Compartmentalized community- level metabolic models based on FBA |
Steady-state |
Linear programming |
Stolyar et al 181, Shoaie et al 184, Heinken and Thiele 186, Bordbar et al 187, Klitgord and Segre 56, Gomes de Oliveira Dal’Molin et al 189, Bizukojc et al 190, Merino et al 191, Nagarajan et al 192
|
Compartmentalized community- level metabolic models based on MOMA |
Steady-state |
Quadratic programming |
Wintermute and Silver 22
|
(De-)Compartmentalized community-level metabolic models based on elementary mode analysis |
Steady-state |
NA |
Taffs et al 195, |
Analysis of metabolic model- derived metrics quantifying the degree of cooperation and/or competition |
Steady-state |
NA |
Zelezniak et al 196, Kreimer et al 197, Levy et al 198; 200, Borenstein and Feldman 199
|
Community FBA based on the balanced growth of microorganisms |
Steady-state |
Linear/Nonlinear programming |
Khandelwal et al 194
|
Multi-level and multi-objective modeling |
Steady-state |
Nonlinear programming |
Zomorrodi and Maranas 201, El-Semman et al 202
|
Dynamic multi-species metabolic modeling based on the extension of dynamic FBA 211 for single species |
Dynamic |
Linear programming |
Zhuang et al 203, Salimi et al 204, Hanly and Henson 206; 207,209, Tzamali et al 208, Chiu et al 212
|
Multi-level and multi-objective dynamic metabolic modeling |
Dynamic |
Nonlinear programming |
Zomorrodi et al 214
|
Direct integration of community-level dynamic FBA and diffusion models |
Spatiotemporal |
Linear programming |
Harcombe et al 215, Cole et al 216
|