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Abstract
When two variables are related by a known function, the coefficient of determination

(denoted R2) measures the proportion of the total variance in the observations explained by

that function. For linear relationships, this is equal to the square of the correlation coefficient,

ρ. When the parametric form of the relationship is unknown, however, it is unclear how to

estimate the proportion of explained variance equitably—assigning similar values to equally

noisy relationships. Here we demonstrate how to directly estimate a generalised R2 when

the form of the relationship is unknown, and we consider the performance of the Maximal

Information Coefficient (MIC)—a recently proposed information theoretic measure of

dependence. We show that our approach behaves equitably, has more power than MIC to

detect association between variables, and converges faster with increasing sample size.

Most importantly, our approach generalises to higher dimensions, estimating the strength of

multivariate relationships (Y against A, B, . . .) as well as measuring association while con-

trolling for covariates (Y against X controlling for C). An R package namedmatie (“Measur-

ing Association and Testing Independence Efficiently”) is available (http://cran.r-project.org/

web/packages/matie/).

Introduction
Measures of association between variables are useful across the sciences. Often the form of the
association is unknown and traditional methods for association mining that assume particular
functional forms (usually linearity) can miss or underestimate associations that are non-linear.
When large numbers of variables are examined and where associations are expected to be com-
plex, as is common in the biological sciences in particular, tools that automatically quantify
associations without restrictive assumptions are particularly useful, since the number of pair-
wise associations grows quadratically with the number of variables, and higher order relation-
ships grow even faster. Thus, finding good methods for association mining should be
prioritised.

Reshef et al. describe [1] desired properties of a measure of bivariate association: generality
and equitability. A measure that is general will discover, with sufficient sample size, any
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departure from independence, while a measure that is equitable will assign similar scores to
equally noisy relationships of different kinds. A further attractive property is that a measure
should scale like the coefficient of determination (R2): the proportion of variance explained.

Reshef et al. demonstrate [1] that other measures of association (including Spearman’s rank
correlation, mutual information, maximal correlation and principal curve-based correlation)
are not equitable; different functional forms with similar amounts of noise can produce vastly
different estimates of association strength.

Here, we explore a conceptually simple approach to quantifying and testing for relationships
between variables, showing that generality and equability can be achieved by estimating a gen-
eralised R2 through density approximation. We first describe the approach, then proceed to
benchmark it on multiple simulated scenarios, examining how it behaves and what power it
has as a statistical test. We demonstrate some desirable properties of our method, including the
ability to characterise higher order associations between more than two variables, and we high-
light some pathologies of MIC.

First consider a function with additive noise, y ¼ f ðxÞ þN . The coefficient of determina-
tion is the proportion of variance in y “explained” by the deterministic component f(x) relative
to the total variance in y, which is inflated by unexplained stochastic noise,N . This notion of
variance is defined in terms of average squared deviations—the distance between a data point
and a model. The explained variance, R2, is 1� s2

Error=s
2
Total , where the total variance (s

2
Total) is

the average squared deviation from a flat “null”model and the error variance (s2
Error) is the aver-

age squared deviation from f(x), the “alternative”model.
Least squares regression assumes that observations are normally distributed about the

explanatory function. The deviation of a point from the regression line can thus be expressed
as a probability density, and R2 has an equivalent form [2–4]:

R2 ¼ 1�
Y
i

Pðxi; yijnullÞ
Pðxi; yijaltÞ

� �2=n

ð1Þ

This formulation of R2 asserts that the proportion of unexplained variance is the geometric
mean of the squared ratio of the probability of observing a data point under the null model
over the probability of that data point under the alternative model. The explained variance is 1
minus the unexplained proportion. See Fig 1 for a visual depiction and see section 1 of S1 File
for a derivation.

Since this R2 now depends only on the probability density ratio between two models, it is
applicable even when the assumptions behind least squares regression are violated. This is a
powerful rethinking of R2. The idea of “explained variance” is generalised away from the
restrictive assumptions of normally distributed noise, and, most importantly, the very notion
of a regression curve is no longer required. This generalised R2 can be calculated as long as the
probability distributions for the null and alternative models can be evaluated.

We base our measure of dependence between variables upon this generalised R2. Even when
a known distribution generates our data, we still need to specify the null distribution before R2

can be computed, but this generalised definition of R2 is agnostic about a choice of null model.
An attractive property for a measure of dependence is that it is 0 if and only if X and Y are inde-
pendent. A sensible choice of null model is thus where P(X, Y) = P(X)P(Y), enforcing indepen-
dence. Since explicitly choosing a null distribution places a restriction on the generalised R2, we
distinguish our measure of association, calling it A. Classical R2 from least squares regression
assumes a different choice of null model (a constant function with normally distributed errors),
so A can be thought of as a sister to classical R2. They are equivalent for bivariate Gaussian dis-
tributions where the marginals are also normally distributed, but will differ when the null
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model for classical R2—a constant function with Gaussian errors—is a particularly bad fit (see
section 3 of S1 File). A also has an information theoretic interpretation: for known distributions
it is a sample estimate that converges to Linfoot’s ‘Informational Measure of Correlation’ [5]
when the number of observations tends to infinity (see section 4 of S1 File).

So far, the computation of A requires a known distribution. Estimating Â � A for a number
of observations from an unknown distribution thus reduces to the problem of estimating the
density at each point for an independent null and (potentially) dependent alternative model.
We adopt a kernel density approach [6, 7], where the density of the distribution at each point is
approximated by the sum over a number of Gaussian ‘kernel’ distributions centered at nearby
points (see Fig 2). For the null model, we constrain the joint density to be the product of

Fig 1. Illustrating the generalised R2. Panel A: Data is normally distributed about the alternative model—the white regression line Y = sin(X). The null model
is the blue Y = 0. Marginal distributions of X and Y are represented above and to the right. The classical R2 is calculated using deviations of the samples from
the blue and white lines. PanelB depicts the probability distribution over xi, yi for the alternative (red) and null (blue) models. PanelC shows the height of the
observations on the alternative distribution, relative to the null distribution. The generalised R2 is calculated from the ratio of these heights, and does not
require an explicit regression line (white), which is included only as a guide for the eye. See section 2 of S1 File for numerical examples of varying noise
levels.

doi:10.1371/journal.pone.0151551.g001

Fig 2. Estimating an unknown distribution. The distribution for the alternative model (red—where X can
depend on Y) is constructed by adding two dimensional Gaussian “kernel” distributions centered at each
observation. As more of these kernels are added, the distribution comes to resemble the true distribution from
which the observations are sampled. We can use a similar approach to estimating a null model that expressly
disallows any dependence between X and Y (blue) by constructing one dimensional marginal distributions
(the blue lines to either side) by summing one dimensional Gaussian kernels, and then creating the joint
distribution as the product of these estimated marginals.

doi:10.1371/journal.pone.0151551.g002
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estimates of the marginal densities, enforcing independence. We wish to constrain Â to vary

between 0 and 1, so we cannot allow the null to outperform the alternative model, lest Â
become negative. We thus define the density of the alternative model at each sample point to
be a weighted mixture of dependent (full joint) and independent (product of marginal) models,
with a single mixture parameter controlling the proportion for all points. Therefore, the alter-
native model can reduce to the null model as a special case, ensuring non-negativity. We esti-
mate the model parameters—and thus the densities—by maximizing the cross-validation
likelihood (see Methods).

We also introduce a statistical test for non-independence associated with Â, computing p-
values through a randomization procedure (See S1 File section 6 for details). Briefly, we use the
cross-validation likelihoods for both the null and alternative models to produce a cross-valida-
tion likelihood ratio statistic (cvLRS). The null test statistic distribution can be obtained by ran-
domly permuting the variables to break the association and induce independence, but we
provide a fast approximation to this distribution for bivariate relationships, obtained by fitting
a mixture of χ2 distributions to the empirical permutation distribution.

As pointed out in Speed [8], an important question is how much of the variance in Y can be
explained by X, after controlling for C. Here, we introduce a non-linear analogue of the semi-
partial correlation coefficient, which is one approach to ‘controlling’ for covariates in the linear
model setting. In the linear case, the semipartial (squared) correlation between Y and X con-
trolling for C, denoted here as R2

Y ;X;C , is the proportion of variance in Y that can be uniquely

explained by X, after the contribution of C has been accounted for. This has a simple interpre-
tation in terms of the coefficients of determination: R2

Y ;X;C ¼ R2
Y;XC � R2

Y;C , where R
2
Y ;XC is the

proportion of variance in Y accounted for by X and C together, and R2
Y;C is the proportion of

variance in Y accounted for by C alone. Here, we consider the analogous quantity defined in

terms of our nonlinear measure of association: ÂY ;X;C ¼ ÂY;XC � ÂY;C .

Results

Fig 3 demonstrates that Â is approximately equitable across a number of relationships (see S1
File section 5 for details of the relationships tested—the sample size was n = 1000 in all cases),
and is in greater agreement with classical R2 than is MIC, especially for relationships where R2 is
close to 0. The noise model was Gaussian in all simulations, and other noise models could exhibit
different behavior. When the marginal distribution of a variable departs substantially from a nor-

mal distribution, Â (like MIC) may produce more conservative estimates of association than clas-

sical R2 (see S1 File section 3). This is because the null model for Â makes less restrictive
assumptions (only independence is assumed, without a parametric form), describing the data
better than the null model for classical R2, which is a constant function with Gaussian errors.

Â converges faster with increasing sample size than MIC (Fig 3—bottom panels). For exam-
ple, despite having a theoretical large-sample limit of 1 for a noiseless circle [1],MIC� 0.74

when N = 10000. In contrast, Â≳0:99 when N� 200.
When testing for significance of non-linear associations, we should expect no free lunch—

the power of each method could vary depending on the form of the relationship. Methods
should be chosen based on their performance on the kinds of relationships expected from the
empirical data. Doing this rationally would require a thorough characterisation of the space of
possible relationships which is beyond the scope of this paper. We do, however, compare four
tests on 7 different relationships, for illustrative purposes (See S1 File section 6 for details), and

find the Â significance test to be attractive. It has greater power to detect associations than
MIC for all but one of the relationships we tested, and outperforms Székely’s dCov test for
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association [9] for all non-linear relationships tested. The Â test was comparable in perfor-
mance to the recently proposed HHG test [10], having greater power on 4 out of 7 tested rela-
tionships, being particularly more powerful for circular relationships, and low-noise high-
complexity non-linear relationships potentially embedded in background noise. We note that
MIC has a user-tunable parameter, and this has recently been shown to influence its power to
detect relationships [11]. Our results were obtained with the default MIC parameter settings,
and may vary with different parameter choices.

As shown in Fig 4, Â generalises well to multiple dimensions, producing equitable estimates
very similar to classical R2 for functions of two dimensions. If desired, it can assess the strength
of association between vector valued variables, indicating what proportion of the variance in
(X, Y) is explained by (A, B, C), for example. It also generalises to more than two variables
(with each variable being possibly vector valued), which could be used to discover lower
dimensional manifolds embedded in a higher dimensional space (see S1 File section 7). We do

observe that performance degrades in higher dimensions (data not shown), with Â underesti-
mating the association we would expect from a fixed R2 as the dimensionality increases, which
is likely a result of the inefficiency of kernel density estimation in higher dimensions.

We show (see S1 File section 8) that our ability to control for covariates is well behaved,
agreeing with the linear semipartial correlation when all relationships are linear. Semipartial
association becomes more interesting when the data are non-linear. When relationships are

Fig 3. Equitability and convergence of Â. Top: For functions of 2 variables, Â is approximately equitable, as demonstrated with 16 example functions, with
N = 1000. Each function is marked with a different color. Â (left) is closer to the classical R2 than MIC (right), especially for associations near independence.
Bottom: Estimates of association from Â (left) and MIC (right) as sample size (N) increases for three different relationships: a noiseless circle (red), a bivariate
normal distribution with expected R2 = 0.5 (green), and independent noise (blue). MIC converges very slowly.

doi:10.1371/journal.pone.0151551.g003
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non-linear, the standard linear semipartial correlation can severely underestimate semipartial
association (only seeing the linear dependence of Y upon X, regardless of the control variable
C) but, more interestingly, it can also overestimate the semipartial association between Y and X
by ignoring a non-linear dependence of Y on the control variable C, returning values close to 1
when in fact Y is conditionally independent of X given C. Our non-linear semipartial associa-
tion has no such difficulty, returning values close to 0 for such cases.

Consider, for example, the following data generating process (Fig 5, panel A):

C � Uð�1; 1Þ
X � C2 þN ð0; �Þ
Y � C2 þN ð0; �Þ

Y depends quadratically on the control variable C, and is conditionally independent of X given
C, so discovering X tells us nothing about Y if we already know the value of C. X and Y are
strongly linearly related, but all the association can be explained through the common influ-
ence of C. When computing the linear semipartial correlation R2

Y ;X;C , Y appears to depend

strongly on X even after controlling for C (R2
Y ;X;C ¼ 0:90), but this is because the quadratic

dependence of Y upon C is missed by a linear model. The non-linear semipartial association
discovers the quadratic dependence of Y on C, and correctly declares that X provides no addi-

tional influence: ÂY ;X;C ¼ 0. If we “correct” the linear semipartial correlation by controlling for

C2 rather than C, transforming the association back into linearity, R2
Y ;X;C2 ¼ 3:5� 10�5, validat-

ing the nonlinear semipartial association of 0.
By contrast, consider the following process (Fig 5, panel B):

C � Uð�1; 1Þ
X � C2 þN ð0; �2Þ
Y � X þN ð0; �Þ

Fig 4. Equitability of Â in higher dimensions. Â against R2 (left) for multivariate datasets (N = 4000 for all) generated by adding normally distributed noise
to 16 different functions of two variables (right—see S1 File section 5 for more detail).

doi:10.1371/journal.pone.0151551.g004
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Again, there is a quadratic dependence between Y and C, but this time Y also depends partly
on the noise component in X, which means that, while C can account for much of the variance
in Y, C cannot account for all of it. The linear semipartial correlation again misses the quadratic
dependence of Y on C, incorrectly deducing that C cannot account for any of the variance in Y,
and asserting the X explains almost all of the variance in X (R2

Y ;X;C ¼ 0:90). The non-linear

semipartial association behaves sensibly, asserting that 28% of the variance in Y is explained by

X after controlling for C (ÂY ;X;C ¼ 0:28). This result is appropriate given the value of the linear

semipartial correlation correcting for the quadratic dependence on C (using C2 as the control
variable): R2

Y ;X;C2 ¼ 0:28.

Section 7 of S1 File demonstrates the use of Â on a dataset of relationships obtained from
Markov-Chain Monte Carlo samples from a phylogenetic analysis of Influenza evolution [12].

Discussion
While this paper represents the initial practical contribution, further work remains to charac-

terise the theoretical properties of A and Â. A is clearly invariant to monotonic transformations

of variables, but its estimate Â is not, although it may be as N tends to infinity (in our particular
implementation, we artificially enforce it through a rank transformation). Simulations suggest

that Â tends to 0 wherever variables are independent, and 1 whenever a relation is noiseless
and nowhere flat, but perhaps there are other circumstances under which 1 will be the large
sample limit (MIC, for example, can achieve 1 at large samples for noisy relationships—see S1

File section 10). Is the Â test for independence consistent against all alternatives, achieving a

power of 100% as N tends to infinity whenever independence is violated in any way? Â appears
to be robust to outliers (see S1 File section 11), but is it possible to design outlier distributions

that mislead it? Â could also be improved by more sophisticated techniques to estimate the
density ratio of the joint and independent distributions [13, 14], which may improve the con-

vergence of Â for smaller sample sizes, but at a computational cost. A can be viewed as a

Fig 5. Semipartial correlation examples. In panelA, Y is conditionally independent of X givenC. Missing the quadratic dependence of Y on C, linear
R2

Y ;X;C ¼ 0:90. Non-linear semipartial association correctly identifies C as explaining all of the variance in Y, yielding ÂY ;X;C ¼ 0. In panelB, Y also depends on

the noise term in X (see text), and non-linear semipartial association captures this: ÂY ;X;C ¼ 0:28.

doi:10.1371/journal.pone.0151551.g005
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transformed mutual information, and the performance and equitability of mutual information

estimators needs to be examined and compared to our approach for estimating Â, but this is
beyond the scope of the present paper. Also, it may be possible to use our approach for estimat-

ing Â as a means of estimating mutual information itself. This could turn out to perform simi-
larly to kernel density-based estimates of mutual information (especially [15] which also uses
cross-validation to estimate the kernel bandwidth), but none of those, to our knowledge, use
the mixture approach we employ here when estimating the alternative model, so some differ-
ences are expected.

Kinney and Atwal [16] have recently asserted that “No nontrivial dependence measure
can satisfy R2-equitability”, providing a theorem to support this. However, as we show [17],
their result hinges on a peculiar definition of “noise”, which allows a trend to be embedded in
the noise term, effectively introducing an un-identifiability in their definition which they
then exploit to prove the notion incoherent. When you take the trend out of the noise term,
you are left with a perfectly sensible notion of “R2-equitability”. Under the resulting notion
of “R2-equitability”, however, R2 is sensitive to non-linear transformations of variables, and
isn’t symmetric, as one would expect of any measure defined in terms of squared departure
from a trend line. Here we have shown how to inherit the good properties of measures of
dependence that are based on the ratio of full joint over independent distributions, which are
not sensitive to transformations of variables and are symmetric, while still behaving like an
R2, and giving results similar (but not identical) to canonical R2 for reasonable bivariate
relationships.

Methods
Consider two (possibly) vector valued variables, X and Y, with n observations {x1, . . ., xn} and
{y1, . . ., yn}. Each xi itself may be a vector xai ; . . . ; x

z
i , as may each yi. Further, imagine three ker-

nel distributions, KX(x), KY(y) and KXY(<x,y>), where the kernels are symmetric, non-nega-
tive, and integrate to 1, and where angle brackets indicate vector concatenation. Our null
model assumes that X and Y are independent, and so we define the leave-one-out cross valida-
tion likelihood as the product of marginal kernel density estimates:

LCVðnullÞ ¼
Yn
i¼1

Pðxijx8j 6¼iÞPðyijy8j 6¼iÞ ð2Þ

�
Yn
i¼1

X
8j6¼i

KXðxj � xiÞ
n� 1

�
X
8j 6¼i

KYðyj � yiÞ
n� 1

" #
ð3Þ

The alternative model allows Y to depend on X for a proportion of points, (1 − w), with a
leave-one-out cross validation likelihood defined as:

LCVðaltÞ ¼
Yn
i¼1

½ð1� wÞ � Pðxi;yijx8j 6¼i;y8j 6¼iÞ þ w� Pðxijx8j 6¼iÞPðyijy8j6¼iÞ� ð4Þ

�
Yn
i¼1

ð1� wÞ
X
8j 6¼i

KXYð< xj � xi;yj � yi >Þ
n� 1

þ w
X
8j 6¼i

KXðxj � xiÞ
n� 1

X
8j 6¼i

KYðyj � yiÞ
n� 1

" #
ð5Þ

In our particular implementation, the values of each variable are replaced with their ranks
(this is for computational convenience and should have little effect since A itself is invariant to
order preserving transformations of variables) with ties broken randomly, and the kernels are
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isotropic Gaussians, with KX and KY sharing an ‘independent’ kernel variance parameter s2
I ,

and KXY having a distinct ‘dependent’ variance parameter, s2
D. With the rank-transformed

observations, the data are now integers, and we discretize our Gaussian kernels by evaluating
them on a bounded grid, and re-normalizing them. The null model thus has a single parameter,
s2
I , and the alternative model has 3 parameters: s2

I , s
2
D, and w. These parameters are optimised

numerically to maximise the cross-validation likelihood, yielding Â after employing Eq (1). We
found this estimate to be slightly biased down (when calibrated relative to classical R2 for bivar-
iate Gaussians, where A = classical R2) for small samples, so we included an empirically-esti-
mated small samples correction (see S1 File section 12). An R package namedmatie
(“Measuring Association and Testing Independence Efficiently”—see S1 File section 13) for

estimating Â is available on CRAN (http://cran.r-project.org/web/packages/matie/). For effi-
ciency, core routines, such as the leave-one-out cross-validation likelihood calculation, are
written in C, with everything else in R. The optimization itself is done numerically, using the

dfoptim package. Like MIC, estimating Â is quadratic in the sample size, but with a much
lower growth rate than MIC (see S1 File section 14).

Supporting Information
S1 File. Supporting text, figures and tables.

1. Generalized R2 generalizes classical R2.

2. Sinusoidal example.

3. Classical R2, generalized R2, A, Â and Linfoots Informational Measure of Correlation.

4. A is a sample approximation of Linfoots Informational Measure of Correlation.

5. List of functions used for the equitablity plots.

6. Significance tests.

7. Â can detect manifolds.

8. Semipartial association—controlling for variables.

9. Example: BEAST analysis.

10. MIC can return 1 for noisy relationships.

11. Â is robust to outliers.

12. A small samples bias correction.

13. matie, An R package for computing Â

14. Execution time: matie versus MIC.
(PDF)
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