the effect of individual environmental variables on
the spatial distribution of belowground communities
by incorporating biotic factors (neighbourhood
effect, estimated herb and shrub cover and their
community composition), and abiotic factors (soil
pH, nutrients and depth of horizons) in partial
Mantel correlograms as implemented in mpmcorre-
logram package. Because of their potential influence
on soil chemistry, neighbouring trees may have a
great effect on spatial structure of soil communities.
Using a neighbourhood analysis, we included the
effect of conspecific and heterospecific neighbouring
trees within 10m radius based on the following
equation:

NIF ¼
Xn
i¼0

Area at breast heighti ´
1

Distancei

� �
;

where NIF is the neighbourhood effect. Distribution
range of OTUs in different groups was calculated
based on the average distance among samples where
OTUs were present, and it was compared with the
average distance among all samples as the expected
null range. Further details on the Materials and
Methods used in this study are provided in the
Supplementary Methods.
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Results

A total of 4131 OTUs (including 2282 singletons)
were retrieved from 90 761 high-quality ITS2
sequences and 123 soil samples. Of the non-
singleton OTUs, 1458 belonged to fungi (including
588 Basidiomycota, 243 Ascomycota, 476 Zygomy-
cota and 69 Chytridiomycota), 70 to Metazoa, 66 to
Rhizaria, 41 to Alveolata and 29 to Chlorophyta. Of
the fungal OTUs, 197 were determined to be EcM,
818 saprotrophic, 38 pathogens and 5 arbuscular
mycorrhizal symbionts (Supplementary Figure S1).

Mantel tests showed significant spatial turnover
only in certain groups (Table 1). The rate of DDS was
the greatest for Rhizaria, followed by fungal phyla
Basidiomycota, Zygomycota and Chytridiomycota
(Table 1). There was no significant DDS in the other
taxonomic groups. EcM fungi showed the greatest
DDS rate among the functional groups (mean ± s.d. of
the slope of DDS in three sites: 0.139 ±0.133),
followed by pathogens (0.087 ± 0.15) and sapro-
trophs (0.018± 0.023). The semivariogram analyses
and Mantel correlograms revealed significant auto-
correlation within smaller distance classes (o3m) in
the majority of groups with significant autocorrela-
tion (Table 1). In Basidiomycota and EcM fungi,
significant autocorrelation was found in all three
sites (mean± s.d. of autocorrelation ranges in three
sites: 1.33 ± 0.76m; 1.16 ±1.58m; 2.50 ± 0.86m,
respectively). For Rhizaria, spatial autocorrelation
range was significant in two sites (6 and 0.75m).
In Chlorophyta, Chytridiomycota, Zygomycota,
saprotrophic and pathogenic fungi, significant auto-
correlation was found only in one of the three sites
(at 0.9, 0.7, 1.5, 1.5 and 3m, respectively; Table 1). In
site III, a larger proportion of groups (81%) showed
significant spatial autocorrelation compared with
the other sites (36% and 27% in sites II and I,

respectively). There was no significant spatial auto-
correlation in Ascomycota and Metazoa. Across all
groups, the observed significant DDS was related to
species replacement, whereas the nestedness compo-
nent was not significant (Supplementary Table S3). A
test of correspondence among different communities
based on Mantel test revealed weak but in some cases
significant relationships between the communities of
different groups (Supplementary Table S4).

Community turnover was lower than expected by
the null model (1000 randomized matrices) in the
majority of organism groups (55% of communities;
Figure 2). The average Raup–Crick distance was
significantly lower than the null model in Basidio-
mycota (mean±CI in three sites: − 0.406 ±0.037),
saprotrophic fungi (−0.755± 0.026), Zygomycota
(−0.586 ± 0.031) and Rhizaria (−0.227 ±0.041), but it
was slightly greater than expected by the null model
in EcM (0.018± 0.034) and pathogenic (0.044± 0.039)
fungi. Similarly, the average Raup–Crick pairwise
distances within the smallest distance class (0–6m)
was the highest in EcM fungi, followed by patho-
genic and saprotrophic fungi. For all groups, envir-
onmental selection and dispersal limitation
(calculated as ratio of dissimilarity values between
0.95 and 1) was negligible (o0.01). In contrast, mass
effect (dissimilarity values between − 0.95 and − 1)
was significant in Basidiomycota (15.56%) and
Zygomycota (28.4%) but not in Ascomycota (2.8%),
Chytridiomycota (1.3%) or other eukaryotes
(Supplementary Figure S2). The mass effect was
significantly stronger in saprotrophic (51.87%) than
in EcM (4.63%) and pathogenic (1.43%) fungi.

The average distribution range of OTUs of the
majority of groups was significantly higher than
predicted by the null model, that is, the average
range and its confidence intervals were higher
than average distance among samples (Figure 3).

Table 1 Results of spatial analysis across different taxonomic and functional groups of soil biota

Site I Site II Site III

Mantel r Slope SAR Mantel r Slope SAR Mantel r Slope SAR

Metazoa 0.011 —a — −0.1 — — 0.083 — —

Rhizaria 0.338b 0.392 6 0.22 0.22 — 0.102 — 0.75
Chlorophyta −0.24 — — 0.13 — — 0.124 — —

Fungi 0.171 0.032 0.25 0.18 0.011 — 0.294 0.039 1.25

Fungal taxonomic groups
Basidiomycota 0.301 0.055 1.5 0.101 — 0.5 0.371 0.078 3
Ascomycota 0.004 — — 0.04 — — −0.017 — —

Chyteridiomycota 0.016 — 0.133 — 0.12 0.155 — 0.7
Zygomycota 0.153 — 0.25 0.181 — — 0.234 0.055 1.5

Fungal functional groups
Saprotrophic 0.137 — — 0.21 0.011 — 0.236 0.044 1.5
Ectomycorrhizal 0.203 0.063 2.5 0.242 0.028 0.5 0.365 0.326 3
Pathogenic −0.147 — — −0.07 — — 0.216 0.260 3

Abbreviation: SAR, spatial autocorrelation range (m).
a'—’ indicates that a value was not measured owing to no significant relationship based on Mantel test (Po0.05).
bValues in bold indicates significant relationship.
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Within plots, the average distribution range
of OTUs in Metazoa (mean±CI in three sites:
17.61±2.87m), Rhizaria (19.71±3.49m), Basidiomy-
cota (17.42±1.14m), Ascomycota (14.29±1.45m), and
Zygomycota (27.03 ± 1.25m) were greater than the
average distance among samples (11.10 ± 0.84m).
Across the taxonomic groups, the average distribu-
tion range of OTUs was the lowest in Chlorophyta
and the highest in Zygomycota (Supplementary
Figure S3). On average, saprotrophic fungi
(22.50±0.93m) exhibited significantly greater distri-
bution range compared with EcM (15.73 ± 1.77 m)
and pathogenic (15.38 ± 4.91m) fungi.

Variation partitioning analyses revealed that the
neighbourhood effect, plant community and soil pH

are the main determinants of community composi-
tion in most studied groups (Figure 4). Only
a small proportion of variation was explained by
space, environment and their shared effect (Figure 4)
in the communities of Metazoa (mean± s.d. in three
sites: 6.00 ± 3.56%), Chlorophyta (6.00 ± 4.35%),
Rhizaria (7.33 ±4.02) and Fungi (4.34 ± 2.05).
Similar results were obtained for the fungal groups:
Ascomycota (4.67±1.53%), Basidiomycota (8.0±3.46%),
Chytridiomycota (8.66 ± 0.58%), Zygomycota
(9.33 ± 2.62%), saprotrophic fungi (6.34 ± 2.16%),
pathogenic fungi (9.33 ±1.52%), and EcM fungi
(7.67 ± 3.26%). Pure spatial effect explained
a small proportion of the variation in communities
of Rhizaria (3.00 ±2.65%), Chlorophyta (0%),
Metazoa (2.67 ±3.05%) and fungal groups, including
Chytridiomycota (3.0±1.0%), Ascomycota (1.33±2.31%),
Zygomycota (3.00±1.0%), Basidiomycota (2.00±2.64%),
pathogenic fungi (1.67 ± 2.89%), saprotrophic fungi
(2.67 ± 1.15%) and EcM fungi (3.5 ± 0.35%). Patho-
genic and EcM fungal communities were signifi-
cantly related to plant community (explaining
4.67 ± 1.7 and 5.66 ± 2.30% of EcM and pathogenic
fungal communities, respectively), compared with
saprotrophic fungal communities (Figure 4). None-
theless, similarly to vegetation, soil variables had a
weak relationship with the spatial variation of
communities. At small distance classes (on average
o2m), soil and the neighbourhood component
(significant in all sites: 2.50 ± 2.17m), C:N (signifi-
cant in site I and site III: 1.75± 1.76m) and pH
(significant in site I and site III: 1.75 ± 1.76m)
showed significant spatial structure which more or
less corresponded to the observed autocorrelation in
the communities (Table 1). There was also significant
spatial structure in δ15N or δ13C at o1m scale
(Supplementary Figure S3). Partial Mantel correlo-
grams further revealed significant correlation between
the spatial autocorrelation of plant community and
neighbourhood effect at the first distance class (on
average o2m) in the majority of groups, whereas soil
parameters had a negligible effect (Figure 5;
Supplementary Figure S3).

Figure 2 Deviations from the null-model expectations in the
community turnover of soil biota, measured as the average Raup–
Crick index of dissimilarity between samples and its confidence
intervals. Positive and negative values are, respectively, higher
and lower dissimilarities between samples compared with the null
model, with values near −1 (−0.95 to −1) indicating mass effect,
values near 1 (0.95 to 1) indicating environmental selection and
values between −0.95 and 0.95 indicating drift. The vertical red
dashed line indicates zero dissimilarity.

Figure 3 The average distribution range of OTUs across different taxonomic and functional groups within each plot. The range of each
OTU was calculated based on the maximum distance between individuals of that OTU. Groups that are indicated with blue colour had
significantly higher distribution range than average distance among samples (dotted red line).
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Discussion

Small-scale biogeography of eukaryotic microbes has
received little empirical attention so far, perhaps
owing to the common assumption of no dispersal

limitation in microbes (Finlay, 2002). Our study
contributes to understanding the fine-scale spatial
structure of different taxonomic and functional
groups of soil eukaryotes and sheds light into the
underlying processes. Small scale and homogeneous
vegetation of our study sites enabled us to minimize
the effects of environmental and historical factors.
Our analysis revealed that most groups of the
addressed soil biota exhibit negligible fine-scale
spatial distribution patterns (Table 1; Figure 2). In
spite of some level of heterogeneity in the soil
variables (Supplementary Figure S3), tree neighbour-
hood and soil had a small effect on community
composition of most groups of soil biota. Although
our sampling addressed fine-scale spatial distances
spanning three orders of magnitude, most of the soil
biota was only marginally structured by the spatial
framework, and generally 490% of community
variation remained unexplained by space or the
environment. This could be ascribed to stochasticity
in these spatially homogeneous systems, unmea-
sured environmental variables or methodological
issues (see below).

Our results support the prominent role of stochas-
tic processes, that is, mass effect coupled with
stochastic ecological drift (Chase et al., 2011) in
structuring microbial communities at the small scale.
A large fraction of pairwise community comparisons
did not deviate from the null model, that is, 1000
randomized matrices (Figure 2), indicating ecologi-
cal drift acting alone as the main determinant of
community structure (Stegen et al., 2013). In the
majority of groups, the average distribution range of
OTUs was greater than expected by chance
(Figure 3), reflecting homogenizing effect of disper-
sal (that is, mass effect). Together with the relatively
minor spatial effect on communities, the wide
distribution range of taxa suggests that dispersal
limitation has only a weak influence on spatial
turnover in soil biota at the local scale. A few
previous studies on arbuscular mycorrhizal fungi
over a similar geographical scale revealed significant
DDS and the dominance of deterministic processes
in structuring soil communities along strong envir-
onmental gradients (Lekberg et al., 2007; Dumbrell
et al., 2010). Focussing on a local scale in the
absence of environmental gradients enabled us to
reduce the effect of deterministic processes. High
taxonomic richness coupled with short generation
periods, functional redundancy and strong priority
effects (Soininen et al., 2007; Vellend, 2010) add to
the stochasticity. This may override the weak effect
of environmental factors as well as dispersal limita-
tion and lead to weak microbial spatial structure in
the absence of strong environmental heterogeneity at
the local scale. Moreover, soil comprises resting
propagules such as pollen, seeds, spores and eggs,
the passive dispersal of which and detection along
with the active community may reduce the resolu-
tion of environmental and spatial effects. Several
studies at larger scales provide evidence for the

Metazoa

Chlorophyta Rhizaria

Fungi Pathogens

Ectomycorrhizas Saprotrophs

2.33 2.67

0.67

1.67

2.33 3.003.00

1.00

2.00

1.67

2.33

3.33

1.331.67 1.67

1.00

0.67

1.67 2.67

1.00 1.00

1.00

0.67 2.33

4.00

0.67

Figure 4 Venn diagram of variation partitioning analysis,
illustrating the effects of soil, vegetation and spatial variables on
the community structure of soil biota. Values show the percentage
of variation explained by each fraction, including pure soil effect
(a), shared effect between soil and space (b), pure spatial effect (c),
shard effect of soil and vegetation (d), shared effect of soil, space
and vegetation (e), shared effect of space and vegetation (f) and
pure vegetation effect (g). Vegetation includes both plant commu-
nity and spatial distribution of trees diameters at breast height
(that is, neighbourhood component). Note that the fraction of
unexplained variation and values o1% are not shown for
simplicity.
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significant DDS in microbial communities indepen-
dent of environmental heterogeneity (Martiny et al.,
2011; Robeson et al., 2011; Talbot et al., 2014),
indicating substantial historical dispersal limitation
and drift.

Communities of different taxonomic and func-
tional groups may be structured by contrasting
underlying factors. We found the weakest DDS rate
in soil mesofauna that could relate to their high
dispersal rate at the fine scale (Table 1). EcM and
pathogenic fungi exhibited relatively higher spatial
turnover than expected by the null model, whereas
saprotrophic fungi and Rhizaria had significantly
lower spatial turnover than expected (Figure 3).
These results are consistent with random dispersal
that has been reported for soil protozoa and

mesofauna (Petersen and Luxton, 1982; Esteban
et al., 2006; Lara et al., 2011). This can be attributed
to their high dispersal rate, which overwhelms
both environmental selection and ecological drift.
The high dispersal in this group was also supported
by their greater distribution range than the null
model. In particular, the distribution range of
saprotrophic fungal OTUs exceeded that of the other
groups, for which we found the largest ratio of
deviations from the null model (Figure 2). The weak
DDS was observed across all taxonomic groups of
saprotrophic fungi (that is, saprotrophic Basidiomy-
cota, Ascomycota and Zygomycota). Spatial struc-
ture of saprotrophic fungi was mainly related to soil
variables, whereas EcM and pathogenic fungi
showed little correspondence with soil. This is

Figure 5 Spatial structure of the communities at various distance classes as revealed by Mantel and Partial Mantel correlograms in
relation to biotic and abiotic factors, including pure spatial (black line and squares) plant community (blue line and squares), soil
parameters (red line and squares) and neighbourhood effect (green line and squares). Distance classes were defined as follows (in m):
0–0.5, 0.5–1, 1–2.5, 2.5–3.5, 3.5–5, 5–11, 11–21, 21–41 and 41–64. Filled squares represent significant Mantel r after Bonferroni multiple
test correction.
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expected given that EcM and pathogenic fungi gain
most of their C demand directly from host plants,
while saprotrophic fungi rely on organic material of
soil (Plett and Martin, 2011). Compared with the
other studied groups, we detected relatively stronger
spatial structure as well as greater vegetation and
neighbourhood effect in EcM fungal communities.
We also found a strong spatial structure in a
pathogenic fungal community in one site, which
was mainly related to plant community based on
partial Mantel test, by testing the correlation between
plant and fungal communities while controlling for
soil and spatial components. These results indicate
stronger spatial structuring of biotrophic groups that
correspond to vegetation patchiness. The importance
of aboveground interactions on these groups was
also supported by the scale of the observed spatial
autocorrelation range in EcM fungi, which nearly
corresponded to that in the spatial distribution of
trees in our study sites. Spatial distance has an
important role in maintaining symbiotic (Bever et al.,
2009) and pathogenic relationships (Kerr et al., 2006)
through positive and negative soil feedbacks,
respectively.

At very fine scales (o2m), spatial autocorrelation
resulting from aggregate growth of individuals affects
community turnover in certain eukaryotic microbes.
In aboveground macro-organisms, body size is
strongly linked to dispersal limitation and thus
spatial aggregation (Nekola and White, 1999). In
fungi, most of their body comprises vegetatively
spreading mycelium in soil, reaching up to 100m in
extreme cases (Douhan et al., 2011). Therefore, in
certain fungal groups, our sampling may capture the
same individual multiple times, which less likely
occurs in mesofauna or protists. This could result in
spatial aggregation of species that may consequently
affect DDS (Morlon et al., 2008). The spatial structure
in other groups may be detectable beyond the scale
of our study. For example, spatial structure in
nematode populations can be detected at the scale
of more than tens of metres (Liang et al., 2005),
whereas bacterial communities shift within a few
millimetres because of differences in soil microha-
bitats (Zhou et al., 2004). Soil animals comprise
organisms of very different size and mobility, which
may blur their distribution patterns because of
multiple conflicting signals. Because of the strong
effect of grain size on the detection of spatial
structure (Nekola and White, 1999), the resolution
of our samples, including their lag distance (1 cm)
and grain size (5 cm), could have been insufficient
for detecting spatial aggregation in some of the
groups.

Our data also indicate that heterogeneity of
vegetation rather than edaphic variables may con-
tribute to spatial patterning of soil microbes at the
very fine scale, that is, o2m (Figure 5). We found
significant spatial autocorrelation in plant commu-
nities, neighbourhood effect as well as soil pH and
C:N ratio at the scale ofo2m (Supplementary Figure

S3). These factors exhibited relatively stronger
correlation with community, and partial Mantel
correlograms indicated that these could explain the
observed spatial autocorrelation in certain studied
groups, in particular Rhizaria, EcM, saprotrophic
and pathogenic fungi. Previous studies have shown
that soil chemistry, particularly pH, strongly impacts
microbial communities (Franklin and Mills, 2003;
Rousk et al., 2010). Soil pH and N may be spatially
autocorrelated up to 5m (Ettema and Wardle, 2002;
Pärtel et al., 2008; Baldrian et al., 2010). Besides the
great spatial variability of soil nutrients and pH that
is commonly observed in forest soil (Ettema and
Wardle, 2002; Štursová and Baldrian, 2011), soil
microbial biomass may also be spatially autocorre-
lated up to 10m (Ritz et al., 2004), which may affect
soil spatial heterogeneity and in turn microbial
communities (Lauber et al., 2009). The neighbour-
hood effect of trees and influence of understorey
vegetation were relatively more important in shaping
communities of biotrophic fungi rather than free-
living organisms.

Conclusions

Our study provides empirical support for the assump-
tion of no dispersal limitation in eukaryotic microbial
distribution at small scales. Communities of soil
eukaryote groups with varying size and dispersal
traits exhibit negligible DDS patterns and little
correspondence to deterministic factors along a weak
local environmental gradient, indicating stochastic
distribution patterns consistent with neutral theory.
For all groups, mass effect and ecological drift appear
to be the main drivers of communities in the absence
of environmental gradients. Nevertheless, we detected
some level of spatial autocorrelation in certain groups,
in particular EcM and pathogenic fungi, which mainly
reflects their correspondence to the spatial structure of
vegetation.
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