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Abstract
Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system

(CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor path-

ogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water chan-

nel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS,

they mediate astrocyte destruction by complement-dependent and by antibody-dependent

cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from thera-

pies involving type I interferons (I-IFN), NMO patients typically do not profit from such treat-

ments. How is I-IFN involved in NMO pathogenesis? To address this question, we made

gene expression profiles of spinal cords from Lewis rat models of experimental neuromyeli-

tis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an

upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of

these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial,

we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated

the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier

was open. With this treatment regimen, we could amplify possible effects of the I-IFN

induced genes on the transmigration of infiltrating cells through the blood brain barrier, and

on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of

pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats

had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated

neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting

beneficial effects of I-IFN.
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Introduction
Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system
(CNS) which predominantly affects spinal cord and optic nerves, and causes severe, often
necrotic lesions characterized by primary astrocyte destruction and secondary myelin loss [1].
In the serum of most, but not all NMO patients, pathogenic autoantibodies against the water
channel aquaporin 4 (AQP4) on astrocytes are found [2,3]. While there is currently no cure for
this disease, most patients profit from therapies with immunosuppressive corticosteroids, from
plasmapheresis removing their pathogenic antibodies from the serum, or from B cell depletion
[4]. Surprisingly, NMO patients show peculiar responses to treatment strategies involving type
I interferons (I-IFN) like interferon-alpha (IFN-α) or interferon-beta (IFN-β), which sets them
clearly apart fromMS patients usually benefitting from such therapies [5–9]. Often, NMO
patients do not profit from I-IFN therapy [10–12], but there are outliers in response: some
patients clearly improve [12,13], while others dramatically deteriorate [6,9,14]. Similarly dispa-
rate are observations from experimental studies indicating that type I interferons (I-IFN) did
either limit [15], promote [16] or not affect [17] the size of lesions with AQP4 loss. What could
be the reason for these findings? To address this question, we studied gene expression patterns
in spinal cords of Lewis rats with experimental neuromyelitis optica (ENMO), with experimen-
tal autoimmune encephalomyelitis (EAE), or without CNS inflammation, and studied spinal
cord lesions in ENMO animals treated at the onset of lesion formation with I-IFN.

Material and Methods

Animals
Lewis rats (7–8 weeks old) were obtained from Charles River Wiga (Sulzfeld, Germany). They
were housed in the Decentral Facilities of the Institute for Biomedical Research (Medical Uni-
versity Vienna) under standardized conditions. The experiments were approved by the Ethic
Commission of the Medical University Vienna and performed with the license of the Austrian
Ministery for Science and Research.

Sources and characterization of patient-derived immunoglobulin
preparations
In this study, two different types of immunoglobulin preparations were used.

First, NMO-IgG preparations containing pathogenic AQP4-specific antibodies. These
derived from therapeutic plasmapheresates or serum of four different patients (“J0”,
“NMO-IgG9”, “Sweden-1” and “pt1”). The NMO-IgGs were essentially prepared and purified
as described [18], adjusted to an IgG concentration of 10mg/ml, and gave equal results. The
use of the plasmapheresates for research was approved by the Ethics Committee of Tohoku
University School of Medicine (No. 2007–327), and by the Regional and National Ethical Com-
mittees of Hungary (3893.316-12464/KK4/2010 and 42341-2/2013/EKU) and Sweden (2013/
153-31 Linköping).

Secondly, a commercially available normal human IgG preparation (Subcuvia™, Baxter,
Vienna), which was used as a negative control in a concentration of 10 mg/ml.

Gene expression analysis
Tissue selection. The spinal cord sections studied were formaldehyde-fixed and paraffin-

embedded (FFPE), and derived from Lewis rats of an experimental series described in detail
before [18]. These animals had been injected with MBP-specific T cells and NMO-IgG derived
from patient J0 [18] (ENMO), with MBP-specific T cells and human control IgG (EAEcoI),
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with MBP-specific T cells and PBS (EAEcoP), with NMO-IgG only, or with human IgG only,
and had been sacrificed on day 5 after the injection of T cells (= day 1 after injection of antibod-
ies or PBS). Animals which were left completely untreated were included as healthy controls.

RNA isolation and probe preparations. This was essentially done as described [19].
Briefly, 25 spinal cord sections/animal of 5 different animals per experimental group were
used. In addition, we used spinal cord cross sections of three healthy controls. The spinal cord
sections covered the entire neuraxis. 6–7 μm-thick tissue sections were pooled in RNAse free
tubes and deparaffinated with Xylol. Then, total RNA was isolated, the mRNA contained in the
isolate was transcribed to cDNA, and one round of RNA amplification and cDNA production
was performed, using for all steps the Paradise1 Reagent System (Arcturus, USA) according
to the instructions of the manufacturer.

Microarray analysis. The cDNA was sent to ImaGenes (Berlin, Germany) for microarray
analysis using 4x44 K Multiplex whole rat genome microarrays (Agilent G4131F). The raw
microarray data were subjected to quantile normalizations prior to comparison between
groups and calculation of fold changes in expression. The normalized signal intensities were in
the range of 2–163000. The Gene expression data were deposited in the GEO database
(GSE73411).

Data analysis. In a first round of data analysis, we only considered genes which were upre-
gulated in ENMO compared to any other control group, and which had normalized signal
intensities> 100. Then, we calculated (1) the fold changes of ENMO: EAE, in which EAE rep-
resented the mean of EAEcoI and EAEcoP, and (2) the fold changes of all T cell mediated dis-
eases (mean value of normalized signal intensities (NSI) of ENMO, EAEcoI and EAEcoP): all
non-inflammatory controls (mean value of NSI from NMO-IgG only, IgG only and healthy
controls). In further rounds of data analysis, we did no longer use a threshold of NSIs (when
we searched for differentially expressed I-IFN response genes), and also considered genes
which were downregulated in ENMO compared to any other control group (when we studied
astrocyte-related genes).

Confirmation of microarray data by quantitative real-time polymerase
chain reactions (qPCR)
For qPCR reactions, EAE and ENMO was induced essentially as described [18]. Unless other-
wise noted, 3 Lewis rats / experimental group were used. The animals were injected with MBP-
specific T cells and NMO-IgG (ENMO), with MBP-specific T cells and human control IgG
(EAEcoI), with MBP-specific T cells and PBS (EAEcoP), with NMO-IgG only (n = 2 rats), or
with human IgG only. 3 PBS-treated animals served as healthy controls. All animals were sacri-
ficed by CO2 inhalation. The spinal cords were dissected, and RNA was prepared and tran-
scribed to cDNA essentially as described [20], using M-MLV Reverse transcriptase (Promega,
Mannheim, Germany) for reverse transcription. qPCR was conducted in a 10 μl reaction mix-
ture containing 5 μl SSoAdvanced Universal SYBR Green Supermix (BioRad, Vienna, Austria),
1 μl template, 0.2 μl forward primer and 0.2 μl reverse primer (each 10 pmol/μl) and 3.6 μl
dH2O in a StepOne Plus real-time PCR System (Applied Biosystems, Vienna, Austria). The
following primer pairs were used: Irf5 (forward: 5´-AGAAGAGGAGGAAGAGGAAGA-3´;
reverse: 5´- GCACAGGTTCTGTGATACTC-3´); Myo1f: forward: 5´- TAAGAGCACCAAG
CCTACAC-3´; reverse: 5´- TGGTACCCCATTTCGATTCA-3´); Cotl1 (forward: 5´- GCGG
ATTACCAGCACTTCAT-3´; reverse: 5´- CAAAATTCTGGACCACCTCCT-3´); Psmb9
(forward: 5´- AGGACTTGTTAGCGCATCTC-3´; reverse: 5´- CATGGTTCCATACACC
TGGC-3´); Gbp2 (forward: 5´- ACTTTGAGTCCAAGGAAGACA-3´; reverse: 5´- GCC
TTAATCCGTTCCACTTC-3´); Tyrobp (forward: 5´- CAGGCCCAGAGTGACAATTAC-3´;
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reverse: 5´- CACAATCCCAGCCAGTACAC-3´); GAPDH (forward: 5´-CCGAGGGCCCAC
TAAAGG-3´; reverse: 5´-ATGGGAGTTGCTGTTGAAGTCA-3´). The reaction mixture was
subjected to an initial denaturation step (30 seconds, 95°C), and then to 40 cycles of denatur-
ation (15 seconds, 95°C) and annealing/extension (1 min, 60°C). ΔCT values were calculated
using GAPDH as reference gene.

Induction of ENMO and treatment with type I interferons
ENMO was established as described [18]. Essentially, Lewis rats were intraperitoneally
injected with activated, MBP-specific T-cells on day 0, injected with 10mg NMO-IgG i.p.
and 5x105 units IFN-β (CHO-derived, U-Cytech, Utrecht, NL) or PBS i.v. on day 4. The
clinical course of the disease was assessed using the following score: 0 = healthy; 0.5 = partial
loss of tail tonus; 1 = complete loss of tail tonus; 2 = unsteady gait, hind limb weakness;
3 = bilateral hind limb paralysis. 12, 24, and 48 hours after the injection of NMO-IgG and
IFN-β, the animals were killed by CO2 overdose. An additional batch of Lewis rats received
1x105 units IFN-α1 (insect-cell derived; U-Cytech, Utrecht, NL) i.v. instead of IFN-β, and
was killed 24 hours later by CO2. Then, the animals were perfused with 4% phosphate buff-
ered paraformaldehyde (PFA). The spinal cords were dissected and immersed for another
18 hours in PFA. The PFA-fixed material was routinely embedded in paraffin and sectioned
for immunohistochemical analysis.

Immunohistochemistry
All stainings were done essentially as described [18] using the mouse monoclonal antibody
ED1 (to stain macrophages and activated microglia; Serotec, Germany), rabbit polyclonal
antibodies against CD3 (to stain T cells; NeoMarkers, Fremont, USA), rabbit polyclonal
antibodies against AQP4 (to stain astrocytes; Sigma, Germany), rabbit polyclonal or mouse
monoclonal antibodies against glial fibrillary acidic protein (GFAP; from Dako, Denmark,
or NeoMarkers, respectively), anti-human immunoglobulin (biotinylated donkey; poly-
clonal; Amersham, UK), anti-complement C9 (rabbit polyclonal [21]), anti-Rab5c (goat
polyclonal; Santa Cruz), anti-5-lipoxygenase (rabbit monoclonal; Cell signaling), and anti-
Ptpn6 (rabbit polyclonal, Abnova). While the AQP4-specific antibodies could be used with-
out antigen retrieval, the other antibodies required heat-mediated antigen retrieval by
steaming the sections for 60 minutes in 50 μM EDTA pH 8.5 (ED1, antibodies against CD3,
GFAP, Rab5c, 5-lipoxygenase and Ptpn6), or a treatment for 15 minutes at 37°C with 0.03%
Proteinase Type XXIV (Sigma) (antibodies against human immunoglobulin and against
complement C9).

Quantitative analysis and statistical evaluation
The mean value of the number of antibody-reactive cells of EAE and ENMO animals was
determined from 3 complete lumbar sections/animal, and the mean value of antibody-reac-
tive cells and the area of AQP4 loss of I-IFN-treated ENMO animals were determined from
1 lumbar and 1 thoracic spinal cord/experimental animal, using a morphometric grid. The
mean values of all animals/experimental group were then used to calculate medians and
ranges. Statistical analysis was assessed by Mann-Whitney U test, using IBM SPSS Statistics
ver. 21. P-values < 0.05 were considered as significant.
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Results

Microarray analysis of ENMO spinal cords yields information about
lesion pathogenesis
Our first round of gene expression studies revealed that 474 genes were upregulated in ENMO
compared to any other experimental group. All genes with available GenBank accession num-
bers (n = 366) were then used as input for the database for annotation, visualization, and inte-
grated discovery (DAVID, https://david.ncifcrf.gov/toolds/jsp) [22–24], to make GO term/
pathway analysis. The functional annotation cluster 1, with an enrichment score of 2.66,
revealed hits with the highest number of records in the GO term pathways “immune response”
(25 records), “antigen processing and presentation” (11 records), “regulation of immune effec-
tor processes” (11 records), “positive regulation of immune responses” (12 records), and
“defense response” (18 records) (S1 Table). These GO term pathways clearly indicated that the
immune system plays an important role in the formation of lesions in the spinal cords of
ENMO animals, but were not yet ideal for direct comparison with pathological findings. There-
fore, we refined our analyses, and made searches using iHOP (http://www.ihop-net.org/) [25],
published information about microarray data sets [26], and PubMed (http://www.ncbi.nlm.
nih.gov/pubmed/) to ascribe differentially expressed genes to targets (i.e. astrocytes) and
humoral (complement, cytokines) or cellular effectors of the immune system possibly involved
in lesion pathogenesis.

We found differential expression of 8 genes suggesting astrocyte responses to excitotoxicity
and injury (Fig 1, Table 1), and upregulation of genes involved in inflammatory processes: 35
genes indicative of presence and/or activation of granulocytes, microglia, and macrophages; 5

Fig 1. Footprints of genes suggesting astrocyte responses to excitotoxicity and injury in the spinal cord, as revealed bymicroarray analysis. In the
first column of pairwise comparison of log2-fold changes in gene expression, mean values were compared between rats receiving T cells and NMO-IgG
(ENMO, n = 5) and their counterparts receiving T cells and subcuvia as control IgG (EAEcoI, n = 5) or T cells and PBS (EAEcoP, n = 5). In the second column
of pairwise comparison of log2-fold changes in gene expression, mean values were compared between a group containing all ENMO plus EAEcoI plus
EAEcoP animals (n = 15, “all T”) and a group containing animals injected with antibodies only (“abs only” (5 animals with NMO-IgG plus 5 animals with
subcuvia as control IgG) or containing healthy control animals only (“hc”, n = 3).

doi:10.1371/journal.pone.0151244.g001
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genes of the complement pathway; 14 genes revealing the presence of T and B lymphocytes;
and 10 genes encoding interleukins/interleukin receptors or suggesting the action/production
of these molecules (Fig 2).

Cumulatively, all the identified changes in gene expression are fully in line with the patho-
logical changes observed in ENMO animals, which are T-cell mediated CNS inflammation and
astrocyte-destruction by complement-mediated cytotoxicity [1,18] and antibody-dependent
cellular cytotoxicity [27,28] executed by activated microglia/macrophages and neutrophils. A
similar accordance between tissue changes and gene expression data had been observed before
by Inglis and colleagues, who analyzed spinal cords of Lewis rats at the peak of active EAE [29].
This suggested that the microarray data on our FFPE material faithfully reflect the tissue
changes observed in histology [18].

We also detected an IL-6 signature, as evidenced by the up-regulation of A2m, Tcirg1,
Rab5c_predicted, and Ptpn6 (Fig 2). This was remarkable since IL-6 signaling is known to play
an important role in NMO [30,31]. Noteworthy, we also found an upregulation of
ENSRNOT00000045433 (= “similar to IFN-α”; Fig 2, S2 Table).

To further verify the expression of some of the upregulated gene products in ENMO vs
EAE, we performed immunohistochemical analysis, concentrating on Ptpn6, Rab5c, and
5-lipoxygenase (S2 Table).

Staining of spinal cords with Ptpn6-specific antibodies revealed the expression of this mole-
cule in activated microglia/macrophages, some neutrophils and T cells (Fig 3A–3C) with
higher numbers of these cells in ENMO than in EAE (Fig 4A–4C).

Table 1. Differentially expressed astrocyte-related genes in spinal cords of Lewis rats with experimental neuromyelitis optica.

Target Id fc ENMO/ EAE fcall T / all non-T Gene
symbol

major function Ref.

NM_001077642 11.8 4.3 Cfd complement factor D (adipsin); alternative complement pathway;
found in astroglioma

[42]

NM_013186 5.7 1.0 Kcnb1 potassium voltage gated channel, Shab-related subfamily,
member 1; Kv2.1; on neurons apposed to astrocytic processes

[43]

ENSRNOT00000002142 1.8 1.2 GluR5 Glutamate receptor, ionotropic kainate 1 precursor (Glutamate
receptor 5) (GluR-5) (GluR5); = Grik1; specifically expressed at
perivascular astrocytic processes;

[44]

NM_078620 1.7 1.1 Slc8a3 solute carrier family 8 (sodium/calcium exchanger), member 3;
highly expressed in astrocytes in response to glutamate-induced
excitotoxicity

[45]

NM_181373 1.6 2.2 Grik3 glutamate receptor, ionotropic, kainate 3 (Grik3), transcript variant
2; = GluR7; throughout the astrocyte; not limited to vascular
profiles

[44]

NM_012818 0.5 1.3 Aanat arylalkylamine N-acetyltransferase; in astrocytes after transient
ischemia

[46]

NM_001005560 0.4 0.9 Pla2g6 phospholipase A2, group VI; = iPLA2; increased expression in
astrocytes leads to augmented Ca2+ signaling in response to
purinergic ATP signaling. Silencing associated with amplified
prostaglandin release by astrocytes.

[47,48]

NM_013144 0.3 0.5 Igfbp1 insulin-like growth factor binding protein 1; leads to, reduced
astrocytic response to injury upon overexpression; found in
hypertrophic astrocytes of MS lesions;

[49,50]

fold changes (fc) above 1 indicate an upregulation in gene expression, fc below 1 indicate a downregulation.

EAE = mean value of EAEcoI and EAEcoP; all T = mean value of all T cell mediated diseases (i.e. ENMO, EAEcoI, EAEcoP)

all non-T = mean value of all non-inflammatory controls (i.e. healthy control animals, animals injected with NMO-IgG only, animals injected with control IgG

only).

doi:10.1371/journal.pone.0151244.t001
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Stainings of spinal cords with anti-Rab5c antibodies shows expression of Rab5c in microglia
and neutrophils (Fig 3D–3I). The number of Rab5c+ cells is higher in ENMO than in EAE (Fig
4D–4F)

Stainings of spinal cords with anti-5-lipoxygenase antibodies yielded higher numbers of
brown, lobulated nuclei in ENMO spinal cords than in their EAE counterparts, which is in line
with the location of 5-lipoxygenase in the nuclear envelope of activated neutrophils [32] (Fig 3J
and 3K), and with the higher numbers of these cells in ENMO compared to EAE [18] (Fig 4G–
4I).

In addition to histological verification, we also verified some of the upregulated gene prod-
ucts by qPCR. Although the cDNA for this experiment derived from fresh tissue and had not
been amplified before, as was the case for the FFPE material used for microarray analysis, we
could confirm statistically significant higher levels of gene expression for Irf5, Myo1f, Psmb9,
Gbp2 and Tyrobp, and a trend for higher expression of Cotl1 in ENMO vs all controls (=
NMO-IgG, subcuvia, PBS), and we could also confirm statistically significant higher levels of
gene expression for Irf5 compared to EAEcoI, and for Gbp2 compared to EAEcoI and to EAEcoP.
There was a trend for higher expression levels of Cotl1, Psmb9 and Tyrobp compared to EAEcoI
and to EAEcoP (Fig 5). Although Myo1f was expressed at higher levels in in ENMO vs all con-
trols, it was–in contrast to the microarray data–not expressed at significantly higher levels in
ENMO vs EAEcoI or EAEcoP. The most likely reason for this discrepancy is a non-linear ampli-
fication of Myo1f transcripts during cDNA amplification of the FFPE-derived material prior to
microarray analysis.

Microarray analysis of ENMO spinal cords reveals footprints of the
action/production of I-IFN
Since we have identified ENSRNOT00000045433 (= “similar to IFN-α”) as up-regulated gene
in ENMO spinal cords, and since NMO patients have an increased I-IFN signature in the
serum [51,52], we next searched whether our gene expression studies by microarrays hit upon
any other I-IFN-stimulated gene (ISG) in the ENMO spinal cords. For this purpose, we used a
list of 387 human/chimpanzee ISGs compiled by Schoggins and colleagues [26] after screening
data sets from 10 different publications on microarrays from various I-IFN-treated cells or tis-
sues [53–62], and also made additional literature searches [63–65]. We found 31 ISGs among
the differentially expressed genes in ENMO spinal cords (Fig 6, Table 2), most noteworthy
interferon gamma inducible protein 30 (Ifi30, also known as gamma-interferon-inducible lyso-
somal thiol reductase (GILT)), which counts among the top 20 upregulated genes in NMO
lesions [66]. Since GO Term pathway analysis only insufficiently assigned these genes to spe-
cific groups, we used PubMed searches to cluster them according to their possible involvement
in ischemic damage (2), ubiquitination (4), antigen processing/presentation and inflammation
(6), activity against pathogens (4), anti-inflammatory action (5), protection from tissue damage
(4), and others (7) (Fig 6, S3 and S4 Tables). Cumulatively, these findings revealed that ENMO
rats have a clear type I-IFN signature in the spinal cord.

Fig 2. Footprints of inflammatory processes in the spinal cord, as revealed by microarray analysis. In
the first column of pairwise comparison of log2-fold changes in gene expression, mean values were
compared between rats receiving T cells and NMO-IgG (ENMO, n = 5) and their counterparts receiving T
cells and subcuvia as control IgG (EAEcoI, n = 5) or T cells and PBS (EAEcoP, n = 5). In the second column of
pairwise comparison of log2-fold changes in gene expression, mean values were compared between a group
containing all ENMO plus EAEcoI plus EAEcoP animals (n = 15, “all T”) and a group containing animals
injected with antibodies only (“abs only” (5 animals with NMO-IgG plus 5 animals with subcuvia as control
IgG) or containing healthy control animals only (“hc”, n = 3).

doi:10.1371/journal.pone.0151244.g002
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Fig 3. Histological confirmation of the expression and cellular sources of key molecules identified by microarray analysis. (A) Interconnection of
Ptpn6 with other molecules differentially upregulated (", fold change) in ENMO compared to EAE. Ptpn6 is recruited by Tcirg1 [33,34], regulates the
production of IL-10 [35], and contributes to CD40 signaling reciprocity [36]. A critical molecule for turnover and subcellular distribution of CD40L is Ptbp1 [37].
Hence, confirmation of Ptpn6 expression supports gene expression data of three additional differentially expressed genes. (B) Spinal cord section of a Lewis
rat with ENMO reacted with antibodies against CD3 (blue surface staining) and Ptpn6 (brown). The section was faintly counterstained with hematoxylin to
reveal nuclei in blue. Shown here is Ptpn6 expression in CD3+ T cells (white arrow heads) and in neutrophils with lobulated nuclei (black arrow head). (C)
Spinal cord section of a Lewis rat with ENMO reacted with the ED1 antibody (blue) and Ptpn6 (brown). In ED1+ activated microglial cells/macrophages, Ptpn6
expression is low (black arrow). (D) Interconnection of Rab5c, which regulates the endocytic pathway and controls the rates of integrin internalization and
recycling [38] with Prkd2, a molecule involved in β1 integrin recycling [39]. Both molecules are differentially upregulated (", fold change) in ENMO compared
to EAE. (E-I) Spinal cord section of a Lewis rat with ENMO reacted with antibodies against Ptpn6 (brown) and Iba 1 (blue) to show the expression of Ptpn6 in
microglia (E,F), CD3 (blue) to show the absence of Ptpn6 expression in CD3+ T cells (G), andW3/13 (blue) to show the expression of Ptpn6 in neutrophils (H,
I). (J) 5-lipoxygenase is stabilized by Cotl1 [40,41], a molecule found 6.4-fold upregulated (", fold change) in ENMO compared to EAE (S1 Table). (K) Spinal
cord section of a Lewis rat with ENMO reacted with antibodies against 5-lipoxygenase (brown). The section was faintly counterstained with hematoxylin to
reveal nuclei in blue. 5-lipoxygenase is localized to the lobulated nuclei of neutrophils.

doi:10.1371/journal.pone.0151244.g003
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Most of the ISGs were already upregulated in EAE (Fig 6, S3 Table, S4 Table), but were fur-
ther increased in ENMO (Fig 6, Table 2). The upregulation of ISGs in ENMO compared to
EAE suggests that they either influence the formation of inflammatory spinal cord lesions pro-
voked by the presence of antibodies and granulocytes in ENMO [18,67], or that they are specif-
ically triggered by this process. These findings raised important questions:

Is the size of astrocyte-destructive lesions seen in ENMO limited by ISGs, as suggested by
the observation of a protective role of I-IFN signaling in EAE [15]? Is their size promoted by
the action of these genes, as suggested by the formation of larger astrocyte-destructive lesions
after intra-cerebral injection of NMO-IgG and complement in I-IFN receptor (IFNAR) suffi-
cient animals than in their knock-out counterparts [16]? Or is the action of I-IFNs neutral, as
suggested from a lack of potentiation of lesions in spinal cord slice cultures exposed to comple-
ment and NMO-IgG for 72 hours after a 24-hour pretreatment with IFN-β- [17]?

Fig 4. Confirmation by immunohistochemistry of differential expression of Ptpn6, Rab5c and 5-lipoxygenase in ENMO and EAE. Shown here are
cross sections of spinal cords from animals with ENMO (A, D, G) and EAEcoI, (B, E, H) reacted with antibodies against Ptpn6 (A, B), Rab5c (D,E) and
5-lipoxygenase (G,H). Reaction products are brown. Counterstaining was done with hematoxylin to reveal nuclei (blue). Statistically significant differences in
the number of Ptpn6- (C), Rab5c- (F), and 5-lipoxygenase- (I) positive cells / spinal cord sections between ENMO and EAEcoI are seen (Mann-Whitney U-
test). Shown here are medians (range). The arrow in (H) points to a weakly stained nucleus of a neutrophil.

doi:10.1371/journal.pone.0151244.g004
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To specifically address these questions, we could not applicate I-IFN in an active ENMO
model induced by immunization with AQP4 in complete Freund´s adjuvans since I-IFN inter-
feres with T cell–dendritic cell interactions in lymph nodes and thus skews the activation and
expansion of T cell subsets [68,69].

Instead, we initiated passive ENMO by transfer of CNS antigen-specific T cells and transfer of
both NMO-IgG and I-IFN or vehicle at the time when first clinical symptoms indicated an open
blood-brain barrier. Under these conditions, I-IFN could enter the CNS not only unspecifically
and passively [70–73], but also in the correct temporal and spatial context of lesion formation. In
such a scenario, the actions of I-IFNs in lymph nodes during the priming phase of immune
responses could be neglected, and the observed effects would only result from an I-IFN effect on
or at the blood brain barrier affecting leukocyte trafficking, and from the amplification of the
local I-IFN responses by the peripherally administered I-IFNs, since “even twofold changes in
IFN levels can result in sixtyfold changes in ISG levels” [74,75]. We reasoned, that under such
conditions, beneficial or detrimental effects of the ISGs should become clearly visible.

ENMO in the presence or absence of the administration of type I
interferons
In a first set of experiments, we treated the ENMO animals with IFN-β or PBS. At the day of
sacrifice, we found comparable clinical scores and NMO-IgG titers, which was ENMOmedian

Fig 5. Confirmation of differentially expressed genes by qPCR. Shown here are the mean relative expression values (+/-SEM) of different gene products
in relation to the house keeping gene glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) of rats receiving T cells and NMO-IgG (ENMO, n = 3), T cells
and subcuvia as control IgG (EAEcoI, n = 3) or T cells and PBS (EAEcoP, n = 3) in comparison to “all controls” (mean value of rats injected with NMO-IgG only
(n = 2), subcuvia as control IgG only (n = 3) and PBS only (n = 3). Unless otherwise indicated, statistically significant differences of the experimental groups
are calculated in relation to “all controls”. (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, one-way ANOVA with Bonferroni multiple comparisons test).

doi:10.1371/journal.pone.0151244.g005
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score 1 with a median antibody titer of 1:80 (range 1:40–1:80; animals killed 12 and 24 hours
after IFN-β injection), and ENMO score 2 with a median antibody titer of 1:40 (range 1:20–
1:40; animals killed 48 hours after IFN-β injection). We also observed the presence of inflam-
matory astrocyte-destructive lesions characteristic for ENMO in both types of animals. At all
treatment times analyzed, spinal cord lesions with AQP4 loss and GFAP loss were smaller, and
contained less CD3+ T cells, ED1+ macrophages/activated microglia and 5-LO+, activated neu-
trophils in IFN-β treated ENMO animals than in their PBS-treated counterparts. These differ-
ences reached significance for a treatment duration of 24 hours (Fig 7, Table 3).

Although IFN-β and IFN-α act through IFNAR, the functional outcome might be different
(for review see [74]), either due to differences in the affinity of IFNAR for these molecules
[104], or due to differences in the stability of IFNAR with its ligands [105,106]. Therefore, we
made an additional experiment and treated the ENMO animals with IFN-α1 or PBS. When we
sacrificed the animals 24 hours later, they had comparable ENMO scores (1.3 vs 1.5,
p = 0.777), comparable antibody titers (median 1:240 vs 1:320, p = 0.091), and ENMO-typical
lesions. As seen before with IFN-β treatment, lesions with AQP4 loss (Fig 7) and GFAP loss
(Table 4) were smaller upon treatment with IFN-α1, although these differences did not reach
significance.

Taken together, treatment of ENMO animals with I-IFN under conditions of an open
blood-brain barrier was clearly beneficial for the animals.

Median size and range of lesions with AQP4 loss (K) or GFAP loss (L) were also determined
after a 24-hour treatment with IFN-α (4 rats) or PBS (5 rats). There was a trend towards
smaller lesions resulting from IFN-α treatment, but did not reach significance (p = 0.221,
Mann-Whitney U test).

Discussion
We report here that Lewis rats with ENMO have a clear I-IFN signature in their spinal cords,
as evident from the expression of ENRSRNOT00000045433 (“similar to interferon-α”), and
also from the expression of ISGs. Although many of these gene products are already upregu-
lated in EAE compared to non-inflammatory controls, the I-IFN signature is clearly more pro-
nounced in ENMO than in EAE. Short-term I-IFN treatment of ENMO rats with an open
blood-brain barrier limited the extent of tissue damage.

In the intact CNS parenchyma, I-IFN levels are extremely low, since plasmacytoid dendritic
cells, the main IFN-α-producing cells [74,107] are absent, since astrocytes and neurons synthe-
size I-IFNs only after engagement of their toll-like receptors 3 in response to viral stimulation
[108,109], and since oligodendrocytes seem to be unable to produce I-IFNs at all [74]. How-
ever, there are a number of reports suggesting that peripheral I-IFN is able to access the CNS
[70–73].

In the inflamed CNS, I-IFNs are produced by infiltrating myeloid cells (dendritic cells, mac-
rophages), and by cells with microglial morphology [110,111], while responses to I-IFN can be
mounted by many types of cells expressing the I-IFN receptor (IFNAR; [112]), e.g. by

Fig 6. Footprints of the action/production of type I interferons in ENMO and EAE, as revealed bymicroarray analysis. In the first column of pairwise
comparison of log2-fold changes in gene expression, mean values were compared between rats receiving T cells and NMO-IgG (ENMO, n = 5) and their
counterparts receiving T cells and subcuvia as control IgG (EAEcoI, n = 5) or T cells and PBS (EAEcoP, n = 5). In the second column of pairwise comparison of
log2-fold changes in gene expression, mean values were compared between a group containing all ENMO plus EAEcoI plus EAEcoP animals (n = 15, “all T”)
and a group containing animals injected with antibodies only (“abs only” (5 animals with NMO-IgG plus 5 animals with subcuvia as control IgG) or containing
healthy control animals only (“hc”, n = 3). The differentially expressed genes shown here belong to 7 different, large groups, i.e. to ischemic damage,
ubiquitination, antigen presentation/antigen processing/inflammation, activity against pathogens, anti-inflammatory action, protection from tissue damage,
and unknown function (“others”). In experimental autoimmune neuromyelitis optica (ENMO), 31 differentially expressed genes are found. 19/32 differentially
expressed genes were already upregulated in all T cell-induced CNS inflammations compared to all other non-inflammatory controls.

doi:10.1371/journal.pone.0151244.g006
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Table 2. Footprints of the action/production of type I interferons in spinal cords of Lewis rats with experimental neuromyelitis optica.

Target Id fc ENMO / EAE fc all T / all non-T Gene symbol major function Ref.

NM_031085 432.4 72.4 Prkch protein kinase C eta; down-regulated through
immune responses; associated with increased
risk of rheumatoid arthritis, ischemic stroke
and cerebral hemorrhage

[76,77]

NM_001106586 6.8 3.1 Irf5_predicted interferon regulatory factor 5 (predicted); highly
expressed in M1 macrophages; promotes
polarization of inflammatory macrophages and
TH1-TH17 responses.

[78]

NM_001030026 5.6 5.1 Ifi30 interferon gamma inducible protein 30; =
Gamma-interferon-inducible lysosomal thiol
reductase (GILT); involved in antigen-
processing by antigen presenting cells; found
among top 20 upregulated genes in NMO
lesions

[66,79]

ENSRNOT00000045433 5.0 0.7 ENSRNOT00000045433 „Similar to interferon-α “

NM_012708 3.6 21.5 Psmb9 Component of immunoproteasome; protect cell
viability under conditions of IFN-induced
oxidative stress; critical for removal of oxidized
proteins

[80,81]

NM_001037353 3.2 0.7 Etv6 ets variant gene 6 (TEL oncogene); represses
Stat3, which is a transcription factor needed for
the antiproliferative effects caused by
cytokines like IL-6

[82]

NM_133624 3.0 83.7 GBP2 guanylate nucleotide binding protein 2; inhibits
cell spreading; role in resistance to intracellular
pathogens

[83,84]

NM_001005883 2.8 0.7 Pi4K2B Phosphatidylinositol 4-kinase type 2-beta [25]

NM_138913 2.6 3.6 Oas1a 2'-5' oligoadenylate synthetase 1A; in antiviral
signaling cascade

[64]

NM_001109053 2.4 0.7 Dtx3l Deltex 3-like; E3 ubiquitin-protein ligase [85]

NM_053346 2.4 1.0 Nrn1 Neuritin; induced by hypoxia; hypoxic
perinecrotic marker

[86]

NM_057124 2.3 1.6 P2ry6 pyrimidinergic receptor P2Y, G-protein
coupled, 6; in T cells and macrophages;
inhibits activation of effector T cells; in
astrocytes: activation prevents TNF-α-induced
apoptosis in astrocytes;

[87–89]

NM_012854 2.1 0.8 Il10 Interleukin 10; antiinflammatory action [25]

NM_001008321 2.0 1.4 Gadd45b Growth arrest and DNA-damage-inducible,
beta; regulates cell growth, differentiation
and cell death following cellular exposure
to DNA damage and TGF-β

[90]

NM_199093 2.0 3.3 Serpin G1 C1 esterase inhibitor; prevents complement
factor C1 autoactivation in the fluid phase and
prevents initiation of classical-pathway
activation on antigen–antibody complexes
when the antibody has low antigen affinity or
interacts weakly with C1q.

[91–93]

CF111193 2.0 4.9 B2m Beta-2-microglobulin; antigen presentation via
MHC class I

[25]

NM_001024755 1.9 1.4 Ube2l6 ubiquitin-conjugating enzyme E2L 6; [25]

NM_001014100 1.7 1.1 Lincr E3 ubiquitin-protein ligase NEURL3; [25]

NM_031318 1.7 0.8 Dynlt1 Dynein light chain TcTex-type 1; upon
phosphorylation, it regulates microtubules and
mitochondria, leads to their stabilization, and
contributes to cellular hypoxic tolerance

[94]

(Continued)
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Table 2. (Continued)

Target Id fc ENMO / EAE fc all T / all non-T Gene symbol major function Ref.

NM_199082 1.7 2.8 Sectm1b Secreted and transmembrane 1B; inhibitory to
T cell receptor-mediated T cell activation

[95]

BQ196649 1.7 1.3 Gpx2 glutathione peroxidase 2; mostly described in
the context of intestinal inflammation

[25]

NM_172224 1.6 1.0 Impa2 inositol (myo)-1(or 4)-monophosphatase 2;
mostly described in context of bipolar disorders

[25]

NM_001109514 1.6 1.2 Slc25a28 Mitoferrin-2; Mitochondrial iron transporter [25]

NM_013069 1.6 2.8 CD74 Invariant chain functioning as MHC class II
chaperone; a chondroitin-sulfate modified
CD74 is expressed on the surface of antigen-
presenting cells as part of the CD44-CD74
receptor complex. This complex found both in
macrophages/monocytes and B cells and is
needed for the binding of macrophage
migration inhibitory factor (MIF). In
macrophages/monocytes, this leads to the
subsequent activation of these cells for optimal
expression of TNF, IL-1, and prostaglandin E2,
and for enhancing phagocytosis; In B cells, it
causes proliferation/survival and results in
maintaining a mature B cell population

[96]

NM_001011921 1.6 3.1 PDGFRL Platelet-derived growth factor receptor-like
protein

[25]

NM_001013895 1.6 1.3 Prkd2 Protein kinase D2; involved in β1 integrin
recycling upon activation of Rab5c; required
for ligand-inducible stimulation of IFNAR1
ubiquitination and endocytosis; many
additional functions

[25,39,97]

NM_030833 1.4 2.2 Ifitm2 interferon induced transmembrane protein 2;
anti-viral

[26]

NM_001009625 1.4 1.1 Ifi35 Negatively regulates antiviral signaling [98]

NM_139341 1.2 1.9 Slc15a3 Endo-lysosomal peptide transporter;
preferentially expressed by dendritic cells after
activation of Toll-like receptors; mediates
egress from peptides into the cytoplasm for
pathogen sensing by NOD2 (nucleotide-
binding oligomerization domain containing 2);
Activation of NOD2 results in the transcription
of genes encoding chemokines, cytokines,
antimicrobial peptides, and type I interferons

[99,100]

NM_198134 1.2 1.4 Bst2 Bone marrow stromal cell antigen 2 (CD317);
readily induced by type I interferons; strongly
inhibits production of IFN and proinflammatory
cytokines by plasmacytoid dendritic cells

[101]

NM_001037353 1.2 1.2 Timp1 Tissue inhibitor of metalloproteinases;
attenuates blood-brain barrier permeability;
regulates access of CD4+ T cells into the CNS
parenchyma

[102,103]

Type I interferon stimulated genes were identified using a list of 387 type I interferon stimulated human/chimpanzee genes compiled by Schoggins and

colleagues [26] after screening data sets from 10 different publications on microarrays from various type I IFN-treated cells or tissues [53–62], and

additional literature searches (bold) [63–65].

Fold changes (fc) > 1 indicate an upregulation in gene expression, fc < 1 indicate a downregulation all T = mean value of all T cell mediated diseases (i.e.

ENMO, EAEcoI, EAEcoP)

EAE = mean value of EAEcoI and EAEcoP; all non-T = mean value of all non-inflammatory controls (i.e. healthy control animals, animals injected with

NMO-IgG only, animals injected with control IgG only)

doi:10.1371/journal.pone.0151244.t002
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infiltrating macrophages [113], plasmacytoid dendritic cells [114–116], neutrophils [117],
microglia [118], T cells [119], and astrocytes [120]. In spite of the widespread expression of
IFNARs, IFNAR-signaling in EAE and ENMO seems to predominantly affect myeloid cells,
since many of the ISGs identified by our microarray analysis are either produced by or act on
macrophages/activated microglia and neutrophils (Table 2).

We found that the expression of ISGs is higher in ENMO spinal cords than in their EAE
counterparts, which is in line with the higher numbers of activated microglia/macrophages in
the inflamed ENMO spinal cords [18], and with the induction of a pro-inflammatory, mono-
cyte recruiting phenotype in astrocytes upon binding of NMO-IgG to AQP4 on their cell sur-
face [121]. Moreover, when we further enhance local I-IFN levels by intraveneous injections of
I-IFN at the onset of lesion formation, the amount of tissue damage caused by NMO-IgG was
clearly reduced. It could be argued that we see less tissue damage due to an enhancement of
activation-induced apoptosis by I-IFN. However, this is unlikely to be the cause, since this
would affect TH17 cells much more than TH1 cells [122], the T cell subset used to induce
ENMO [28][123]. Our findings clearly corroborate earlier studies in mice which demonstrated
that IFNAR signaling in macrophages and microglial cells limited CNS damage in EAE
[15,113]. The most likely explanation for our finding is that the upregulation of ISGs is also
beneficial in ENMO, and that we enhance this beneficial effect by the injection of I-IFN. This
interpretation would be in line with the observation that several of the upregulated ISGs have
tissue protective properties, e.g. Psmb9, P2ry6, Gadd45b, and SerpinG1, while others have
anti-inflammatory properties, like P2ry6, IL-10, Sectm1b, Bst2, and Timp1 (Table 2). More-
over, both I-IFNs produced within the inflamed CNS and the I-IFNs peripherally injected into
the ENMO rats could jointly reduce the neutrophil infiltration triggered by inflammatory cyto-
kines and attenuate the disruption of the blood-brain barrier [124]. This would be especially
important in a disease like NMO or ENMO, where neutrophils play an essential role in lesion
formation [125,126].

Fig 7. Differences in tissue damage between type I interferon-treated animals with ENMO. Size determinations of lesions with loss of AQP4 (A) or
GFAP (B) reactivity in spinal cord sections of ENMO animals treated with IFN-β (blue) or PBS as vehicle control (green) for 12, 24, or 48 hours. Shown here
are median and range of 5 animals per group. Differences between IFN-β and PBS-treated animals were significant after a 24-hour treatment with IFN-β
(p = 0.032, Mann-Whitney U test; The blue and green dots indicate outliers). Shown in C-J are representative spinal cord sections reacted with antibodies
against AQP4 (C-F, brown) or GFAP (G-J, brown) of animals treated for 24 hours with IFN-β (C,G) or PBS (D, H), and with IFN-α (E,I) or PBS (F,J).
Counterstaining was done with hematoxylin to reveal nuclei (blue).

doi:10.1371/journal.pone.0151244.g007

Table 3. Comparison of immunohistochemical findings in ENMO animals treated for 12, 24, or 48 hours with interferon-beta (IFN-β) or phosphate-
buffered saline (PBS; vehicle control).

12 hours 24 hours 48 hours

IFN-β PBS IFN-β PBS IFN-β PBS

# lesions with AQP4 loss 1.1(0.3–2.4) 1.7(0.8–1.9) 1.2(0.7–1.6) 1.4(1.2–1.7) 1.0(0.7–1.4) 0.9(0.8–1.8)

# CD3+ cells 353 (328–489) 446(291–554) 298**(271–340) 540 **(440–642) 460 (393–517) 519 (308–589)

# ED1+ cells 982 (899–1142) 1004 (974–1108) 1024** (952–1184) 1584**(1456–1696) 868 (736–1344) 1048 (832–1460)

# 5-LO+ cells 179 (132–286) 241 (197–339) 120** (98–134) 238** (204–304) 94 (43–130) 112 (53–174)

5 animals/group were analyzed, and all data shown represent numbers (#) / complete spinal cord section expressed as median (range).

CD3+ cells represent T lymphocytes; ED1+ cells represent activated microglia/macrophages; 5-LO+ cells represent activated neutrophils.

** indicates statistically significant differences between the IFN-β and PBS treated animals with experimental neuromyelitis optica (p<0.01, Mann-Whitney

U test).

doi:10.1371/journal.pone.0151244.t003
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At first glance, there seems to be a discrepancy between the seemingly protective I-IFN sig-
nature in ENMO rats culminating in the formation of smaller NMO-like lesions in I-IFN
treated ENMO animals, and the formation of larger NMO-like lesions in wildtype mice com-
pared to their IFNAR deficient counterparts, when both were intracerebrally injected with
NMO-IgG and complement [16]. However, antibody-dependent cellular cytotoxicity executed
by Fc gamma-receptor 3 (Fcgr3)-positive activated microglia, macrophages and neutrophils is
an important factor contributing to the formation of astrocyte-destructive lesions in the pres-
ence of NMO-IgG and complement [27,28], and neutrophils were found in much lower num-
bers in the NMO-IgG/complement-injected CNS of the IFNAR deficient mice [16].

The beneficial outcome of I-IFN treatment of ENMO rats also differs from observations in
spinal cord slice cultures, in which the addition of IFN-β had no effects on NMO-IgG/comple-
ment mediated tissue damage [17]. Most likely, these discrepancies can be explained by differ-
ences in treatment duration (3 days in slice cultures, 2 days and less in ENMO) [127], and by
the absence of immune effector cells crossing the blood-brain barrier in the slice cultures.

To what extent do our data, which were obtained from spinal cords of rats with TH1 cell-
induced ENMO reflect the situation of spinal cords of NMO patients, in which TH17 cells are
thought to play an important role [128], especially since TH17 cells have much higher levels of
IFNAR1 [119]? First, both in our ENMOmodel and in human NMO, activated CD4+ T cells
are found in the CNS parenchyma [28]. Once these cells are within the tissue, it seems to be
irrelevant whether they belong to the TH1 or TH17 subset of cells, since TH17 cells undergo
phenotypic conversion to interferon-gamma (IFN-γ) producing TH1 cells within the CNS
[129,130]. Hence, both types of TH cells can provide the cooperative signaling by IFN-γ needed
for the effects of I-IFN [131]. Secondly, both in the ENMOmodel (see above) and in human
NMO [30,31], a clear IL-6 signature was found. And last, our microarray analysis of ENMO
spinal cords identified Ifi30/GILT as a differentially expressed and upregulated gene, and this
molecule also counts among the top 20 upregulated genes in NMO lesions [66].

Hence, it is tempting to speculate that the gene signature seen within the spinal cords of
ENMO rats reflects the gene signature of the spinal cords of NMO patients. Why, then, do
NMO patients not profit from treatment with I-IFN?

In contrast to our ENMO rats, which received I-IFN as a short-term treatment when their
blood-brain barrier was open, NMO patients were treated for a long time once they were in
remission [5–12]. Hence, in these patients, I-IFN could also affect the differentiation and
expansion of autoimmune T cells [122] and of plasmablasts/B cells. For studies into these
aspects of the action of I-IFN, our model is not suitable, since it is based on passive disease

Table 4. Comparison of immunohistochemical findings in ENMO animals treated for 24 hours with
interferon-alpha (IFN-α) or phosphate-buffered saline (PBS; vehicle control).

IFN-α PBS

# lesions with AQP4 loss 1.5 (0.9–1.9) 1.9 (1.5–2.5)

# CD3+ cells 514 (505–660) 652 (587–692)

# ED1+ cells 1096 (918–1394) 1392 (1096–1843)

# 5-LO+ cells 127 (92–148) 205 (98–212)

4 and 5 animals/group were analyzed in the IFN-α and PBS-treated groups, respectively. The data shown

represent numbers (#) / complete spinal cord section expressed as median (range). CD3+ cells represent T

lymphocytes; ED1+ cells represent activated microglia/macrophages; 5-LO+ cells represent activated

neutrophils. The differences between the different treatment groups were not significant (all p > 0.05,

Mann-Whitney U test).

doi:10.1371/journal.pone.0151244.t004
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induction, i.e. the transfer of high numbers of fully differentiated activated T cells and of
NMO-IgG as humoral effector molecules. One particularly important survival factor for B cells
is B cell activating factor of the TNF family (BAFF) [132–134], also known as tumor necrosis
factor (ligand) superfamily member 13b (TNFSF13b), which is produced by I-IFN-treated
astrocytes, neutrophils, and peripheral blood mononuclear cells. Unfortunately, we could not
obtain information about BAFF in ENMO from our microarrays, since genetic information
about this molecule is only available for humans and mice, but not for rats (iHOP– http://
www.ihop-net.org/, retrieved february 04, 2016). However, in humans, elevated serum levels of
BAFF are associated with increased B-cell proliferation and improved survival of B lineage cells
[135] and could serve as an explanation for the increase in AQP4 antibody titer observed in an
NMO patient in the course of IFN-β treatment [7]. Higher BAFF levels are observed in the CSF
of AQP4-antibody positive NMO patients [136,137], in the group of I-IFN treated hepatitis C
patients progressing to NMO [138,139] or to other types of antibody-associated autoimmune
diseases [140–143], and in the serum of patients with other antibody-driven autoimmune dis-
eases like Sjögren´s syndrome [144,145] or systemic lupus erythematosus [146]. Hence, in
patients with NMO, the deleterious effects of BAFF on autoaggressive B lineage cells might out-
weigh the protective effects of I-IFN within the inflamed CNS.
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