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Abstract. Inflammatory rheumatic diseases are the leading causes of disability and constitute a frequent medi-
cal disorder, leading to inability to work, high comorbidity, and increased mortality. The standard for diagnosing
and differentiating arthritis is based on clinical examination, laboratory exams, and imaging findings, such as
synovitis, bone edema, or joint erosions. Contrast-enhanced ultrasound (CEUS) examination of the small joints
is emerging as a sensitive tool for assessing vascularization and disease activity. Quantitative assessment is
mostly performed at the region of interest level, where the mean intensity curve is fitted with an exponential
function. We showed that using a more physiologically motivated perfusion curve, and by estimating the kinetic
parameters separately pixel by pixel, the quantitative information gathered is able to more effectively character-
ize the different perfusion patterns. In particular, we demonstrated that a random forest classifier based on pix-
elwise quantification of the kinetic contrast agent perfusion features can discriminate rheumatoid arthritis from
different arthritis forms (psoriatic arthritis, spondyloarthritis, and arthritis in connective tissue disease) with an
average accuracy of 97%. On the contrary, clinical evaluation (DAS28), semiquantitative CEUS assessment,
serological markers, or region-based parameters do not allow such a high diagnostic accuracy. © 2015 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.2.3.034503]
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1 Introduction

Arthritis is a chronic systemic disease whose main characteristic
is persistent articular inflammation, which results in joint
destruction and loss of function.! It is one of the most common
causes of disability in industrialized countries, affecting 50 mil-
lion adults in the US, severely impacting both the individual’s
wellbeing and the health care system. Among the adults diag-
nosed with arthritis, 10% of the population suffers from func-
tional limitations attributable to arthritis,” such as difficulty in
stooping, bending, or kneeling, grasping small objects or carry-
ing weights.’

Rheumatoid arthritis (RA) represents the worst outcome
among the different forms of arthritis, causing premature mor-
tality, disability, and compromised quality of life.* An early
diagnosis and effective treatment can avoid the most devastat-
ing effects of the disease, but the differential diagnosis is dif-
ficult, especially at its onset. In general, the assessment of
arthritis activity relies on conventional methods, such as semi-
quantitative joint assessment by the Disease Activity Score
(DAS28) including clinical parameters, serological values
and patients’ activity assessment. However, joint distribution,
clinical manifestations, and radiological appearance may be
identical, especially at the beginning of the disease, even if
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distinct vascularization patterns have been identified in biopsy
specimens.>”’

From an etiopathological point of view, a crucial event in the
pathogenesis of arthritis and RA, in particular, is synovial neo-
vascularization, which is a very early feature of synovial hyper-
plasia. Over time, inflamed synovial tissue grows irregularly
forming invasive pannus tissue, which invades and destroys car-
tilage and bones. Synovial neovascularization correlates with
the activity and aggressiveness of the rheumatoid pannus.®
Hence, the need for a sensitive imaging technique capable of
detecting the grade and extent of intra-articular neovasculariza-
tion and to characterize the microcirculation patterns of different
subtypes of arthritic diseases arises.’

A validated method for the estimation of synovitis is dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI)
with its proven feasibility to detect signs of synovial inflamma-
tion!® and high sensitivity for early inflammatory and destruc-
tive changes in RA joints.!!"'> However, the use of dynamic
DCE-MRI to stratify RA versus other types of arthritis led to
contrasting results and was shown to be useful to differentiate
osteoarthritis from RA!® but did not have diagnostic utility to
distinguish psoriatic arthritis (PSA) from RA.'*!

Contrast-enhanced ultrasound (CEUS) imaging of tissue per-
fusion is based on microbubble echo detection and it allows one
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to noninvasively study the synovial vascularization and local
perfusion variations.'® CEUS has been proven to be a very sen-
sitive tool for assessing arthritis disease activity, at least equiv-
alent to magnetic resonance imaging (with a sensitivity of 95%
in detecting knee osteoarthritis'” and correct differentiation
between active and inactive synovitis in 97.3% of joints'®),
but it has several advantages, such as lower cost, portability,
shorter examination times, and absence of exposure to radiation
or nuclear tracers. However, its capacity in differentiating
among different arthritis forms has rarely been evaluated.'*>

In clinical practice, CEUS data examination is generally lim-
ited to a semiquantitative grading analysis based on International
Arthritis Contrast Ultrasound (IACUS) study group guidelines
performed by a radiologist, who visually identifies macroscopic
areas of vascularization.'® However, it has been proven that a
more complete description of the kinetic perfusion parameters
via quantitative approaches can help in the differentiation
among various disease forms.?* Quantification of CEUS data
is generally performed at the region of interest (ROI) level, i.e.,
analyzing the time activity curve (TAC) obtained by averaging all
the pixel TACs within a specific user-defined region, via the
Qontrast™ software (Esaote S.p.a., Florence, Italy). The ROI
level approach is commonly used to quantify CEUS data by
using nonlinear estimators since ROI TACs are characterized
by a good signal-to-noise ratio. However, a ROI-based approach
causes a loss of spatial resolution as it returns only one set of
estimated parameters for each region. These regional values are
representative of the perfusion behavior within the ROI only if the
pixel kinetics is homogenous. If this is not the case, it does not
allow one to fully describe the perfusion patterns within the syno-
via, leading to an impaired description of the perfusion hetero-
geneity across the joint. On the contrary, pixel level analysis
returns one set of estimated parameters for each pixel of the
image. This allows one to produce parametric maps with the same
spatial resolution as the original CEUS image. The pixel-based
analysis is more susceptible to noise and motion artifacts, but
it gives the possibility to measure localized perfusion variations.

At variance with other imaging modalities (e.g., PET, MRI)
where the transition from region-based to pixel-based quantifi-
cation has already taken place, there are only few preliminary
results on parametric mapping and pixel-based kinetics analysis
in CEUS, mostly limited to preclinical and clinical oncology
studies,”? and only in one case to classify gliobastoma tissues
in humans.*® In these works, it has been proven that a quanti-
tative pixel-based approach can reveal the heterogeneity of the
distribution of the perfusion information®' and produce the most
robust information for tumor diagnostics to separate benign and
malignant cases compared to ROI-based analysis.”®

In this work, we provide a comparison of region-based and
pixel-based perfusion kinetic analysis in a dataset of 115
patients affected by either RA or other types of arthritis [PSA
and undifferentiated spondyloarthritis (uSPA) and arthritis in
connective tissue disease (CTD)] that show similar (i.e., non-
significantly different) clinical and serological values. We show
that by considering the physiological information derived from
CEUS images at the pixel level and then by using the pixel-
based quantitative features, we can more effectively identify the
different perfusion patterns characterizing RA versus other types
of disease. We compared the performance of a random forest (RF)
classifier trained either on the pixel-level parameters, on the ROI-
level parameters, or with the serological values coupled with
semiquantitative assessment of CEUS data from the radiologists.
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2 Materials and Methods

2.1 Dataset

One hundred and fifteen consecutive patients attending the rheu-
matology outpatient clinic of the University of Padova Hospital
between 2008 and 2013 were recruited for the present study.

The cohort included 57 patients with RA (8 males, 49 females;
age: 56.3 + 11.5 years, disease duration: 11.1 & 8.8 yrs) and
58 patients with nonrheumatoid (non-RA) forms (22 males,
36 females; age: 52.5 & 12.5 years, disease duration: 10.5 &
6.8 yrs) (Table 1). Among the non-RA patients, 28 had distal
predominant (dpPSA) and 13 polyarticular RA-like PSA, 11
uSPA, and 6 had arthritis in CTD. All patients showed signs
of inflammatory finger joint involvement. The patients had to
be at least 18 years old and they had to fulfill the criteria for
either RA, dpPSA, RA-like SPA, uSPA, or CTD. We excluded
patients with major cardiopathy due to potential risks for the use
of contrast.

Blood tests were performed, including C-reactive protein
(CRP [mg/L]), erythrocyte sedimentation rate (ERS [mm/h]),
by the Westergren method], rheumatoid factor (RF [u/mL]), and
antibodies against cyclic citrullinated peptides (anti-CCP
[U/mL]). These values were used to assess serologic inflam-
matory activity levels.

The most active joint was chosen for CEUS examination and
the clinical diagnosis (as RA, dpPSA, RA-like PSA, Uspa, or
CTD) was performed by the rheumatologist based on the clini-
cal patient examination and blood exams. RA was classified fol-
lowing American College of Rheumatology/European League
against Rheumatism classification criteria of 2010.3? Diagnosis
of RA-like PSA was established by classification criteria for
psoriatic arthritis (CASPAR) and divided into five clinical pat-
terns.**** Classification of uSPA was based on the guidelines
presented in Ref. 35. Last, arthritis in CTD was evaluated as
in Refs. 36 and 37. The standard and accepted means of defining
RA/non-RA arthritis is by use of such classification criteria by
the rheumatologist, who performs the clinical diagnosis.*? This

Table 1 Demographic characteristics in the patient populations.
Patient populations are characterized in terms of clinical values (dis-
ease duration, age, sex, and therapy) as mean and standard deviation
(SD). Rheumatoid arthritis (RA) and non-RA [dpPSA, RA-like psoriatic
arthritis (PSA), undifferentiated spondyloarthritis (uUSPA), and connec-
tive tissue disease (CTD)] are reported separately. Significant
differences in the means are evaluated with a one-sided ttest
(p-value < 0.05).

Disease duration  Age Sex

(years) (years) (M/F) Steroid (mg)
RA Mean 11.1 56.3  8/49 4.70
SD 8.8 11.5 3.56
Non-RA Mean 10.5 525  22/36 413
SD 6.8 12.5 4.20
t-test 0.70 0.09 0.44
P n.s. n.s. n.s.

Note: n.s., nonsignificant.
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was then used as ground truth for the subsequent classification
scheme.

2.1.1 Imaging acquisition

Each patient’s selected joint was examined with CEUS as pre-
viously described,'” using a 7-MHz transducer US device
(MyLab25, EsaOte) equipped with contrast tuned imaging
(CnTI,; Esaote), using a low mechanical index. The mechanical
index and acoustic pressure were set at 0.1 and 30 kPa, respec-
tively. The joints were investigated in a sagittal plane from a
dorsal view with the hand in a neutral position. The contrast
agent for the CEUS analysis was microbubbles filled with sulfur
hexafluoride (SonoVue; Bracco International, Princeton, New
Jersey). A 4.8-mL bolus of contrast agent was injected into a
peripheral vein of the opposite arm, followed by the injection
of 20-mL saline solution. The selected joint was scanned in
CnTI mode. The recording of the dynamic phases began simul-
taneously with the bolus injection and continued for 2 min.

Gray-scale US (anatomical B-mode image) was used to
gather information on the joint space. The videos obtained
were recorded as uncompressed AVI files (11 £ 2 frames/s)
and they were digitally stored for subsequent quantitative analy-
sis or manual review.

All patients gave their informed consent to the examination,
to the intravenous administration of the contrast agent, and to the
participation of the study that was approved by the local institu-
tional ethical committee.

2.1.2 Clinical assessment

Synovial contrast enhancement was graded independently by
two radiologists using a semiquantitative three-point scale (0
to 2) as recommended by the JACUS study group:'® grade 0
indicates no visible synovial contrast enhancement, grade 1 indi-
cates a detectable enhancement but less than in the periarticular
tissues, and grade 2 indicates an enhancement definitely

IACUS Grade

CEUS
B-Mod
Early phase REE

CEUS
Peak phase

IACUS Grade

stronger than in the periarticular structures.'® Based on the ultra-
sound appearance and grading, a presumptive diagnosis was
proposed by the radiologists for each patient, considering typ-
ical histopathological features. In fact, RA is assumed to present
a more homogenous synovial enhancement and faster time of
contrast appearance due to linear and branching vessel architec-
ture, whereas dpPSA, RA-like SPA, and uSPA have inhomo-
geneous enhancement both in synovial and perisynovial
region representing entheses and capsules, and later contrast
appearance due to tortuous, bushy vessels. Arthritis in CTD
shows joint effusion without synovitis and neovascularisation.*
Figure 1 reports an example of CEUS images of RA patients
with different IACUS grades.

In addition, the radiologists manually outlined the bounda-
ries of the synovial tissue on the gray-scale US images of
each patient, so that the subsequent analysis could be performed
on the specific ROI represented by the synovia.

2.2 Data Preprocessing

Each examination was composed by an anatomical B-mode
image I, obtained by the gray-scale US, which allows the iden-
tification of the synovial boundaries and the definition of the
corresponding synovial mask /), and by a video / gl)EUS imaging
the kinetics of the contrast medium. Figure 2 reports a workflow
of the acquired data analysis.

In order to provide a reliable analysis, it is imperative that
both the US head and the patient’s joint do not move during
the acquisition and that the anatomical information gathered
from Iy, can be perfectly superimposed to Ig])EUS: since these
conditions are rarely met in clinical settings, it was necessary
to register the gray-scale I,, image to each frame of the
video with a rigid transformation to correct for possible patient
movement and to apply the synovial mask 7,, to the CEUS data.

Following the approach presented in Refs. 22 and 24 to regis-
ter two different acquisitions, we exploited the high reflectivity
in both modalities of the superficial tissues of the joint and of the

IACUS Grade

Fig. 1 Contrast-enhanced ultrasound (CEUS) data of rheumatoid arthritis (RA) subjects. The B-mode
ultrasound image used as anatomical reference is shown (top panel), together with a CEUS image from
an early (middle panel) and late (bottom panel) perfusion phase. Each column represents an RA patient

with a different grading (from 0 to 2, left to right).
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Fig. 2 Profile of a gamma-variate curve. An example of gamma-variate (blue) with the main parameters
of interest (fo, timegise, tiMepear, timeyasn, Peak value, MTT, blood volume index, blood flow index).

bones. These structures are identified in I,q, in the estimated
Tasetine = Erc15 s [[Cpus] (i, the mean of the harmonic images
throughout the first 1.5 s) and on each frame of I<Ct]>iUS by seg-
menting all pixels with intensities greater than the 95% percen-
tile of the image intensities. The displacement between I, and
Tyaseline> and between each couple of subsequent frames Ig)EUS
and IC’]J{US, was calculated using the maximum of the phase cor-
relation and was used to map each position on one image into
the corresponding position on the other.

Once each patient’s CEUS data were registered on the cor-
responding synovial mask, the perfusion TAC from each pixel
within the outlined synovia were extracted (cpixer (), for
i=1,...,N;, N; is the number of pixels in the synovia of
the j’th patient, j = 1,..., M).

Additionally, the TAC from each pixel within a region sur-
rounding the outlined synovia has been extracted."”

2.3 Model

The CEUS kinetics cpiyer;;() was described with a gamma-var-
iate function as in Refs. 22 and 24:

b t<t

Cgamma(t) = { )} @)

bt+a-(t—ty)*-e 7 t>ty

where 7, represents the contrast arrival time in the ROI, and a
and S are two parameters that modulate the raise and washout of
the dye from the vascular bed, whereas a accommodates the
model for different peak intensity levels and b for different back-
ground (or baseline) intensity. An example of the gamma-variate
function is reported in Fig. 3.

In order to reduce the computational requirement of identi-
fying the five parameters [fy, a, b, a, §] describing the model of
Eq. (1) for each pixel in the synovial regions, we chose to cal-
culate the baseline intensity b as the mean intensity of the first
25 frames corresponding to the first 1 s of the harmonic imaging,
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usually free from contrast signal. Therefore, the parameter vec-
tor to be estimated for each i’th curve is p; = [ty, a, a, f].

From these parameters, a set of additional model character-
istics can be derived, such as the peak value, the time of peak,
the raise time, time,;, and the washout time, time,,,q, (com-
puted as the time needed to raise the intensity from the baseline
value to half maximum and from the peak value to half maxi-
mum, respectively), the blood flow index (BFI) and the blood
volume index (BVI), for a total of 10 parameters for each curve
(Fig. 3).3%40

2.4 Region of Interest Versus Pixel Level Analysis

The kinetic estimation analysis was carried out both at the
region and pixel levels.

Regarding the region-wise analysis, for each subject there
were two different regions of interest, the synovia and the peri-
synovia, drawn by the radiologists. For each region, the ROI
TACs were defined as the average of the pixel perfusion curves
within the manually outlined synovial and perisynovial regions.
In particular, given the N spatial points s; = (x;, y;) within the
mask 7, that show a significant enhancement, considered as the
difference between baseline value and peak value larger than a
fixed threshold 9, the regional perfusion curve cCregion(t) is
defined as

1 1
Cregion(t> = NZIgI)EUS ('xi’ yl) = Nchixel(t)' (2)

i

The value of the threshold was set to 20% based on previous
studies."

The ROI TACs were described with the gamma-variate
model of Eq. (1) and the parameters were identified by means
of a nonlinear least square fitting, obtaining a set of estimates
P = [to, a, a, B, peak, ime ey, iMe,yise , timey gy, BFL, BVI]  for
each region.
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Fig. 3 Data analysis workflow. The first block consists of the acquis-
ition of the B-mode image and of the CEUS video. In the preprocess-
ing phase, the synovia is manually drawn on the B-mode image and
the motion correction is performed on the CEUS data, which are then
coregistered. In the last block (quantification), the synovial time-activ-
ity curves are extracted and the kinetic parameters are estimated both
at region and pixel level.

Then for region-based analysis, for each subject, 20 param-
eters were available (10 for the synovial perfusion and 10 for the
perisynovial perfusion) and used as regional features.

On the other hand, when considering a pixel-based approach,
each pixel curve cpix was analyzed independently and
described with the same gamma-variate model of Eq. (1). One
set of 10 parameters was identified by means of a nonlinear least
square fitting for each pixel. We selected as pixel-based features
the mean value, the standard deviation, and the 25th and 75th
percentiles for each model parameter, so that 80 perfusion fea-
tures were obtained (40 for the synovial perfusion and 40 for the
perisynovial perfusion).

Table 2 reports a summary of the features derived from the
quantification analysis of CEUS data.

2.5 Statistical Analysis

Demographic and serological population values were tested for
statistical significance with a one-sided #-test to assess their
mean difference.

CEUS semiquantitative analysis (grade and presumptive
diagnosis) and serological values (anti-CCP, RF, DAS28, CRP,
and ERS) were also correlated across all subjects in terms of
Pearson’s correlation (R) in order to evaluate their redundancy.

The performance of the gamma-variate model to fit the data
was assessed in terms of visual comparison of the data model fit,
the variability of the estimates expressed as their between-sub-
ject standard deviation, and the percentage of model failures at
the region and pixel levels (failure rate). For the region and pix-
elwise analysis, failures were defined as estimates with non-
physiological (negative) or unreliable [with a coefficient of
variation (CV) >200%] values. The CV returns information
about estimate precision. It was calculated from the standard
deviation SD;, of the estimated parameter p, as derived by
the inverse of the Fisher-information matrix and expressed as
a percentage of the estimated parameters as CV =
SD;/p - 100. Eventual failures at the region and pixel levels
were then automatically excluded from the statistical analysis.

Table 2 Quantitative features from regional and pixel level analysis. Summary of the features derived from the quantitative analysis of contrast-
enhanced ultrasound (CEUS) data. At region level, there is one feature for each parameter, whereas at pixel level, we derived four features for each

parameter (mean, SD, 25th percentile, and 75th percentile).

Parameters Region based Pixel based

ty to_Rrol Mean t, SD t, 25th percentile t, 75th percentile t,

a a Rol Mean a SD a 25th percentile a 75th percentile a

a a_Rol Mean a SD a 25th percentile 75th percentile

p B roi Mean g SD g 25th percentile g 75th percentile g

Peak Peak go Mean peak SD peak 25th percentile peak 75th percentile peak

t, ty ROl Mean t, SD t, 25th percentile £, 75th percentile t,
Timeyaise Timeaise_RroI Mean time zise SD time,zise 25th percentile time,,ise 75th percentile time,4ise
Timeyash Timeyash_Rol Mean time,asn SD timeyash 25th percentile timeyagh 75th percentile time,yagn
BFI BFI goy Mean BFI SD BFI 25th percentile BFI 75th percentile BFI
BVI BVI go Mean BVI SD BVI 25th percentile BVI 75th percentile BVI

Note: BVI, blood volume index; BFI, blood flow index; ROI, region of interest.
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In particular, for the pixelwise analysis, we calculated the
pixel features for each subject only using the subset of pixels
where the model provided reliable estimates (CV <200%).

It is worth noting that nonlinear estimators typically have
significant drawbacks when applied pixelwise (i.e., sensitivity
to initial estimates, high computational time, nonconvergence
in a significant percentage of voxels). However, the results
obtained when the estimator converges are characterized by
the same properties as the estimator itself, i.e., nonpolarization,
consistency, asymptotic normality, and efficiency.*! For this rea-
son, the pixel estimates that show physiological values and good
identifiability can be used for the characterization of CEUS data.

2.6 Classification

In order to test the ability of the estimated parameters to char-
acterize different perfusion patterns and to identify the different
types of arthritis, we trained a supervised classifier on the esti-
mated parameter statistics (features). We trained an RF classi-
fier,*>** an ensemble method that has been proven to be
efficient with respect to most single classifiers*’ and to provide
competitive performance with support vector machine and
boosting. On one side, we used the semiquantitative CEUS and
serological values as features; on the other, we used the param-
eters as features obtained from the quantitative analysis of
CEUS examination. In particular, we trained three different clas-
sifiers in order to assess the discriminant power of the following
sets of features:

a. semiquantitative CEUS grade, presumptive radiologi-
cal diagnosis and the serological values (including
DAS28), i.e., no kinetic analysis;

b. all the 20 ROI-wise kinetic parameters derived as in
Qontraxt;

c. pixelwise kinetic features.

Table 3 List of the most relevant 11 pixelwise features. The features’
relevance was determined by computing a permutation test on the
out-of-bag samples. The most relevant features were selected, dis-
carding the noninformative ones, i.e., those that when included in
the classification did not provide any increase in its performance.

Feature Region Feature
1 Synovia mean BFI

2 Synovia SD peak

3 Synovia SD BFI

4 Synovia 75th percentile a
5 Synovia Mean g

6 Synovia Mean BVI

7 Perisynovia Mean t,

8 Perisynovia Mean peak
9 Synovia SD a

10 Perisynovia SD tg

11 Synovia Mean peak
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In the last case, i.e., pixelwise parameters, in order to reduce
the computational complexity and to discard noninformative
features, the importance of each feature has been evaluated
by computing a permutation test on the out-of-bag samples. By
this means, a reduced set of the most relevant 11 features was
selected: increasing their number did not provide any increase in
the classification performance.

Table 3 reports the reduced set of 11 pixelwise features
derived from the permutation test.

In order to assess the statistical power of each set of features
for distinguishing different types of arthritis, we used a leave-
one-patient-out validation scheme. At each round of the valida-
tion, the data of the patient under study were set aside as the test
set, while the remaining data were used as the training set. Then
the estimation of the overall accuracy, the sensitivity, and the
specificity of the classification was reported in the confusion
matrix. The classifiers’ accuracy was also compared with the
assessment performed by the radiologists blinded to the clinical
diagnosis.

3 Results

3.1 Clinical Evaluation

The mean serological values for the two populations considered
(RA Versus non-RA) are reported in Table 4.

Only DAS28, RF, and anti-CCP were statistically different
between RA and non-RA patients (p < 0.05). Note that the com-
parison was performed on the between-subject averages of the
serological measures and it is not linked to and it does not imply
diagnostic accuracy.

Figure 4 reports the autocorrelation analysis between CEUS
semiquantitative analysis and serological values: as expected,
the CEUS grade and presumptive radiological diagnosis were
correlated (R = 0.6), indicating the similarity of the information
derived from the radiologist examination. In general, serological
measures were poorly correlated (R < 0.4) with the exception of
CRP and ERS (R = 0.74), indicating that these values carry the
same amount of information. Also, the information derived from
CEUS data was additional and uncorrelated with serological
markers (R < 0.35).

3.2 Kinetic Analysis

One of the main advantages of the pixel-based analysis is that it
is possible to derive kinetic parameters for each pixel within the
synovial area (a so-called parametric map), thus identifying the
activity foci and different perfusion patterns. An example of a
parametric map of the mean transit time and the time to peak
(calculated from the Gamma-variate parameter estimates, as
in Ref. 44) is reported in Fig. 5 for a representative RA subject.

All the parametric maps are presented before correction for
failures. From Fig. 5, it is plain that the synovial area is char-
acterized by a high degree of heterogeneity: the dye kinetics is
not homogenous within the joint and different patterns of func-
tional activity can be observed. The same held when considering
other parameters of interest (like #j, or the time of rise or
washout).

The kinetic analysis at the ROI level did not present any fail-
ures, the model described the data well, and the parameters were
estimated with good precision (on average, each parameter was
reliably estimated with a CV smaller than 20%).
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Table 4 Mean serological values in the patient populations. Patient populations are characterized in terms of serological values [erythrocyte
sedimentation rate (ESR), C-reactive protein (CRP), DAS28, RF, and anti-cyclic citrullinated peptides (CCP)] as mean and SD. RA and non-
RA (dpPSA, RA-like PSA, uSPA, and CTD) are reported separately. Significant differences in the means are evaluated with a one-sided t

test (p-value < 0.05).

ESR (mm/h) CRP (mg/l) DAS28 (unitless)

RF (u/mL) Anti-CCP (U/mL) IACUS grade Presumptive diagnosis

RA mean 35.61 17.70 4.50 144.09 126.76 1.52 0.85
SD 24.27 20.35 1.41 189.79 143.64 0.73 0.36
Non-RA mean 28.02 14.52 3.80 12.53 19.23 0.73 0.57
SD 24.82 24.95 1.47 36.20 50.80 0.70 0.50
-test 0.11 0.46 0.01 0.00 0.00 0.00 0.00
P n.s. n.s. <0.05 <0.05 <0.05 <0.05 <0.05
anti-CCP
RF .36 . !
DAS28 12 .24

CRP .16 .29
ERS A5 30 h
CEUS grade .08 .10 .31 13
CEUS diagnosis| .06 13 .26 .10

anti-CCP  RF DAS28 CRP

Pearson’s
R
.21
ERS CEUS CEUS

grade diagnosis

Fig. 4 CEUS semiquantitative analysis and serological values. Correlations of the serological values
(anti-cyclic citrullinated peptides, RF, DAS28, C-reactive protein, and ERS) and of the semiquantitative
CEUS analysis (grade and presumptive diagnosis) across all subjects are reported in terms of Pearson’s

correlation (R).

When the gamma variate model was applied at the pixel
level, the failure rate increased as expected, and on average
36.5% £ 18.5% and 47.1% =+ 19.2% of pixels had to be elim-
inated for RA and non-RA patients, respectively. Figure 6
reports an example of the failures’ map for two different RA
patients, with IACUS grades of 2 and 0, respectively.

Nonetheless, in the remaining set of pixels where the model
reliably converged, all parameters were estimated with good
precision (on average, all parameters were estimated with a
CV smaller than 45%). Interestingly, f#,, which, in general,
shows estimates characterized by poor precision*’ was also esti-
mated at the pixel level with a CVof 14.8% £ 5.7% and 5.5% +
14.7% for RA and non-RA subjects, respectively.

In Table 5, the between-subject mean and variability of some
of the parameters derived from the kinetic analysis at regional
and pixel levels (9, a, tyay, typ, and BFI) are reported separately
for RA and non-RA subjects. Pixelwise estimates of the arrival
time, the amplitude, and the time rise were higher than those
obtained at the region level, albeit not significantly.

3.3 Classification

When considering only serological values plus DAS28 and
semiquantitative CEUS measures, the RF classifier achieved
a specificity of 93%, but a sensitivity of only 64% with an over-
all accuracy of 84% (Table 6). These results already compared
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positively with the manual assessment of CEUS examinations
alone, performed by the radiologists (blinded to the clinical
diagnosis and of the serological values) that showed a high sen-
sitivity (90%), but indeed a low specificity and accuracy (46%
and 69%, respectively), and with a classifier based on DAS28
and serum markers alone that showed a sensitivity of 72%, a
specificity of 69%, and an overall accuracy of 71%.

Interestingly, the RF classifier trained with the 20 regional
kinetic parameters had a worse performance than that using
manual semiquantitative assessment, achieving a sensitivity of
60%, a sensitivity of 64%, and an accuracy of 62% (Table 7).
This indicates that the regional-based description of the CEUS
data is not sufficient to derive a comprehensive description of
the heterogeneous kinetic activity in the synovia.

When we considered the pixelwise kinetic analysis, the RF
was trained on the reduced set of 11 pixelwise features of
Table 3. With this set of features, the classifier achieved a sen-
sitivity of 95%, a specificity of 100%, and an overall accuracy of
97% (Table 8).

4 Discussion

4.1 Contrast-Enhanced Ultrasound Quantification

CEUS quantification is generally performed at the ROI level
modeling the perfusion curve with a monoexponential
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Mean transit time

Time to peak

Fig. 5 Parametric maps of quantitative kinetic estimates in a repre-
sentative RA subject. (a) The mean transit time and (b) the time
to peak are reported overlayed on the /4 gray-scaled image. A
Gaussian filter (FWHM 2.35 pixels) was used to smooth the images
before visualization. Note the heterogeneous distribution of the kinetic
parameters within the synovia and the presence of areas in the region
of interest with no signal, highlighting the presence or absence of
vascularization.

model,'%***” even if the log-normal or the gamma-variate have

been shown to represent a more physiologically motivated
model to describe CEUS kinetics.**** In this work, the gamma-
variate model was used to describe CEUS kinetics, as previously
reported in Refs. 30, 39, and 49. While in many cases, the mono-
exponential model can accurately describe the region-based
curve, it does not represent the appropriate model for the analy-
sis at the pixel level and in this case, the gamma-variate model
(which is a more general and flexible version of the monoexpo-
nential model**) is to be preferred. In our work, this model prop-
erly described the data both at the ROI and pixel levels, in terms
of a posteriori visual comparison of data fit and of estimate pre-
cision (smaller than 20% and 45% at ROI and pixel level,
respectively).

The estimator used to solve the model both at the region and
pixel levels was the weighted nonlinear least squares. While this
represents the method of choice when analyzing data at the
region level, the use of nonlinear estimators at the pixel level
is difficult and unwieldy because of their computational cost
and the high percentage of failures (~40% and ~50% for RA
and non-RA patients). Thus, future steps will include the devel-
opment of more robust and faster estimation algorithms to
quantify pixelwise perfusion information in a reasonable com-
putational time.

4.2 Region of Interest versus Pixel Analysis

Conventional approaches for quantitative analysis of CEUS data
are mainly ROI-based, where a few relatively large regions are
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RA patient — IACUS grade O

Fig. 6 Map of pixel failures of two RA patients. Parametric maps of
pixel failures, which have been eliminated because nonphysiological
and/or unreliable (in red) in two different disease conditions overlaid to
the correspondent B-mode image. (a) CEUS image of a patient with
IACUS grade 2 (35.9% of failures) and (b) CEUS image of a patient
with IACUS grade 0 (2.4% of failures).

manually selected to generate the average curves and used to
assess perfusion parameters. In literature, there are also some
examples of automatic classification of CEUS data at the region
level for the identification of carotid plaques® and for the iden-
tification of liver lesions®'”? based on Bayesian and support
vector machine classifiers, which are potentially applicable in
different anatomical structures.

This approach benefits from a good signal-to-noise ratio, but
it is operator dependent and it results in a loss of spatial reso-
lution since it does not allow the quantification of the perfusion
information with the same spatial detail as the acquired CEUS
data. Also, the average regional TAC is often not representative
of the complex heterogeneity of the pixel-based perfusion
kinetics in the synovia. Figure 7 reports the perfusion curves
obtained by cluster analysis, identifying the principal kinetics
present in the synovia of an RA subject. It is plain that a
regional-based analysis of CEUS data can only lead to a limited
assessment of the parameters of interest, whereas only a pixel-
based analysis makes it possible to have a more comprehensive
description of the inflamed area.

This is also confirmed by a visual analysis of the parametric
maps reported in Fig. 3: different areas of activity are identified
in the maps of the mean transit time or the time to peak, and this
also holds when considering other parameters of interest (data
not shown).

Therefore, we focused our analysis on the pixel level and the
results confirmed that only taking into account the full
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Table5 Mean and variability of ROI-wise and pixelwise kinetic parameter estimates. The between-subject mean and variability of the estimates of
the arrival time and amplitude of the gamma-variate model (t,, a) obtained with regional level and pixel level analysis in the synovia are reported
separately for RA and non-RA (dpPSA, RA-like PSA, uSPA, and CTD) subjects. Estimates of the derived parameters time of peak (f,ax), raise time
(t,p), BFI are also reported for the same region. Significant differences in the means are evaluated with a one-sided ttest (p-value < 0.05).

ROI-wise a to a B tmax tup BFI
RA 0.07 006 213 129 10 11 332 264 486 326 176 148 0.08 0.05
Non-RA  dpPSA 0.05 0.06 18.6 8.1 09 09 460 318 823 545 235 87 006 0.02

RA like-PSA  0.02 0.02 11.3 77 08 06 510 385 456 28.0 3.6 116 005 0.03

uSPA 0.11 0.10 16.3 110 08 1.2 278 219 288 13.7 8.7 12.5 0.08 0.08
CTD 0.03 0.03 10.0 4.6 1.1 1.2 30.4 3.7 826 67.1 312 460 007 0.03
Total 0.06 0.07 15.9 9.1 09 09 398 295 634 50.3 17.2 224 0.06 0.04
ttest 0.27 0.005 0.96 0.06 0.05 0.19 0.08
p-value n.s. <0.05 n.s. n.s. <0.05 n.s. n.s.
Pixelwise a to a p tmax tup BFI
RA 0.11 0.11 26.4 162 08 09 328 276 451 189 213 13 0.08 0.05
Non-RA  dpPSA 0.10 0.13 2438 118 0.8 1.1 324 294 574 209 267 17.1 0.06 0.03

RA like-PSA  0.05 0.07 19.5 11.2 1.0 13 363 307 415 19.7 15.3 9.8 0.07  0.04

uSPA 0.20 0.12 19.7 109 05 06 417 299 310 13.6 13.1 120 0.08 0.08

CTD 0.02 0.06 26.2 13.8 1.9 14 423 350 982 210 522 270 012 0.05

total 0.10  0.11 245 156 0.9 1.1 334 286 504 248 2238 178 0.07 0.05
Hest 0.51 0.31 0.003 0.52 0.31 0.09 0.02
p-value n.s. n.s. <0.05 n.s. n.s. n.s. <0.05

Table 6 Confusion matrix for the random forest classification using semiquantitative CEUS and serological values. Patient populations are divided
into RA and non-RA (dpPSA, RA-like PSA, uSPA and CTD). Semiquantitative CEUS radiological analysis (CEUS grade and diagnosis) and sero-
logical values (ESR, CRP, DAS28, RF, anti-CCP, plus DAS28) were used for the classification. For each of the two classes, positive and negative
predicted values (PPV and NPV, respectively), specificity and sensitivity are reported. The accuracy is reported in bold values at bottom right.

Clinical diagnosis

RA dpPSA RA-like PSA uSPA CTD
RF classification RA 21 0 5 0 0 0.81 PPV
using CEUS
relidlolog]cal dpPSA
diagnosis
RA like-PSA
USPA 12 67 0.80 NPV
CTD
0.64 0.93 0.84
Sensitivity Specificity
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Table 7 Confusion matrix for the random forest classification using with CEUS ROI-wise kinetic parameters. Patient populations are divided into
RA and non-RA (dpPSA, RA-like PSA, uSPA, and CTD). The classification was performed based on 16 regional kinetic parameters computed as in
Qontraxt. For each of the two classes, PPV and NPV, respectively, specificity and sensitivity are reported. The accuracy is reported in bold values
at bottom right.

Clinical diagnosis

RA dpPSA RA-like PSA uSPA CTS
RF classification RA 34 10 9 2 0 0.62 PPV
using ROI-wise
CEUS dpPSA
RA like-PSA
23 37 0.80 NPV
Uspa
CTD
0.60 0.64 0.62
Sensitivity Specificity

Table 8 Confusion matrix for the random forest classification using with CEUS pixelwise kinetic parameters. Patient populations are divided into
RA and non-RA (PSA, dpPSA, simRA, uSPA, and CTD). The classification was performed based on the 11 kinetic features derived from the
pixelwise analysis of all the subjects. For each of the two classes, PPV and NPV, respectively, specificity and sensitivity are reported. The accuracy

is reported in bold values at bottom right.

Clinical diagnosis

RA dpPSA RA-like PSA uSPA CTD
RF classification RA 54 0 0 0 0 1.00 PPV
using pixelwise
CEUS dpPSA
RA like-PSA
USPA 3 58 0.80 NPV
CTD
0.95 1.00 0.97
Sensitivity Specificity

distribution of the kinetic parameters in the area of interest, it is
possible to accurately differentiate RA and non-RA patients. We
want to stress that we do not propose any novel technique for
image or kinetic analysis, but we provide new insights on what
can be obtained, in term of disease and patient characterization,
with a different quantification approach from that currently used
in the clinical practice. In particular, the main novelty of the
work is in the level of resolution chosen for the analysis
(pixel-based and not ROI-based).

In fact, when the ROI-wise parameters were used to train
the classifier, its performance was even worse than that
obtained when considering only serological values and semi-
quantitative measures. On the contrary, when using kinetic
parameters obtained at the pixel level to train the classifier,
it was possible to differentiate between RA and non-RA
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patients with a sensitivity of 95%, a specificity of 100%,
and an overall accuracy of 97%. These results point out
how a regional-based analysis is not appropriate for the assess-
ment of CEUS data to distinguish among different forms of
arthritis. Also, we demonstrated the possibility of using perfu-
sion parameters to obtain quantitative and reliable information
on the subtle differences in perfusion patterns, even when there
are limited clinical differences. It is important to highlight that
the method proposed here is independent from any serological
measures and from the evaluation of the CEUS images per-
formed by the radiologists. This approach, therefore, removes
the need for serum markers and visual evaluation of CEUS
images from the radiologists, as it greatly improves the clas-
sification results obtained when only serological measures,
presumptive diagnosis, and grading are used.
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Fig. 7 Heterogeneity of kinetic patterns in a representative RA-like
psoriatic arthritis (PSA) subject. (a) The cluster results show the pres-
ence of heterogeneous perfusion kinetics within the same synovial
area in a RA-like PSA subject. Cluster kinetics were derived with
k-means partitioning method® (Euclidean distance, six clusters).
(b) The corresponding time activity curves are reported for each clus-
ter. All the centroids are significantly different (two-sided rank sum
test, p < 0.05).

5 Conclusions

We compared region-based and pixel-based quantitative analy-
sis of contrast kinetics in CEUS, for the assessment of perfusion
patterns in different types of arthritis. While regional analysis
failed in characterizing perfusion variability, pixel-based perfu-
sion markers provided a larger number of kinetic features, the
localization of perfusion patterns from the parametric maps, and
the evidence of kinetics differences in different arthritis.
Moreover, pixelwise analysis provided a high accuracy in dis-
criminating RA from non-RA arthritis, showing the ability of
CEUS in the identification of distinctive vascularization pat-
terns, even when no or mild clinical differences are present.
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