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Abstract
The molecular mechanisms governing T helper (Th) cell differentiation and
function have revealed a complex network of transcriptional and protein
regulators. Cytokines not only initiate the differentiation of CD4 Th cells into
subsets but also influence the identity, plasticity and effector function of a T cell.
Of the subsets, Th17 cells, named for producing interleukin 17 (IL-17) as their
signature cytokine, secrete a cohort of other cytokines, including IL-22, IL-21,
IL-10, IL-9, IFNγ, and GM-CSF.  In recent years, Th17 cells have emerged as
key players in host defense against both extracellular pathogens and fungal
infections, but they have also been implicated as one of the main drivers in the
pathogenesis of autoimmunity, likely mediated in part by the cytokines that they
produce. Advances in high throughput genomic sequencing have revealed
unexpected heterogeneity in Th17 cells and, as a consequence, may have
tremendous impact on our understanding of their functional diversity. The
assortment in gene expression may also identify different functional states of
Th17 cells. This review aims to understand the interplay between the cytokine
regulators that drive Th17 cell differentiation and functional states in Th17 cells.
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T helper subsets and links to autoimmune inflammation
CD4 T cells are essential architects of host immune defense against 
pathogens1,2. Collectively, their effector function is mediated in part 
by a compilation of cytokines that directs differentiation, migration, 
homeostasis, regulation, and inflammation. Initially, CD4 T helper 
(Th) cells were grouped into two distinct subsets defined by produc-
tion of unique cytokines: type 1 helper T cells (Th1) produce IFNγ 
as their signature cytokine and mediate immune responses against 
intracellular pathogens, and type 2 helper T cells (Th2) secrete 
interleukin (IL)-4, IL-5 and IL-13 and drive immune responses 
against extracellular pathogens, like parasites3. In recent years, the 
number of unique subsets has grown to include IL-9-producing Th9,  
follicular T helper cells (Tfh) and IL-17-producing Th17, as well as 
three subsets of T cells that regulate immune responses, including 
Type 1 regulatory cells (Tr1), follicular T regulatory cells (TfR) and 
T regulatory cell (Tregs) (Figure 1)4–6. Each of the effector subsets is 
not only critical for orchestrating a proper immune response against 
specific pathogens but is also a major contributor in the pathogenesis 
of a number of autoimmune inflammatory diseases7.

For a number of years, IL-12-induced Th1 cells were thought to 
be the main drivers of autoimmunity, based on the findings that 
IFNγ-secreting CD4 T cells were frequently found at the site of 
inflammation and treatment with IFNγ led to exacerbated disease 
in multiple sclerosis patients8,9. IL-12 is a heterodimeric cytokine 
composed of two subunits, IL-12p35 and IL-12p40, and is a critical 
factor for the differentiation of Th1 cells10,11. CD4 T cells express a 
heterodimeric IL-12 receptor (IL-12R) composed of IL-12Rβ1 and 

IL-12Rβ2 subunits12,13. Upon exposure to IL-12, the master tran-
scription factor Tbx21 is induced, which transactivates IFN-γ, and 
the cells differentiate into Th1 cells14,15. The importance of Th1 cells 
in autoimmune diseases was further supported by findings that pro-
tection from experimental autoimmune encephalomyelitis (EAE), an 
animal model of multiple sclerosis, was observed upon neutraliza-
tion with anti-IL-12p40 or in IL-12p40–/– mice16,17. However, it became 
clear that Th1 cells may not be the exclusive drivers for autoimmu-
nity when it was discovered that mice lacking critical components 
of the Th1 differentiation pathway, such as IFNγ, IFNγR, IL-12Rβ2, 
and IL-12p35, were highly susceptible to EAE, suggesting that Th1 
cells may even be protective in autoimmune diseases18–22.

Discovery of IL-23- and Th17-associated pathogenic 
inflammation
In the late 1990s, a novel cytokine called IL-23 that belongs to the 
IL-12 family of cytokines was discovered23. Interestingly, similar 
to the functional IL-12 cytokine, IL-23 had an IL-23 p19 subunit, 
which combined with the IL-12 p40 subunit of IL-12, to develop 
a functional heterodimeric cytokine24. Loss of either IL-23 p19 or 
IL-12 p40 chains made mice highly resistant to the development 
of EAE and other autoimmune diseases, suggesting that IL-23 is a 
cytokine critical for development of autoimmunity17,25,26. However, 
unlike IL-12, IL-23 did not induce IFNγ production from naïve 
CD4 T cells24,27, but it was suggested that IL-23 may be critical for 
the generation of IL-17-producing Th17 cells. A series of in vitro 
studies showed that IL-23 could not induce differentiation of naïve 
T cells into IL-17-producing Th17 cells. In fact, it was discovered 

Figure 1. The diversity of CD4 subsets. CD4 T helper subsets identified with differentiating conditions as well as the signature cytokines they 
are known to produce. Th17 cells are further subtyped based on cytokine conditions that define pathogenic versus non-pathogenic states.
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that the receptor for IL-23 was not even expressed on naïve CD4 T 
cells, suggesting that other cytokines besides IL-23 may be criti-
cal for the generation of Th17 cells28–30. In fact, we31 and others32,33 
showed that Th17 cells are differentiated in the presence of TGF-β1 
and IL-6, which resulted in the induction of a unique master tran-
scription factor called RORγt. While IL-23 was not required for the 
differentiation of Th17 cells, it was revealed to be a critical factor 
for stabilization of the Th17 phenotype and in evoking pathogenic 
phenotype in Th17 cells. With ensuing studies it became clear that 
IL-23, not IL-12, was the critical cytokine for driving autoimmune 
inflammation. IL-23p19–/–, IL-12p40–/– and IL-23R–/– mice17,25,26  
were completely protected from developing a number of murine 
models of autoimmune diseases including EAE, psoriasis, and coli-
tis. Consistently, Genome Wide Association Scans have reported a 
strong genetic linkage to single nucleotide polymorphisms (SNP) 
in IL-23 or IL-23R, with increased susceptibility to several human 
autoimmune diseases34–40. However, the clearest role of Th17 cells 
in human autoimmune diseases was supported by clinical studies 
where neutralization of IL-17 by an anti-IL-17 antibody (Secukimu-
mab) resulted in clinically beneficial results in a number of human 
autoimmune diseases, including psoriasis, ankylosing spondylitis, 
and multiple sclerosis41–45.

Heterogeneity within the Th17 subset
Although Th17 cells have become synonymous with autoim-
mune tissue inflammation, it is now clear that not all Th17 cells 
are pathogenic or induce tissue inflammation46. In human inflam-
matory bowel diseases (IBDs), neutralization of IL-17 or blockade 
of IL-17 receptor (IL-17Ra) resulted in disease exacerbation, sug-
gesting a possible protective role by Th17 cells47. IL-17-produc-
ing T cells that line the gut mucosa do not induce inflammation 
but have been shown to be necessary to maintain the barrier func-
tion of the gut48. Commensal bacteria in the gut may play a criti-
cal role in the generation of Th17 cells in the lamina propria and, 
indeed, there is an absence of IL-17-producing cells in the lamina 
propria of the small intestines in germ-free mice49,50. There is also 
evidence suggesting that IL-17 is required to prevent pathologic gut 
inflammation in a CD4 T cell-mediated transfer model of colitis, as 
cells lacking the capacity to produce IL-17, or the lack of IL-17R 
in recipient mice, resulted in exacerbated colitis51,52. These studies 
alluded to a rather novel concept: that Th17 cells are not uniform 
in function. In fact, we53 and others54,55 have shown that Th17 cells 
come in two flavors: one in which they cause pathogenic tissue 
inflammation and autoimmune disease and the other that is non-
pathogenic, in that they fail to provoke autoimmunity, especially 
in murine T cell models of inflammatory disease (Figure 1)53–55. 
Th17 cells differentiated in the presence of TGF-β1 and IL-656,57 
co-produce IL-17 with IL-10, do not induce tissue inflammation, 
and in fact may inhibit autoimmune inflammation, and thus are 
characterized as “non-pathogenic” Th17 cells55. However, upon 
exposure to IL-23, a “switch” occurs in the Th17 cell transcriptome, 
which not only allows for stabilization of the Th17 phenotype but 
also converts non-pathogenic Th17 cells to become pathogenic53,58. 
These IL-23 experienced Th17 cells have been shown to promote 
destructive inflammation in numerous T cell-dependent murine 
models of autoimmunity53,58. IL-23 inhibits IL-10 production and 
instead promotes secretion of IL-22 and GM-CSF, suggesting that 
IL-23 drives the development of Th17 cells with unique functional 
properties59–61. This raises an important question: how does IL-23 

induce pathogenicity in Th17 cells? Our studies revealed that IL-23 
mediates important changes in the transcriptome of differentiating 
Th17 cells53. Besides the induction of a number of unique tran-
scription factors, IL-23 induces TGF-β3 production in developing 
Th17 cells53. We showed that TGF-β3 together with IL-6 in vitro 
induces differentiation of pathogenic Th17 cells, without any need 
for further exposure to IL-2353. Similarly, John O’Shea54 and Chen 
Dong’s62 groups showed that naïve T cells exposed to IL-1β, IL-6 
and IL-23 could induce Th17 cells that were highly pathogenic. 
Thus, by varying the cytokine cocktails in vitro, both pathogenic 
and non-pathogenic Th17 cells can be generated. Based on these 
observations, we undertook a systematic transcriptome analysis of 
Th17 cells in order to develop a novel gene signature that function-
ally distinguishes Th17 subsets.

Transcriptional gene signatures for pathogenic Th17 cells
When we compared the gene expression profiles of all known possi-
ble in vitro differentiation combinations that induce pathogenic and 
non-pathogenic Th17 cells, we found 434 genes that were differ-
entially expressed between these different Th17 subtypes53. Of the 
434 genes, 233 genes were differentially expressed between highly 
pathogenic and non-pathogenic Th17 cells53. Based on the biologi-
cal function, we identified a representative subset of 23 genes that 
was highly suggestive of driving pathogenicity53. Pathogenic Th17 
cells induced expression of various effector molecules that have 
been shown to be pro-inflammatory, such as Cxcl3, Ccl4, Ccl5, Csf2 
(GM-CSF), Il3 (associated with Csf2), Il22, Gzmb (Granzyme B)  
and, interestingly, transcription factors that are associated with 
the Th1 phenotype such as Tbx21 (Tbet) and Stat453. Conversely, 
non-pathogenic Th17 cells revealed a gene signature that included 
molecules associated with regulation, such as Il10 and transcrip-
tion factors that regulate IL-10 production, such as Ahr and Maf in 
addition to Ikzf3 (Aiolos)53. In addition, non-pathogenic Th17 cells 
express Il1rn (IL-1R antagonist) which might antagonize functions 
of IL-1 in differentiating Th17 cells into a pathogenic phenotype53. 
Based on the comparative gene expression profiles between patho-
genic and non-pathogenic Th17 cells, our group identified a gene 
signature that may confer pathogenic phenotype to Th17 cells53.

The dichotomous nature of Th17 cells may not be a mere in vitro 
cytokine artifact but may have occurred naturally as a consequence 
of evolutionary pressures to defend against different types of patho-
gens. Federica Sallusto’s group was first to show that human Th17 
cells producing IL-10 in conjunction with IL-17 have specificity 
for Staphylococcus aureus infection63. Conversely, Th17 cells  
that do not produce IL-10, but instead produce IFNγ with IL-17, 
have specificity for Candida albicans infection, suggesting that, 
evolutionarily, Th17 cells may have diverged to acquire different 
cytokine profiles, to become more adept in defense against specific 
pathogens63. This is in line with clinical observations with immune-
deficient patients, where the loss of transcription factor Stat3, which 
inhibits development of all Th17 cells, results in hyper IgE syn-
drome and the patients develop rampant C. albicans and S. aureus 
infections64. Thus, based on our study, we’ve uncovered an interest-
ing overlap in the gene expression profiles of Th17 cells specific 
for C. albicans or S. aureus in humans with pathogenic versus non-
pathogenic Th17 cells in mice. The gene expression profile reveal-
ing an IL-17/IFNγ signature which was specific for C. albicans 
in humans had similarities to more pathogenic pro-inflammatory  
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murine Th17 cells which cause severe EAE. Conversely, the gene 
profile for IL-17/IL-10-producing Th17 cells specific for S. aureus 
were comparable to a more non-pathogenic, regulatory gene signa-
ture53,54. This was highly suggestive of how evolutionary pressures 
have fine-tuned different effector cells for clearing different types 
of pathogens and utilized the same cells for the induction of tis-
sue inflammation or to mediate tissue protection, albeit with small 
changes in the transcriptome.

Challenges in understanding the functional outcome 
of Th17 heterogeneity
It has become clear in recent years that Th17 cells may have diver-
gent functions53. We are just beginning to understand the functional 
consequences of this extensive heterogeneity of Th17 cells65. Though 
gene expression profiling has endowed us with the ability to iden-
tify a signature that distinguishes pathogenic from non-pathogenic 
Th17 cells53, we do not know how these cells are naturally derived 
in vivo or what their function is in mediating tissue homeostasis, 
effector function, inflammation or cancer. For example, do these 
pathogenic or non-pathogenic Th17 cells develop simultaneously 
during differentiation in the lymphoid tissue or is there plasticity 
in the development of Th17 cells such that they can inter-convert 
based on the environmental cues they receive? Or perhaps there is a 
sequential development: do non-pathogenic Th17 cells convert into 
pathogenic Th17 cells during the course of maturation or differen-
tiation? Also, given that the location of the IL-17 producing cells 
in the peripheral tissue is critical in dictating their function, this 
raises the issue of how much the peripheral tissue microenviron-
ment alters the developmental programming of Th17 cells. Much 
remains to be understood in terms of how and why Th17 cells retain 
heterogeneity and how it influences their functional states.

In recent years, examination of heterogeneity at a single-cell reso-
lution has become possible by high throughput single-cell RNA 
sequencing of whole genomes and transcriptomes66,67. Single-cell 
RNA sequencing allows for profiling and characterization of 
expression variability on a genomic scale, which provides us with 
the ability to correlate this genomic heterogeneity with functional 
differences in Th17 cells68,69. In fact, single-cell RNA sequencing 
of Th17 cells obtained from different tissues and lymphoid organs 
is allowing identification of novel regulators of functional states 
(pathogenic versus non-pathogenic) of Th17 cells (unpublished 
observation from our lab). Transcriptomic analysis of T cells in 
the secondary lymphoid organs following activation does provide 
valuable clues into the differentiation state acquired by the T cells, 
but it does not identify the functional state that may be attained 

by Th17 cells upon arrival into the tissue niche. The functional 
states (pathogenic/non-pathogenic) of the Th17 cells may be partly 
dependent on the cytokine milieu and tissue microenvironment 
to which the cells migrate in order to mediate effector functions. 
Utilizing the pathogenicity gene signature derived from our earlier 
studies53 as one of the definable parameters used to analyze single-
cell sequence data, our lab has discovered that the functional states 
of Th17 cells may be in constant flux as the T cells mediate tissue 
inflammation (unpublished observation). Uncovering key regula-
tors that control effector functions of Th17 cells may permit novel 
treatment approaches for therapeutically inhibiting inflammation 
without affecting the protective functions of Th17 cells.

However, assigning function to these novel regulators will require 
genetic manipulation undertaken at a large scale. Unfortunately, 
the only way to confirm the function of a gene is through the use 
of knockout mice or genetic knockdowns in the cells and disease 
models65,70. The use of viral vectors or transfection-based si-RNA 
delivery was not effective in this endeavor, due to the changes 
in either the differentiation or cell viability induced by these  
manipulations71,72. Also, to generate a knockout mouse of every novel 
regulator identified at a single-cell level is an impossible undertak-
ing. To bypass these obvious limitations, our lab in collaboration 
with Hongkun Park’s lab has developed a novel system of silicon 
nanowire perturbations where newly discovered candidate genes can 
be knocked-down at a large scale, which has improved the process 
of functional validation65. Silicon nanowire perturbation allows for 
the delivery of siRNA effectively and efficiently into native T cells 
without the burden of activation or differentiation65,73,74.

The future
Armed with next-generation sequencing and silicon nanowire 
knockdowns, the pathogenic potential of subpopulations within 
Th17 cells can be revealed and novel regulators that may drive func-
tional heterogeneity can be effectively established. Understanding 
the epigenetic and transcriptional controls of various functional 
states of Th17 cells will undoubtedly reveal new treatment para-
digms for autoimmune diseases as well as give us deeper insight 
into the complex network that drives inflammatory versus tissue-
protective functions of Th17 cells.
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