
Synthetic ecology of microbes: mathematical models and 
applications

Ali R. Zomorrodi1 and Daniel Segrè1,2,3

1Bioinformatics Program, Boston University, Boston, MA

2Department of Biology, Boston University, Boston, MA

3Department of Biomedical Engineering, Boston University, Boston, MA

Abstract

As the indispensable role of natural microbial communities in many aspects of life on Earth is 

uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is 

becoming an attractive alternative to engineering single-species systems. Here, we summarize 

recent work on synthetic microbial communities with a particular emphasis on open challenges 

and opportunities in environmental sustainability and human health. We next provide a critical 

overview of mathematical approaches, ranging from phenomenological to mechanistic, which can 

be used to decipher the principles that govern the function, dynamics and evolution of microbial 

ecosystems. Finally, we present our outlook on key aspects of microbial ecosystems and synthetic 

ecology that require further developments, including the need for more efficient algorithms and a 

better integration of empirical methods and model-driven analysis, the importance of improving 

gene function annotation, and the value of a standardized library of well-characterized organisms 

to be used as building blocks of synthetic communities.
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Introduction

Synthetic ecology of microbes is concerned with the design, construction and understanding 

of engineered microbial consortia 1. It is a young, fast-developing research area, clearly 

distinct from synthetic biology, though related to it in a number of ways. Why would one 

want to engineer new microbial communities? How would engineered communities differ 

from natural ones? And how could one hope to design a community with desired properties, 

other than by tinkering with their intracellular circuits, or by mixing different species, based 

on experience and intuition? Here, we delve into these questions by discussing several 

examples of prior work in this area, and by presenting an overview of the growing landscape 

of mathematical approaches aimed at understanding the function, dynamics and evolution of 

microbial ecosystems, and at enabling the rational design of new microbial consortia.

The idea of designing microbial consortia is inspired by the ubiquitous presence of microbial 

communities on our planet, and the key role that these communities play in many aspects of 

human life. Microbial communities are implicated in biogeochemical cycles 2 and human 

health 3, and have been enlisted for a wide array of biotechnological applications, ranging 

from the ancient arts of brewing and cheese-making 4 to recent efforts towards the 

overproduction of biofuels and chemicals 5; 6 and wastewater treatment 7; 8. Engineering 

novel microbial communities may involve inducing the coexistence of unusual combinations 

of wild-type organisms, or constructing ecosystems of genetically modified species, thus 

creating a continuum of possible strategies between synthetic biology and ecology.
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One of the appeals of synthetic ecology is that it may enable us to perform novel tasks by 

understanding and embracing – rather than avoiding - properties that are inherent in the 

natural microbial world, such as diversity, competition for resources, division of labor and 

obligate interdependence. A community of organisms may perform tasks that no individual 

species could possibly perform on its own (i.e., from a functional perspective, a community 

is more than the simple sum of its parts 9). Moreover, relative to monocultures, engineered 

communities may achieve increased stability and resilience 10. The emergence of 

community-level properties is a result of interactions among different species. Inter-species 

interactions are one of the primary factors shaping the structure, function and dynamics of 

microbial communities and are believed to play a key role in the emergence of 

biodiversity 11; 12. Interactions among species can be mediated by a complex web of 

diffusible chemical signaling molecules and/or metabolites 13; 14; 15 or by direct contact with 

neighboring microorganisms 16; 17; 18. These interactions can be obligatory or non-

obligatory, beneficial or deleterious.

Beneficial interactions often involve cases where one or more species feed on products of 

other community members 19; 20; 21. In obligatory cooperative (i.e., syntrophic) interactions, 

individual species cannot survive in absence of their partners. For example, in a cross-

feeding interaction, both species could secrete nutrients essential for the growth of their 

partner 22; 23; 24. Alternatively, one species could rely on the waste product of the other 

while maintaining a favorable thermodynamic condition in return 25; 26; 27; 28. For example, 

in the absence of a suitable electron acceptor, methanogens can provide thermodynamically 

favorable growth condition for sulfate-reducing bacteria by scavenging hydrogen in the 

environment while using the fermentation by-products (e.g., acetate, formate) produced by 

sulfate-reducers 27; 28. Whether obligatory beneficial interactions are abundant in natural 

communities is still an open question, potentially relevant for understanding unculturability 

of the vast majority of microorganisms in the laboratory in monocultures 29. A common 

hypothesis is that unculturability of many species is due to their dependence on other 

microbial species for nutrients or growth factors 30.

Negative interactions are ubiquitous in nature. In addition to the competition for the same 

limiting resource, these interactions include growth inhibition effects of signaling molecules 

like bacteriocins, and active killing through a wide range of antibiotic mechanisms 31; 32; 33. 

Moreover, community dynamics can be heavily affected by parasitic interactions (e.g., 

between bacteria and their bacteriophage) 34; 35 where the parasite benefits while the host is 

negatively affected.

A broad spectrum of applications have driven the desire to build new communities, ranging 

from the conceptual challenge of characterizing small synthetic systems as a gateway 

towards understanding the more complex natural ones to the interest in achieving a specific 

biotechnological task (e.g., treatment of human diseases, overproduction of biochemicals 

and bioremediation of contaminated environments). Here, we first review some examples of 

such efforts and next focus on how mathematical modeling can complement these empirical 

efforts to better understand ecological principles underpinning the function and dynamics of 

microbial communities. We also present an overview of the existing challenges and future 
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perspectives in synthetic ecology with a particular focus on the role of mathematical 

modeling.

Using synthetic ecology to understand natural microbial communities

Natural microbial communities often contain tens to thousands of microbial species 36. This 

makes it challenging to experimentally characterize the identity of community members, 

their function and interactions. A bottom-up approach to address these limitations is to 

design synthetic microbial consortia that could serve as simplified models of their natural 

counterparts, while affording enhanced tractability and controllability. These synthetic 

systems would allow one to explore a number of key ecological and evolutionary questions 

such as the impact of interactions and environmental factors on the emergence, evolution 

and maintenance of coexistence. Synthetic microbial consortia can be established by co-

culturing wild-type species in a growth medium similar to their natural habitat, or they can 

be constructed by using targeted genetic perturbations or design of environmental conditions 

that induce new interspecies interactions (e.g., through metabolic exchange, antibiotic 

secretion, or quorum sensing) (see Fig. 1). Here, we review some examples of such efforts.

Artificial consortia with wild-type species grown in a medium resembling their natural 

habitat have been established to gain a deeper understanding of the community properties. 

An example is co-culturing methanogens and sulfate-reducing bacteria to better understand 

methane production and mutualistic interactions in subsurface anaerobic environments as 

noted earlier 25; 27; 28. They have been also used to elucidate the biodiversity-function and 

biodiversity-stability relationships in natural microbial communities 37; 38; 39; 40. For 

example, Von Canstein et al 37 found that increasing the diversity of microbial species in a 

biofilm improves the mercury removal efficiency in a changing environment. Assessing the 

stability of synthetic bacterial communities of different diversities (ranging from one to 12 

members) showed that the biomass of more diverse communities are stabilized against (i.e., 

less affected by) abiotic perturbations such as addition of heavy metals, NaCl and 

warming 40. While the majority of studies focused on the impact of richness (the number of 

species), Wittebolle et al 41 examined the impact of initial community evenness (relative 

abundance of species) using eighteen different denitrifying bacterial species from four 

different phyla and microbial microcosms. This study demonstrated that the initial evenness 

is a key determinant of the functional stability of the community.

For cases where establishing a consortium is not possible with wild-type species, a common 

strategy is to implement defined genetic perturbations, which can create new inter-species 

interactions through metabolite exchange or antibiotic production 22; 23; 42; 43; 44; 45; 46; 47. 

For example, by using 14 knockout strains of Escherichia coli, each lacking a gene 

responsible for the production of an essential amino acid, Mee et al 23 constructed 

communities of increased complexity (from two- to 14-member) in order to assess the 

impact of synthetic cross-talk between the mutants on population dynamics and stability (see 

Fig. 1B). In another study, Harcombe 43 used a synthetic two-species system composed of 

Salmonella enterica and an Escherichia coli mutant unable to synthesize an essential amino 

acid to elucidate the mechanisms and evolutionary origins of cooperation between unrelated 

species. This study concluded that cooperation can evolve under two conditions, namely the 
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presence of a preexisting reciprocation mechanism and the preferential availability of 

reciprocation to cooperative phenotypes.

Using synthetic genetic circuits to induce new interactions through quorum sensing has been 

also widely used to establish synthetic microbial communities 48; 49; 50; 51; 52; 53; 54. For 

example, in order to assess experimentally the relation between the parameters of 

Hamilton’s rule (a mathematical model for the emergence and maintenance of 

cooperation 55) and the quantities that govern the behavior of a microbial ecosystem, 

Chuang et al 50 engineered two producer and non-producer populations of E. coli, where 

producers synthesize the growth-enhancing Rhl autoinducer molecule as the common good. 

This autoinducer activates the expression of an antibiotic resistance gene in both producers 

and non-producers. This study showed that the nonlinearity of the growth benefit as a 

function of the common good tends to limit the predictive accuracy of the Hamilton’s 

rule 50. In another study, a population-driven synthetic quorum sensing switch was 

engineered to enable the dispersal of a second cell type into an existing colonizer biofilm, 

the subsequent formation of a robust two-species biofilm and finally the displacement of the 

initial colonizers 53. Rather than using genetic circuits that modulate gene expression in 

independent cells through quorum sensing, Chen et al 54 recently took a different strategy by 

constructing a dual feedback oscillator genetic circuit distributed across two nonisogenic 

populations of E. coli. The consortium consists of an “activator” and a “repressor” E. coli 

strain, each implementing half of a dual-relaxation oscillator and communicating through 

two orthogonal signaling molecules. Emergent population-level oscillations were observed 

only when the two organisms are cultured together 54.

In addition to genetic perturbations, it is known that appropriate design of environmental 

conditions can induce or significantly alter the dynamics and stability of microbial 

interactions 56; 57; 58. For example, by using a microfluidic device controlling the spatial 

structure and chemical communication Kim et al 59 reported the realization of a stable 

syntrophic consortium of three different species of wild-type soil bacteria, where each 

species performs a unique function essential for the survival of the entire community. In 

another study, Zuroff et al 57 showed that by fine tuning the oxygen transport rate a 

stabilized mutualism between the obligate anaerobic Clostridium phytofermentans and yeast 

can be established in which yeast protects C. phytofermentans from oxygen inhibition in 

return for soluble carbohydrates released from the degradation of lignocellulosic material. 

Another study reported on the impact of antibiotic levels as a key environmental factor in 

shaping a wide range of synthetic interactions including extinction, mutualism and 

commensalism between two E. coli populations 58.

Applications of synthetic ecology in biomedicine, metabolic engineering 

and environmental sciences

The construction of synthetic microbial communities has been pursued for a number of 

practical applications including human health, the production of chemicals, bioenergy, foods 

and drugs, and the mitigation of harmful human-induced environmental damage. These 

efforts have been so far mostly driven by experience and intuition, and by knowledge of the 
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metabolic capabilities and environmental interactions of different organisms. In the 

following, we briefly review some of these application areas.

Human health and disease

Microbial communities that live on or within our body have a marked, though still poorly 

understood, effect on the physiology and health of the human host and seem to reliably 

perform crucial tasks for us. For example, the human gut microbiota enable the breakdown 

of otherwise indigestible polysaccharides and are essential for the development and 

homeostasis of the immune system in the gut and for resistance against pathogenic 

bacteria 60; 61. Specific shifts in taxonomic composition (states of “dysbiosis”) of the human 

microbiota are known to be associated with an increasing number of diseases 3. Previous 

studies have reported strong associations between the composition of the gut microbiota and 

several complex diseases such as obesity and atherosclerosis, diabetes and inflammatory 

bowel disease 62; 63; 64; 65; 66; 67. On the other hand, diet, environment and age are also 

known to influence the composition and structure of the gut microbiota 64; 68; 69. Similarly 

to the gut, the oral cavity is the home for one of the most complex microbial communities in 

the human body, forming highly structured biofilms in the form of dental plaques 70; 71. 

These communities are responsible for two major categories of diseases including dental 

caries (tooth decay) and periodontitis (inflammatory and infectious gum disease) 9; 72; 73; 74.

While there is a flourishing industry proposing ways to enhance the health-promoting effects 

of certain human-associated microbes, the systematic validated use of synthetic microbial 

communities to cure disease is still at the very early stages of investigation, with a 

recognized large potential impact 75. For example, the recent advent of gut-on-a-chip 

technology 76 lays the foundation to construct such synthetic communities in order to 

facilitate the study of intestinal physiology, digestive diseases and drug development. 

Another area where synthetic ecology can contribute is constructing synthetic microbial 

consortia helping to shift an imbalanced microbiota in the human body to the healthy state. 

A classical example is treating Clostridium difficile infection by using fecal microbiota 

transplant, where fecal bacteria from a healthy individual are transplanted into a recipient 

with C. difficile infection. This method has been reported to be more effective than using 

antibiotics (see 77 for a review). An alternative to using natural communities from healthy 

individuals could be to design efficient synthetic consortia for the targeted treatment of a 

wide of range of other microbiota-associated diseases.

Consortia-based cell factories

Recent advances in synthetic biology have allowed researchers to engineer single-species 

microbial cell factories for the enhanced production of chemicals and energy 78; 79; 80. 

However, the efficient microbial conversion of complex biological feedstock to desired 

products typically requires multiple different functionalities. This poses a challenge in 

engineering monocultures as optimizing a single species for one trait usually comes at the 

expense of other traits due to the existence of tradeoffs in the performance limits of different 

functional traits 6; 81; 82. These difficulties have attracted researchers to the challenge of 

designing synthetic consortia-based microbial cell factories with task-specialized species. 

This “division of labor” would allow the community as a whole to perform multiple 
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functions (e.g., utilizing multiple resources) in parallel or serially thereby leading to 

enhanced productivity and stability 6; 10. Another advantage of using consortia-based cell 

factories is its inherent compartmentalization, which facilitates the decrease in cross-

reactions and side products 5. An example of a complex overproduction task that can be 

addressed using multi-species microbial cell factories is the conversion of lignocellulosic 

biomass to biofuels, which involves the hydrolysis of lignocellulose to soluble sugars and 

subsequently the conversion of these sugars to biofuels or any other product of interest. 

There is no known microorganism capable of performing all these tasks. A possible solution 

is to construct a synthetic consortium composed of a lingnocellulose degrader and another 

microorganism to ferment the released sugars to the products of interest (see Fig. 2 and 

Table 1). An example of such approach, among others 57; 83; 84; 85; 86, is a synthetic 

consortia composed of the fungus Trichoderma reesei secreting cellulase to hydrolyze 

lignocellulosic feedstock into soluble saccharides and Escherichia coli, which converts these 

saccharides into the products of interest such as isobutanol 87.

Another challenge in the conversion of lignocellulosic biomass to biofuels is that there is no 

microorganism that can ferment all pentoses and hexoses produced from the hydrolysis of 

cellulose. Wild-type microorganisms either use these sugars sequentially (e.g., first glucose 

and then xylose) or are in principle incapable of utilizing pentoses (such as Saccharomyces 

cerevisiae). A possible resolution of this issue for the latter is using synthetic biology 

techniques to “knock in” the genes enabling the degradation of otherwise non-degradable 

sugars, e.g., introducing the genes of xylose consumption pathways into S. cerevisiae 88. 

However, these approaches suffer from the preferential use of sugars, which leads to a 

decreased productivity 89; 90. A recently pursued alternative strategy to avoid all these 

limitations is the design of synthetic consortia where each strain exclusively uses only one 

sugar 91; 92; 93; 94. For example, Xia et al 94 reported the engineering of a consortium 

composed of three substrate-selective E. coli mutants each capable of metabolizing only 

glucose, xylose or arabinose by removing the genes responsible for the metabolism of the 

other two sugars. This consortium was capable of simultaneously consuming the mixture of 

all three sugars. In another study, both steps of lignocellulose degradation and the 

conversion of mixture of sugars to a product of interest were integrated by using a co-culture 

consisting of Clostridium themocellum and Clostridium thermolacticum85. While both 

species have multiple de-polymerization enzymes enabling them to degrade different forms 

of cellulose, the former is efficient in catabolizing glucose and the latter is proficient in 

pentose degradation. This allowed the enhanced production of ethanol from cellulose by the 

co-culture of both species 85.

Another common limitation associated with using synthetic biology techniques to assemble 

novel metabolic pathways converting a desired feedstock to a product of interest is that 

different parts of these typically long pathways often require specialized environments or 

compartments for optimal operation. A recent study proposed the resolution of this issue by 

a division of labor strategy where the long conversion pathway is divided among multiple 

community members 95. In this study, the synthetic pathway for the production of precursors 

of anti-cancer drug paclitaxel was divided into two modules one expressed in S. cerevisiae 

and the other in E. coli. Neither of these two organisms can produce the paclitaxel 
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precursors on their own, however, each provides the best host environment for part of the 

pathway they are harboring. The stable co-culture established by mutualistic interactions 

between these two organisms (where taxadiene, a metabolic intermediate produced by E. 

coli, is used and functionalized by yeast) enabled the enhanced production of a number of 

different paclitaxel precursors 95. A few other studies took a similar strategy to achieve 

higher production yields of products of interest using two genetically modified strains of E. 

coli 96; 97. For example, Saini et al 96 reported on the enhanced production yield of n-butanol 

from glucose upon the distribution of the n-butanol production pathway across two different 

E. coli strains, one producing butyrate from glucose and the other producing n-butanol from 

butyrate.

Microbial consortia for environmental applications

The importance of using microbial communities for the bioremediation of contaminated 

environments has been known for years as these environments contain a mixture of multiple 

different organic wastes and metals, which cannot be degraded and/or removed by a single 

microorganism. Synthetic microbial consortia have been used as an alternative to naturally 

occurring communities to improve and accelerate the biodegradation of 

pollutants 98; 99; 100; 101; 102. For example, a co-culture of a genetically engineered 

Escherichia coli and a wild-type Ochrobactrum sp. was established in a laboratory-scale 

bioreactor to degrade methyl parathion, a highly toxic pesticide commonly used for 

agriculture crop protection 100. The engineered E. coli strain overproduces methyl parathion 

hydrolase converting methyl parathion into p-nitrophenol, which is a toxic intermediate and 

serves as the sole carbon, nitrogen and energy source for and degraded by Ochrobactrum sp. 

More recently a synthetic consortium composed of three fungal strains Aspergillus lentulus, 

Aspergillus terreus and Rhizopus oryzae for the simultaneous removal of multiple metals 

and dyes was reported 103. Even though the detailed mechanism of inter-species interactions 

was not explored in this study, it was shown that these fungal species stably work in concert 

by distribution of tasks among different specialized members, where Aspergillus lentulus 

removes Cu2+ and Acid Blue 161, Aspergillus terreus removes Cr6+ and Rhizopus oryzae 

removes Pigment Orange 34. This synthetic community was reported to be more efficient in 

the removal of these metals and dyes compared to their monoculture counterparts 103.

Bioelectrochemical systems such as microbial fuel cells have been used to simultaneously 

degrade complex organic matter in contaminated environments and to produce electric 

power, chemicals and biofuels 104; 105. Syntrophic microbial consortia are widely used in 

microbial fuel cells, where multiple fermentative bacteria degrade a mixture of complex 

organic pollutants and exoelectrogenic microorganisms (typically Geobacter species) 

rapidly convert fermentation intermediates into electrical current or chemicals/biofuels 

thereby eliminating their feedback inhibition on fermentative bacteria 106. Synthetic 

microbial consortia have been used to design more efficient microbial fuel 

cells 107; 108; 109; 110; 111; 112; 113. A notable example is the study by Venkataraman et al 110, 

which demonstrated that a mutualistic co-culture of Pseudomonas aeruginosa and 

Enterobacter aerogenes in a bioelectrochemical system leads to up to 14-fold increase in 

electric power generation compared to either of the monocultures. The mutualistic 

interactions are mediated by 2,3-butanediol, which is a by-product of glucose fermentation 
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by E. aerogenes and is subsequently used by P. aeruginosa. The increased current 

production was attributed to the removal of fermentation by-product by P. aeruginosa as 

well as the enhanced production of pyocyanin (electron shuttles) by P. aeruginosa 110. A 

more recent study addressed the issue that butyrate, which is an anaerobic fermentation by-

product is not directly used by Geobacter sulfurreducens in anode. A synthetic consortium 

composed of two different but complementary mixed cultures was designed for the anode to 

overcome this issue, where one oxidizes butyrate to acetate and the other (enriched in 

Geobacter species) produces electric current by the consumption of acetate 112. This 

synthetic community led to an enhanced production of electric current that outperformed the 

previous naturally derived communities.

Mathematical modeling and computational analysis of microbial 

communities

Despite the growing availability of high-throughput experimental data (especially 

metagenomic sequences) for a diverse range of complex natural microbial communities, the 

full characterization and understanding of these communities is still a challenging task. This 

is partly due to the fact that it is very difficult, if not impossible, to measure the extent and 

direction of inter-species interactions (a key determinant of community’s function and 

dynamics 11; 12) even using the state-of-the-art experimental techniques. Furthermore, 

engineering synthetic consortia to perform sophisticated tasks for application areas reviewed 

above requires searching through a complex web of organisms and interactions in time and 

space, which can no longer be achieved by empirical tinkering. The development of efficient 

computational techniques and/or mathematical modeling tools can address some of these 

questions and shed light onto the experimentally inaccessible aspects of microbial 

communities. These models are critical in addressing a variety of ecologically and 

evolutionary relevant questions such as quantifying the impact of inter-species interactions 

and environmental factors on the emergence of cooperation, coexistence of cooperators and 

cheaters and the evolutionary fate of the communities. More importantly, they can play a 

critical role in the rational design of synthetic consortia for desired applications. In the 

following, we review some of the most common techniques for modeling microbial 

communities.

Ecological based modeling

Ecological theories of inter-species interactions—Two important models from 

theoretical ecology that have been successfully employed to analyze inter-species microbial 

interactions are resource ratio theory (RRT) and the maximum power principle (MPP). RRT 

models the competition between two or more species for a limiting resource based on the 

assumption that the outcome of competition is determined by the ratio of supply rates of the 

limiting nutrient(s) 114. RRT has been primarily used to model competition 115; 116; 117; 118, 

but has been extended to account for cooperative interactions as well 119.

MPP is another interesting model, which relies on the assumption that all biological systems 

are coordinated to increase power (i.e., metabolic rate) whenever constraints allow 120; 121. 

By comparing model predictions with experimental observations, DeLong 122 showed that 
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MPP can successfully predict various outcomes of competition in two-species microcosm 

communities. In particular, it was concluded that in the case of competitive exclusion the 

winning species uses more power (i.e., it acquires and uses more energy and thus reproduces 

faster) than the losing species. In the case of coexistence, either the community-level power 

exceeds that of individual species in isolation, or the power that a species can attain within 

the community is higher than what could be reached in isolation 123.

In addition to RRT and MPP, a number of other ecological models and theories have been 

proposed recently, which have a great potential for modeling microbial 

interactions 124; 125; 126. An example of such a theory, which offers a new perspective on the 

emergence and evolution of costly cooperation in microbial communities is the Black Queen 

Hypothesis (BQH) 125. It posits that cooperation among species may emerge due to purely 

selfish traits. The most important assumption of BQH is that some costly microbial 

functions are often leaky, such that the resulting public goods can be used by other species. 

It further hypothesizes that since these functions are costly and thus undesirable, adaptive 

loss of the corresponding genes may happen in some species. This inevitably turns some 

community members to “helpers” and the rest to “beneficiaries” and builds an obligatory 

association between helpers and beneficiaries. The “black queens” here refers to these costly 

functions that most species strive to avoid, analogous to the queen of spades in the game 

Hearts 125. This theory has the potential to devise a possible evolutionary path for the 

emergence of cross-feeding, whereby leakiness and gene loss may be followed by the 

evolution of costly cooperative traits in beneficiaries to maximize the production of the vital 

by-product by the helpers 126. Recently, Oliveira et al 127 examined the evolution of cross-

feeding based on BQH by developing a ecoevolutionary model that accounts for multiple 

secretions by each species, which can be exchanged among genotypes. They concluded that 

the evolution of cooperative exchanges reduces the community productivity relative to an 

autonomous strain performing all vital functions it needs, and that this type of cooperative 

behavior evolves only under specific demographic regimes characterized by intermediate 

genetic mixing 127.

Population dynamic models—A traditional way of modeling the dynamics of microbial 

communities rooted in theoretical ecology is the use of coupled differential equations 

describing the temporal evolution of microbial species abundances. The most widely-used 

such model is the Lotka–Volterra (LV) model, originally developed for modeling predator-

prey dynamics, and later generalized to model combinations of competitive and cooperative 

interactions 128; 129. The LV equations can, in general, be written as follows 128:

(1)

where Nk is the abundance of species k, K denotes the total number of species, rk is the 

intrinsic net growth (i.e., growth minus decay) rate and bkk denotes the interaction 

coefficients (or strengths) measuring the effect of one individual in population k′ on the 

growth of one individual in population k, which can assume a negative, zero or positive 

value denoting a negative, neutral, or positive interaction, respectively. In this form, the LV 
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model takes into account the impact of the presence or absence of other species implicitly 

through the interaction coefficient, but cannot capture explicitly indirect interactions through 

e.g., metabolite exchange or quorum sensing 130. In an attempt towards addressing this 

limitation, a recent study proposed to include in LV models the explicit dynamics of 

exchanged metabolites in a one-way mutualistic interaction where one species grows on the 

waste product of another species 131. Generalized LV models (Equation 1) have been used 

to model bacteria-bacteriophage interactions 132; 133; 134 as well as microbial interactions in 

the gut 135; 136 and in a cheese microbial community 137. For example, Fisher and Mehta 135 

used sparse linear regression to infer interaction coefficients in a discrete LV model of 

microbial dynamics using species abundance data for the gut microbiota of two individuals. 

In another effort, the generalized LV models were extended further to account for the impact 

of time-dependent external perturbations 136. After using linear regression to infer 

interaction coefficients, this extended model was used to computationally assess the impact 

of infection by pathogens and antibiotic administration on the dynamics and stability of the 

mouse gut microbiota. It is worth noting that in addition to LV models, various other ODE-

based models have been used to describe the dynamics of interacting microbial populations 

in different settings 23; 87; 138; 139; 140; 141.

Spatial modeling—Except for laboratory setups, most natural microbial communities 

display highly complex spatial structure. As a result, community interactions and 

abundances vary not only with time but also with space due to the heterogeneity of their 

habitat, the existence of natural gradients (e.g. different amounts of oxygen penetrating 

through a biofilm), and self-organization properties of the microbes themselves. For 

example, a given resource may be differentially available to a given species in different 

spatial locations, thus affecting significantly the function, stability, dynamics and evolution 

of the entire ecosystem. In this case, instead of ODEs, the dynamics of the system is best 

captured by partial deferential equation (PDE) models. The most widely-used PDE model is 

the reaction-diffusion equation, which determines the density of each species at different 

time points and different locations in space due to diffusion and population 

dynamics 142; 143:

(2)

where Ck is the concentration (or density) of species k at time t in location (x, y, z), Dk is the 

diffusion coefficient of species k in the medium (measuring dispersal rate), and rk denotes 

growth or decline in population k due to population dynamics, which can be determined at a 

given point (x, y, z) in space by using any population dynamic model described in the 

previous section. Note that the first term in the right-hand side of Equation (2) determines 

dispersal due to diffusion. This equation is thus reduced to population dynamic models 

(based on ODEs) for a homogeneous environment. This same equation can be used to model 

the spatio-temporal variations in the concentration of shared compounds in a microbial 

community in which case the term rk stands for the net production rate of a compound k by 

different members of the community.
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This class of PDE-based models and their extensions/simplifications have been used in 

conjunction with population-based models to study a variety of ecological phenomena 

related to spatial effects such as range expansion and diffusion-based spatial 

patterning 144; 145146; 147; 148; 149. For example, by using a one-dimensional reaction-

diffusion equation, Datta et al 146 successfully modeled the wave front profiles observed in a 

range expansion experiment involving populations of cooperator and cheater yeast strains. 

They also used a similar reaction-diffusion equation to model the spreading of cooperator 

and defector alleles and to analytically derive the velocity of defectors invading a spatially 

extended population of cooperators 146. In a subsequent related study, a spatial model of a 

mixed population of cooperators and defectors coupling changes in both population density 

and allele frequencies was developed and it was shown that cooperators are favored at the 

edge of an expanding population, and under certain conditions, they can spread into new 

territories faster than they are invaded by defectors 146. More recently, a reaction-diffusion 

model was used to construct a model of cross-feeding mutualism that explicitly accounts for 

the production, consumption and diffusion of public goods 149. Interestingly, this study 

showed that while species migration improves mutualism and stabilizes coexistence, 

cooperation is lost beyond a critical diffusivity of public goods. Furthermore, for the case of 

unequal diffusivity of public goods, the species with slower-diffusing public goods will 

dominate the co-culture and destroy cooperation by driving the other species to extinction.

Game theoretical models

The complex balancing of benefits and costs associated with inter-species interactions in 

microbial communities can also be effectively addressed by using game theory and 

evolutionary game theory approaches 45; 87; 150; 151; 152; 153; 154; 155 (see also 156 and 157 for 

comprehensive reviews). Game theory is a general mathematical framework to model 

strategic interactions among a number of agents (players) where the payoff of each agent 

(i.e., how happy each agent is) is not only a function of its own strategy (action) but also a 

function of other players’ strategies.

The payoffs are mathematically represented as a (multi-dimensional) matrix whose entries 

represent the payoff of each player for a given strategy profile. This payoff matrix is used to 

determine the equilibrium of the system, a state where no player has any incentive to deviate 

from its current strategy given all other players’ strategies, because no change in strategy 

would increase the player’s payoff. In evolutionary game theory, the payoff of each player 

depends not only on the action of other payers but also on their relative abundances. This 

payoff is then used to determine the reproductive fitness of each player. The most popular 

way of modeling the reproduction dynamics of mixed interacting populations in 

evolutionary game theory is using the replicator’s equation 158:

(3)

(4)
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(5)

Here, x = [x1, x2, …, xK]T represents the composition of the community with xk being the 

relative abundance (frequency) of species K, fK (x) is the fitness of species k, ϕ(x) denotes 

the average fitness of the community and akk′ represents the payoff of species k confronting 

species k′ (extracted from the payoff matrix of the game). According to Equation (3), the 

frequency of species k increases, decreases or remains constant, based on whether its fitness 

is greater than, less than or equal to the average fitness, respectively. Even though this 

model does not explicitly capture the emergence of new phenotypes due to mutation, it is 

usually used to assess whether a pre-specified mutated phenotype can invade an existing 

phenotype. It has been shown that the replicator equation for a game with K strategies can be 

transformed into the generalized LV model with K − 1 species 158. This alludes to a 

fundamental link between evolutionary game theory and theoretical ecology.

A prominent example of modeling microbial interactions using game theory is the work by 

Gore et al 45. They experimentally assessed and modeled the outcome of interactions 

between a wild-type cooperator strain of Saccharomyces cerevisiae, which produces the 

invertase enzyme to hydrolyze sucrose and convert it to glucose and fructose, and a cheater 

mutant strain of S. cerevisiae, which benefits from the sugars resulted from sucrose 

hydrolysis but does not endure the cost of producing invertase. In this work, instead of 

assuming that fitness is a linear function of the relative abundance of species (see Equation 

4), experimental data were used to formulate a fitness function that depends nonlinearly on 

the relative abundance of both species, and on the production cost of invertase. This 

nonlinear model could explain the experimentally observed coexistence between cheaters 

and cooperators, which is the reminiscent of a classical game theory scenario, termed the 

snowdrift game. In another study, the dynamics of a game between two bacterial species 

competing for a limiting resource in a fluctuating environment was captured by an extension 

of the LV model that allows switching from one species (strategy) to another 151. Each 

species was assumed to take either of the two strategies constant (environment-insensitive) 

growth and susceptible (environment-dependent) growth. This analysis showed that the 

constant growth strategies always outcompete or evenly match with its competing strategy. 

Despite the limitations associated with quantifying the payoffs in biological systems, game 

theory and evolutionary game theory remain an attractive mathematical tool to model 

microbial interactions. For example, they can be used to assess whether an engineered 

microbial consortium for a desired biotechnological application can be invaded by cheaters, 

or to determine the range of environmental conditions where cheaters are dominated by or 

coexist with cooperators (e.g., see 159).

It is worth noting that game theory/evolutionary game theory models were also extended to 

capture the impact of spatial structure by assuming that game players are located on the 

vertices of a non-complete graph and preferentially interact only with their neighbors 158. 

This approach was recently used to investigate the emergence and fate of cooperation in 

“diffusible public good dilemmas” in microbial communities 160. In this model, both colony 
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geometry and public good diffusion are described by graphs and it was found that 

cooperation is favored when public goods decay and diffuse slowly and when colonies are 

flatter 160.

Individual-based modeling

Individual-based (also known as agent-based) models (IbMs) explicitly treat each individual 

cell as a discrete independent entity that interacts with other individuals and with its 

continuous environment. These models allow the introduction of individual variability (e.g., 

in growth rates, substrate uptake and secretions rates, cell mass, cell volume, etc.). This 

modeling formalism is a bottom-up approach where the dynamics and function of the whole 

system is governed by that of individual cells in their pursuit of optimal fitness 161. While 

the biomass spreading is modeled using the discrete individual-based approach (where cells 

are modeled as spheres spreading only when they get too close to each other), changes in 

concentration of soluble substrates in the continuous environment can be modeled using 

reaction-diffusion equations. Therefore, in contrast to previously described PDE models, 

here reaction-diffusion models are used only to follow the dynamics of the shared 

compounds rather than microbial biomass. The discrete and continuous models are then 

integrated numerically using the so-called “hybrid Eulerian–Lagrangian approach” 162.

These models have been employed extensively to analyze microbial 

interactions 163; 164; 165; 166; 167; 168; 169. For example, Nadell et al 165 used a two-

dimensional individual-based model to uncover how cooperative and cheater cells can 

spontaneously segregate from each other in space as the size of a biofilm colony expands. 

This spatial segregation allows cooperative cells to preferentially interact with other 

cooperative cells thereby avoiding exploitation by cheaters and favoring the evolution 

cooperation. This same modeling framework was used in a later study 167 to assess how 

addition of a new species to a biofilm microbial community will affect the evolution of 

cooperation. Momeni et al 168 also used an individual-based model to systematically explore 

how different types of ecological interactions affecting the fitness of species can lead to 

distinct patterning in three-dimensional communities grown from two fluorescently-marked 

populations of cells initially distributed randomly on top of a surface. This model predicted 

that interactions benefiting at least one population could allow initially disparate partner 

ratios to converge over time. Furthermore, it revealed that strongly cooperative cells are 

inter-mixed by forming patches successively accumulating on top of each other.

Genome-scale metabolic network modeling

All the modeling approaches described so far aim at predicting the dynamics of microbial 

communities based on the description of the abundance of different species and on a crude 

description of how each species affects other species. Interaction terms, described for 

example as a matrix in Equation 1 or Equation 4, constitute a simplified abstraction of inter-

species interactions driven by the complex network of molecular processes that take place 

within individual cells. Mathematical modeling of intracellular networks is a growing 

research area, and one of the pillars of systems biology. The question is whether and how 

one can build a bridge between systems biology and microbial ecology in order to study 
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ecosystem-level function and dynamics by modeling the detailed wiring present within each 

cell.

A major progress in this direction has been made possible, in the last decade, by the rapid 

advances in the construction of genome-scale stoichiometric-based models of metabolism. 

Each model consists of a compilation of all biochemical reactions occurring in an organism 

derived from its annotated genome. These models also typically contain a fictitious reaction 

(referred to as biomass reaction) whose reactants are precursors essential for cellular growth 

and whose stoichiometric coefficients correspond to the relative contributions of these 

precursors to the cell’s dry biomass. The flux of this reaction is considered to be an 

indicative of cell’s growth capacity. Genome-scale stoichiometric models of metabolism are 

now available for a wide variety of organisms, ranging from bacteria to archaea and 

plants 170; 171; 172; 173.

Flux Balance Analysis (FBA) 174 is a mathematical modeling approach that utilizes these 

stoichiometric models to analyze how cells allocate environmentally available resources for 

homeostasis and reproduction. It is capable of making quantitative predictions of 

intracellular reaction fluxes, the export and secretion rates of metabolites and the cell’s 

growth rate under the pseudo steady-state without requiring any kinetic parameters. Toward 

this end, a core assumption in FBA is that metabolic fluxes in the cell are close to a 

predictable optimum (e.g., maximum biomass production) describing a state achieved by the 

cell through evolutionary adaptation (e.g., adaptation toward maximum growth). This 

optimality criterion is formulated as a linear programming problem (for a single-species 

system):

(6)

(7)

where I and J denote the set of metabolites and reactions in the network, Sij is the 

stoichiometric coefficient of metabolite i in reaction j (an entry of the stoichiometric matrix), 

LBj and UBj are lower and upper bounds on the flux of reaction j, respectively, vj denotes the 

flux of a reaction j serving as optimization variables and vbiomass is biomass production flux. 

Constraint (6) represents steady-state mass balance for each metabolite in the network and 

Constraints (7) impose lower and upper bounds for each reaction flux. In addition to the 

maximization of biomass flux, other studies have explored alternative objective 

functions 175 or the sampling of all flux values irrespective of any optimality principle 176. 

FBA has been experimentally tested for several systems, and successfully used for model-

driven biological discovery as well as for a variety of biomedical and biotechnological 

applications (see 177; 178; 179; 180 for comprehensive reviews).

The ability to model the metabolism of an organism at genome-scale paved the way for an 

unprecedented opportunity to transition from phenomenological modeling (e.g. LV 
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equations) to mechanistic modeling of microbial communities at genome-scale resolution. 

This enabled researchers to ask many questions that could not be directly addressed using 

other modeling approaches: Can one infer, instead of assuming, inter-species interaction 

networks from intracellular metabolic networks (see Fig. 3)? Can one predict whether 

compounds secreted by one organism could be used by a different organism? Can these 

metabolic interactions lead to an overall efficient resource utilization? How often do cross-

feeding or competition arise? These questions spurred the development of metabolic models 

for simple multi-species microbial systems. These models evolved from steady-state 

analysis to dynamic and spatiotemporal analysis of microbial communities (see Table 2 and 

Fig. 4).

Steady-state models—Metabolic modeling of microbial communities was pioneered by 

Stolyar and colleagues 181 who reconstructed a stoichiometric metabolic model of a simple 

mutualistic microbial community consisting of Desulfovibrio vulgaris and Methanococcus 

maripaludis. This analysis treated a multi-species community analogously to multi-

compartment metabolic models of eukaryotes, such as Saccharomyces cerevisiae 182; 183. In 

these eukaryotes models, multiple organelles are modeled by defining suitably labeled 

compartment-specific metabolites and reactions, and adding transport reactions across 

compartments, as dictated by the knowledge of diffusion or transporters. In a community-

level model, members can be similarly treated as compartments embedded in a meta-

compartment that represents the shared environment. Formally, the stoichiometric matrices 

of individual species can be combined with each other in a larger block matrix, to construct 

a community-level stoichiometric matrix. One subtle aspect of implementing FBA 

simulations for a microbial community based on this compartment-based stoichiometry is 

the identification of an appropriate objective function. In the Desulfovibrio-Methanococcus 

model, the widely-employed FBA objective of biomass maximization was replaced with the 

maximization of a weighted sum of the biomass production fluxes for the community 

members (see Figure 4A). This community-level FBA problem can then be formulated as 

follows:

(8)

(9)

(10)

where all basic parameters and variables are analogous to those defined for the single-

species FBA problem (Equations 6–7), except for the additional superscript label k, which 

denotes the community member k to which they belong. In addition, wk is a pre-specified 

weight for the biomass flux of each community member in the objective function, Ishared is 
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the set of shared metabolites, and Kexport, i and Kuptake, i are the sets of community members 

exporting and uptaking a shared metabolite i, respectively. Moreover, the variable vEX_i(e) 

represents the community’s net exchange rate of shared metabolite i with the surrounding 

environment (a positive value implies export while a negative value implies uptake). 

Constraints (8) and (9) are similar to Constraints (6) and (7), respectively, for community 

member k and Constraint (10) represents a steady-state balance on the shared metabolite i in 

the extracellular compartment, where it is produced by some community members and is 

consumed by some others.

This compartment-based approach and its variants were used in many subsequent 

community metabolic modeling studies, ranging from the study of the gut 

microbiota 184; 185; 186 and interactions between multiple tissues in human and 

plants 187; 188; 189 to the overproduction of chemicals 190 and the study of a variety of other 

synthetic and natural multi-species systems 22; 56; 191192. For example, Heinken and 

Thiele 186 constructed a metabolic model of pairwise interactions between 11 representative 

microorganisms in the gut, in conjunction with a metabolic model of human small intestinal 

enterocytes subject to three different diets. Here, the host and microbes interact through a 

compartment simulating the intestinal lumen serving as a pool for nutrients derived from the 

diet and enterocytes. This study suggests the presence of species-specific commensal, 

parasitic, mutualistic, or competitive interactions among these microbes. In another effort, as 

a step toward modeling a whole plant system a multi-tissue model consisting of six different 

tissues related to root, stem and leaf were reconstructed 189. This model was utilized to 

probe the division of labor between the source and sink tissues assuming that all tissues 

work in concert for plant growth by minimizing energy usage (photon capture) as the 

objective function. Nonlinear objective functions to model microbial communities have been 

also explored by extension of the minimization of metabolic adjustment (MOMA) 

framework 193 to model synthetic crosstalk between pairs of auxotrophic E. coli mutants 22. 

On another front, this multi-compartment approach was used to show computationally that it 

is in principle possible to induce a cross-feeding interaction between two microbial species 

by cultivating them in an appropriately designed medium 56. The search for such syntrophy-

inducing media used a mixed-integer linear optimization approach to minimize the number 

of exchanged metabolites under the constraint that the biomass production by each species 

must be greater than a pre-specified threshold. Conceptually, this study illustrated the 

possibility of engineering interactions and communities by tweaking the environment rather 

than manipulating the genomes of the organisms. Other studies pursued an extension of 

FBA that directly accounts for species abundances based on the concept of balanced growth 

of microorganisms (community FBA) 194, or stoichiometric-based metabolic modeling of 

microbial communities independent of an optimality assumption, such as elementary mode 

analysis 195 or the analysis of (topological-based) metrics quantifying the degree of inter-

species competitive/cooperative metabolic interactions 196; 197; 198; 199; 200.

One of the delicate issues, both conceptually and technically, in handling stoichiometric 

FBA-based models of communities is the interplay and trade-offs between individual 

organisms’ objectives and potential ecosystem-level ones. An approach explicitly designed 

to address this interplay, and to aid in the development of engineered communities capable 
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of defined tasks is the multi-level multi-objective optimization method, OptCom 201. This is 

a nested optimization problem where some of the constraints are another optimization 

problem (referred to as inner-level problems) 180. OptCom couples distinct FBA problems 

for each community member (as inner problems with potentially conflicting objective 

functions), with a community-level objective function (as the outer-level objective). 

Species-specific inner problems are linked together through the inter-species interaction 

constraints in the outer problem that express the metabolite exchange among community 

members (i.e., Equation 10). The objective function of the outer-level problem is to optimize 

a community-level fitness function (see Figure 4B). Even though a universal community-

level objective function is hard to identify, maximization of the entire community biomass 

has been used as a first approximation, assuming that the whole community works as a 

“super-organism” striving to maximize its growth 201. Alternatively, one can impose a 

desired bioengineering objective for the outer-level problem (such as the overall production 

of a given compound) to provide guidance on what type of interactions are needed to 

achieve this goal. OptCom was used to examine the addition of a new member to an existing 

community representative of those in subsurface anaerobic environments 201 and to model 

interactions between Bifidobacterium adolescentis and Faecalibacterium prausnitzii in the 

gut microbiota 202. It is worth noting that due to the fact that it relies on a multi-level 

optimization framework, OptCom is computationally more costly than the conventional 

single-level FBA formulations. Therefore, it is most appropriate for cases where different 

species- and community-level objective functions are sought. Furthermore, OptCom is not a 

suitable modeling framework for purely competitive microbial communities as a 

community-level objective function is biologically irrelevant for such systems.

Dynamic models—The FBA-based community-level approaches described above, while 

useful for several applications, have some inherent limitations, due to the nature of FBA. 

These limitations include the lack of explicit temporal scales, the incapacity to predict 

microbial species abundances as well as the need to define a priori a community-level 

objective function. Interestingly, a lot of these issues are naturally resolved by extending 

steady-state genome-scale methods to approaches that explicitly model the dynamics of 

microbial growth and of environmental metabolites 203; 204; 205; 206; 207; 208; 209. These 

methods (see 210 for a review) are mostly based on the extension of dynamic FBA 

(dFBA) 211 for single-species systems (see Figure 4C). As a first attempt in this direction 

Zhuang et al 203 proposed Dynamic Multi-species Metabolic Modeling (DMMM) 

framework, where cell densities are updated similarly to dFBA, while shared metabolite 

concentrations evolve by taking into account all species producing or consuming each 

shared metabolite:

(11)

(12)
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Here, Ck and Ci denote the density of species k (g/l) and the concentration of shared 

metabolite i (mmol.gDW−1.h−1)), respectively and μk (h−1) is the specific growth rate of 

species k. Constraint (11) represents the exponential growth phase and Constraint (12) 

expresses the conservation of mass for the shared metabolite i in the extracellular space. 

These differential equations are discretized using a finite differences method, in which the 

specific growth rate μk for species k at each time point is determined by solving the 

corresponding FBA problem. Notably, in the solution of each FBA problem, uptake limits 

for the shared metabolites are determined by using kinetic expressions (such as Monod 

kinetics), which estimate the uptake flux upper bound as a function of the extracellular 

concentration of that metabolite.

DMMM was used to model competition between Geobacter sulfurreducens and Rhodoferax 

ferrireducensin in natural and manually perturbed anoxic subsurface environments 203 and a 

co-culture of Clostridium acetobutylicum and Clostridium cellulolyticum for consolidated 

bioprocessing of lignocellulosic material 204. An extension of the DMMM framework 203 

was also developed to identify the optimal acetate and Fe(III) addition rates for the effective 

uranium reduction by controlling the relative abundance of Geobacter sulfurreducens and 

sulfate-reducing bacteria 205. In addition to addressing environmental issues, these 

approaches have been used for exploring possible ways to increase the production of 

chemicals and biofuels 206; 207; 209; 212. For example, a multi-species dFBA framework was 

combined with flux variability analysis (FVA) 213 to identify the biosynthetic capacity of a 

large number of synthetic two-species communities consisting of over 100 microbial 

species, where the co-culture enables the production of metabolites that cannot be produced 

by mono-cultures in the same growth medium 212. The dynamic nature of this analysis 

revealed two phases where new biosynthetic capabilities emerge: One as soon as the 

organisms are introduced into the same medium and the other toward the end of the growth 

period in a nutrient-depleted growth medium.

In line with these advances in dynamic analysis tools, an extension of the OptCom 

procedure 201, termed d-OptCom (dynamic OptCom), was proposed for the dynamic multi-

objective metabolic modeling of microbial communities 214 (see Figure 4D). Here, time-

dependent conservation of mass for the biomass of community members and shared 

metabolites (Equations 11 and 12) as well as kinetic expressions determining the uptake rate 

of shared metabolites are included as new constraints in the outer-level problem. While, 

similarly to OptCom, the inner-level optimization problems are species-specific FBA 

problems subject to uptake rates determined by the outer problem, maximization of the total 

community biomass concentration was used as the outer-level objective function (instead of 

maximizing the sum of biomass fluxes in OptCom). d-OptCom was used to model the 

dynamics and biomass composition of synthetic two-species consortia composed of two 

cross-feeding E. coli mutants and that of a uranium-reducing community comprised of 

Geobacter sulfurreducens, Rhodoferax ferrireducens, and Shewanella oneidensis 214. 

Notably, the use of community-level objective function allowed for the emergence of costly 

cooperation in the former case study, which cannot be captured by DMMM-like approaches. 

Nevertheless, in cases where a community-level objective is biologically irrelevant (e.g., for 

a pure competitive ecosystems) or uncertain, DMMM-like approaches are preferred since 
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they have lower computational cost and they allow the whole community’s function and 

dynamics to emerge solely from the selfish behavior (i.e., growth maximization) of its 

constituent species.

Spatio-temporal models—As noted earlier, in addition to temporal variability, microbial 

communities generally display high spatial heterogeneity, due both the inhomogenous nature 

of the surrounding environment, and the locality of interactions between different microbes 

in the absence of vigorous mixing. By adding a spatial component to the community-level 

dynamic FBA concept described above, it is possible to explicitly model inter-species 

interactions in structured environments, such us layered biofilms, or colonies on a Petri dish. 

The development of such an integrated platform was the goal of a recent modeling 

framework termed COMETS (Computation Of Microbial Ecosystems in Time and 

Space) 215. The COMETS framework directly couples community-level dFBA with 

diffusion models to enable the spatio-temporal analysis of microbial communities using 

genome-scale metabolic models 215 (see Figure 4E). A heterogeneous environment is 

approximated by a spatially structured lattice. Each point in this lattice may contain an 

arbitrary number of species and different concentrations of shared metabolites. Simulations 

consist of two fundamental steps including (i) cellular growth and metabolite secretion/

production at each lattice point modeled by a multi-species dFBA framework similar to 

DMMM 203 and (ii) a finite difference approximation of the shared metabolites and biomass 

diffusion in the lattice. COMETS predictions were tested experimentally for two-species and 

three-species synthetic consortia involving E. coli, Salmonella enterica and 

Methylobacterium extorquens. COMETS enabled the study of how pairs of cross-feeding 

colonies may be affected by the interposition of a third colony in between them, highlighting 

the complex dependency of inter-species interactions on spatial organization. A modeling 

strategy similar to COMETS was used to model the emergence of acetate cross-feeding sub-

populations in colonies of E. coli growing on an agar plate 216.

Current challenges in modeling microbial communities

A long-standing challenge in the model-driven analysis of microbial communities is the 

increase in demand for computational resources for complex and/or large-scale microbial 

communities. For example, such problems arise for individual-based models, where one 

typically deals with a considerably large number of individual cells, as well as for FBA-

based methods, in which it may need to handle a large number of community members 

whose genome-scale metabolic models could contain of the order of a thousand reactions 

and metabolites. These issues become even more prohibitive if spatial heterogeneity is taken 

into account, especially in two- or three-dimensional discretized space. Due to these 

limitations both IbM and FBA studies that include spatial heterogeneity have been so far 

applied to small-scale (from micrometers to centimeters) environments 163; 215; 217. In 

addition to more powerful computers and more efficient core algorithms, these issues can be 

addressed by reducing the complexity of the problem in a number of ways. For IbMs, for 

example, a proposed solution has been to work with “super-individuals”, which are 

representatives of a large number of individuals with similar traits 218. This approach, 

however, weakens the intrinsic advantage of IbMs, which is to capture variability at the 

individual cell level 162.
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Similarly to super-individuals, one can reduce the number of necessary genome-scale 

metabolic models in a complex microbial community by using the concept of “a functional 

guild”. A guild is a group of organisms that use the same class of environmental resources in 

the same manner 219. Instead of considering all species in a community one could work with 

a few representative guilds without the significant loss of accuracy. This strategy has been 

used before in metabolic modeling of microbial communities from Octopus and Mushroom 

Springs in Yellowstone National Park 195; 201. Alternatively, it may prove useful to build 

and employ, for example, genus-level models containing all or most abundant metabolic 

reactions from their member species.

A possible strategy to address high computational demands for modeling large-scale 

heterogeneous environments is creating a “look-up” table. This table contains precomputed 

solutions for a computationally manageable list of combinations of environmentally-relevant 

cell and nutrients distributions in space (e.g. a matrix of possible values for nitrogen and 

carbon source concentrations in the medium). This approach has been pursued for single-

species FBA simulations in a large heterogeneous environments 220 but can be easily 

extended to both multi-species FBA simulations or IbMs. In this way, instead of directly 

solving a FBA problem for each species at each time and grid point, the required reaction 

fluxes are updated simply by interpolating within this loop-up table. Future developments 

could use combinations of pre-computed solution tables and new calculations, as dictated by 

environmental conditions.

As a complementary strategy to reduce the computing time, one can invest in the 

development of efficient high-performance numerical and computational methods that can 

alleviate the CPU demand of synthetic ecology algorithms. An example of progress in this 

direction has been recently reported through the development of a software tool termed 

Biocellion 221 for the individual-based modeling of large communities containing millions 

to billions of cells. By utilizing efficient numerical and parallelization techniques, it was 

possible to reduce the required CPU time for a case study on pattern formation in microbial 

communities 168 from a week to a few hours 221.

In addition to computational complexity, the development of stoichiometric-based 

algorithms for synthetic ecology needs to address a number of other challenges. Some of 

these challenges are rooted in our limited capacity to translate genomes and metagenomes 

into complete and accurate lists of functions for individual species in a community. Despite 

the availability of automated metabolic model reconstruction pipelines such as 

MetaFlux 222, ModelSeed 171 and the RAVEN toolbox223, all these algorithms can only 

partially compensate for the lack of knowledge of gene function. These algorithms provide 

only first-draft reconstructions, whose conversion to a computationally reliable model still 

requires extensive and time-consuming manual curation. New algorithms, e.g. using 

likelihood-based gene annotation and gap filling 224 can alleviate to some extent the need for 

manual curation, but they do not fully resolve the need for manual curation. A major leap 

towards resolving this problem at its root may result from coordinating big community 

endeavors for the prediction and experimental validation of individual gene functions, as 

pioneered for example by the COMBREX consortium 225.
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More broadly, the granularity at which taxonomy should be represented in stoichiometric 

metabolic models constitutes a technically and conceptually fascinating question. Brought to 

the extreme, one could ask whether it is possible to build community-level stoichiometric 

models as “soups of enzymes” irrespective of the knowledge of what reaction is performed 

by what species, similar to previously proposed models of biosphere-level 

metabolism 226; 227 (also see 195). One of the advantages of this approach would be the 

possibility of building community-level models straight from metagenomic sequencing data. 

Such metagenomic-based metabolic models could indeed conveniently capture the entire 

repertoire of functions of the community as a whole. However, the lack of metabolite and 

reaction compartmentalization in these models could lead to significant complications or 

predictions errors, for example due to the disruption of membrane gradient-mediated 

processes 228.

Conclusions and future perspectives

The emergence of synthetic ecology has provided an attractive alternative to engineering 

single-species systems for a wide variety of tasks ranging from the discovery of key 

ecological features of natural microbial communities to the targeted design of synthetic 

consortia for biotechnological and biomedical applications. While several examples of 

promising small synthetic ecosystems have demonstrated the feasibility of this approach, the 

most exciting opportunities of synthetic ecology require coping, in a more systematic way, 

with the complexity of microbial systems, and in particular with a hierarchy of nested 

networks, from those within microbes to those between them. Predictive mathematical 

modeling approaches can play a key role in addressing these challenges: they can help 

decipher how inter-species interactions in natural microbial communities govern community 

dynamics and evolution, and they can translate harvested knowledge into methods for the 

design of new communities with desired properties. The successful development of these 

predictive tools will require both revisiting existing modeling approaches to cope with the 

inherent complexity of microbial ecosystems, and inventing new ones.

When combined with engineering principles, these modeling approaches have a great 

potential in complementing experimental efforts (by reducing or prioritizing costly 

experiments) to address a number of current challenges in biotechnology, and biomedicine. 

The most immediate application is the rational design of microbial communities capable of 

performing a desired task. This brings to the forefront the need to develop efficient 

“computational consortia design” algorithms similar to strain design algorithms for single-

species systems, which have been successfully applied to bioenergy and metabolic 

engineering applications (see 180 for a review of these tools). For example, as mentioned 

before, mathematical modeling tools such as OptCom 201 and d-OptCom 214 can be easily 

re-purposed/adjusted for engineering applications by mathematically describing the desired 

engineering objective as the outer-level objective function, while the inner-level problems 

simulate species-specific fitness criteria as before. There are also several ways of 

incorporating engineering interventions in these and other similar frameworks. For example, 

one can use binary variables to determine whether a gene in a specific community member 

must be knocked out or whether a community member or a nutrient in the growth medium 

should be removed or if a new one should be added, to optimize the desired engineering 
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objective 56; 201; 214. Moreover, new computational approaches, combining ideas from 

synthetic biology, metabolic engineering and ecosystem-level modeling could enable the 

concurrent design of environments and strains to achieve a desired behavior. At a finer 

scale, taking into account the interplay between multiple biological processes contributing to 

the ecological behavior of a community member can enhance the predictive power and the 

scope of modeling frameworks. For instance, recent advances in whole-cell modeling 229 

and integrated metabolic-expression (ME) models 230 have enabled capturing several 

ecologically relevant biological processes that are not addressed by stoichiometric-based 

metabolic models such as gene expression, regulation and signal transduction. Although the 

current studies using these models have focused on individual species so far 231; 232, it is 

likely that these models will play a crucial role in constructing more predictive models of 

microbial communities.

Another important aspect for which modeling can play a key role in guiding the design of 

synthetic communities is the assessment of synthetic consortia stability. Similarly to 

engineered single species, instability is a major problem associated with engineered 

consortia, either based on wild-type or on genetically modified strains. Many existing 

consortia design strategies rely on the assumption that interactions among community 

members are fixed. However, patterns of inter-species interactions can be significantly 

modulated by environmental changes, and can change during the course of evolutionary 

adaptation 233. Thus, understanding processes that may guarantee stability and resilience in 

presence of these changes would require taking explicitly into account the volatility and 

context-dependence of interactions. Knowledge from the large body of evolutionary and 

ecological theory literature dedicated to addressing the problem of stability and the 

evolutionary fate of inter-species interactions in communities (e.g., 234; 235; 236; 237) could be 

used to inform computational consortia design tools to arrive at evolutionary stable 

communities. The importance of this integration has been recognized before 238 but has not 

been realized so far. Given that natural microbial communities are generally stable and 

robust to perturbations, some studies suggest the use of a top-down approach to address the 

stability issue. This was achieved by using artificial selection to sequentially screen a natural 

microbial community and arrive at a refined community capable of efficiently and stably 

performing the desired function 239; 240. For example, this approach was used to select for 

an efficient 3-chloroaniline degrading community 240. The promise of artificial selection 

was also shown by using individual-based modeling in a later study 241.

Even though both bottom-up and top-down approaches use different formalisms and 

assumptions, a synergy between these two could have great potential and applications. For 

example, a community obtained through sequential screening or laboratory evolution 

experiments could be later scrutinized to reveal its key species and interactions. Moreover, 

in analogy to a process referred to as “refactoring” in synthetic biology 242, one could build 

a more tractable, standardized and simplified version of such a community. Refactoring a 

microbial community would entail redesigning a screened natural community from the 

bottom up by systematically eliminating undesired and poorly understood organisms and 

interactions, and replacing them with well-characterized ones. A refactored community 

could achieve the same functionality of the original one, but with enhanced stability and 

tractability. Thus, similar to the standardization of biological parts (biobricks) for synthetic 
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biology 243, we envision that the field of synthetic ecology may similarly benefit from a 

registry of standard “ecological parts”. This registry would catalogue well-characterized 

ecological parts such as microorganisms and small ecological modules (motifs) with defined 

functions, inputs/outputs, interaction properties and, ideally, evolutionary characteristics. 

Such a registry would facilitate the experimental construction of increasingly complex 

consortia and could be complemented with new modeling tools to identify the required 

building blocks and the ecological circuit connectivity that bring about a desired function.
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Highlights

• Synthetic microbial consortia are implicated in environmental sustainability and 

biomedicine

• Mathematical models are an essential tool for the rational design of synthetic 

ecosystems

• A main goal is to infer community outputs and interactions based on genomes

• Faster computation, data/model integration and standardization needed for 

progress
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Fig. 1. 
Examples of various mechanisms for establishing a synthetic microbial community. Dashed 

and solid arrows in (A), (B) and (D) denote interspecies metabolite exchanges and the 

measurable uptake/export of metabolites by community, respectively. (A) Co-culturing 

wild-type species under conditions resembling naturally occurring environments. An 

example is the association between sulfate-reducing bacteria and methanogens. Here a 

sulfate-reducing bacterium utilizes lactate as the sole carbon source and produces acetate/

formate, which is used by a methanogen that is incapable of using lactate. The methanogen 

bacteria scavenge hydrogen in return thereby providing a thermodynamically favorable 

condition for the growth of sulfate-reducing bacteria 25; 28. (B) Using genetically engineered 

species to induce metabolite exchanges. An example is the association between two (or 

more) mutant strains where each strain relies on its partner for the essential amino acid it 

cannot produce on its own 22; 23. (C) Using synthetic genetic circuits to induce interactions 

through quorum sensing. Generally, each species may produce a signaling molecule that 

activates or represses the transcription of one (or more) gene(s) in another species. The 

example shown here is a predator-prey system 48, where empty and filled circles represent 

signaling molecules 3OC6HSL and 3OC12HSL (synthesized by LuxI and LasI), 

respectively, solid arrow denote protein production, dashed arrows represent activation and 

inhibition/killing. At low density of the prey, the predators die due to the constitutive 

expression of a killer protein (shown by red). At high concentration of the prey, 3OC6HSL 

activates LuxR in predators, which in turn induces the expression of antidote gene (shown 

by green) thereby rescuing the predators. At the same time, 3OC12HSL (produced by 

predators) activates LasR in preys, which induces the expression of a killer protein. (D) 

Using environmental perturbations. Here, we show a hypothetical example, where each 
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microorganism can grow on its own in the presence of glucose and ammonium. However, in 

the absence of these two compounds they rely on each other for the carbon and nitrogen 

source as only one can fix nitrogen and only one can metabolize lactate. The potential for 

such interactions between Desulfovibrio vulgaris and Methanococcus maripaludis has been 

reported using computational modeling 56.
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Fig. 2. 
Consortia-based conversion of lignocellulosic feedstock to biofuels by division of labor. 

One organism is proficient in the degradation of lignocellulosic feedstock into soluble 

sugars (e.g., Trichoderma reese and Clostridium cellulolyticum), one in metabolizing 

pentoses (e.g., Escherichia coli) and the other in metabolizing hexoses (e.g., Saccharomyces 

cerevisiae). See also Table 1.
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Fig. 3. 
Metabolic modeling of microbial communities provides an opportunity to infer, rather than 

assuming, inter-species interactions network from the intracellular metabolic networks of 

community members.
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Fig. 4. 
Evolution of the metabolic modeling of microbial communities from steady-state to dynamic 

to spatio-temporal analysis. Brackets represent an optimization problem, empty circles 

represent shared metabolites (labeled as s and p), dashed arrows represent inter-species 

metabolic extracellular interactions (metabolite exchanges) and solid arrows denote the 

uptake and export of metabolites. (A) Steady-state analysis using compartmentalized 

community-level metabolic models with the objective function being a weighted sum of 

biomass fluxes of community members 181. (B) Steady-state analysis using a multi-objective 

and multi-level optimization procedure (a nested optimization problem, where some of the 

constraints are another optimization problem referred to as inner-level problems 180). Here, a 

separate FBA problem is defined for each community member serving as inner-level 

optimization problems and capturing species-level fitness criteria. These FBA problems are 

integrated by using constraints in the outer-level problem representing metabolite exchanges 

among community members. The objective function of the outer-level problem captures a 
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community-level fitness criterion (e.g., maximization of the total community biomass) or a 

desired community-level bioengineering objective (e.g., the overproduction of a desired 

compound) 201. (C) Dynamic analysis by using the dynamic multi-species metabolic 

modeling 203 based on an extension of dynamic FBA for single species 211. Here, biomass 

and shared metabolite concentrations are dynamically updated using a finite difference 

approximation of the conservation of mass equations. A separate FBA problem is solved for 

each species at each time point to determine their growth rate. (D) Dynamic analysis using a 

dynamic multi-level and multi-objective optimization procedure that combines procedures in 

(B) and (C) 214. Here, species-level FBA problems are coupled with a community-level or a 

desired bioengineering objective function using the conservation of mass equations. (E) 

Spatio-temporal analysis by the direct coupling of dynamic metabolic analysis in (C) and 

diffusion models 215.
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Table 1

Examples of consortia-based cell factories to produce biofuel from lignocellulosic material.

(Ligno)cellulose- degrading species Pentose fermenting species Hexose fermenting species Product(s) Reference

Trichoderma reesei Escherichia coli Escherichia coli Isobutanol. Minty et al 87

Trichoderma reese Scheffersomyces stipitis Saccharomyces cerevisiae, Ethanol
Brethauer et 
al 83

Clostridium thermocellum Clostridium beijerinckii Clostridium beijerinckii
Acetone, 
butanol and 
ethanol

Wen et al 244

Clostridium themocellum and 
Clostridium thermolacticum Clostridium thermolacticum Clostridium themocellum Ethanol

Xu and 
Tschirner 85

Clostridium thermocellum Thermoanaerobacter strains 
(X514 and 39E)

Thermoanaerobacter strains 
(X514 and 39E) Ethanol He et al 86

Clostridium phytofermentans -
Candida molischiana or 
Saccharomyces cerevisiae 
cdt-1

Ethanol Zuroff et al 57
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Table 2

A summary of various categories of community modeling approaches using genome-scale metabolic models.

Modeling formalism Modeling condition Type of optimization problem Reference

Compartmentalized community- level 
metabolic models based on FBA Steady-state Linear programming

Stolyar et al 181, Shoaie et al 184, 
Heinken and Thiele 186, Bordbar et 
al 187, Klitgord and Segre 56, Gomes 
de Oliveira Dal’Molin et al 189, 
Bizukojc et al 190, Merino et al 191, 
Nagarajan et al 192

Compartmentalized community- level 
metabolic models based on MOMA Steady-state Quadratic programming Wintermute and Silver 22

(De-)Compartmentalized community-level 
metabolic models based on elementary 
mode analysis

Steady-state NA Taffs et al 195,

Analysis of metabolic model- derived 
metrics quantifying the degree of 
cooperation and/or competition

Steady-state NA
Zelezniak et al 196, Kreimer et al 197, 
Levy et al 198; 200, Borenstein and 
Feldman 199

Community FBA based on the balanced 
growth of microorganisms Steady-state Linear/Nonlinear programming Khandelwal et al 194

Multi-level and multi-objective modeling Steady-state Nonlinear programming Zomorrodi and Maranas 201, El-
Semman et al 202

Dynamic multi-species metabolic modeling 
based on the extension of dynamic FBA 211 

for single species
Dynamic Linear programming

Zhuang et al 203, Salimi et al 204, 
Hanly and Henson 206; 207209, 
Tzamali et al 208, Chiu et al 212

Multi-level and multi-objective dynamic 
metabolic modeling Dynamic Nonlinear programming Zomorrodi et al 214

Direct integration of community-level 
dynamic FBA and diffusion models Spatiotemporal Linear programming Harcombe et al 215, Cole et al 216
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