Skip to main content
. Author manuscript; available in PMC: 2017 Feb 27.
Published in final edited form as: J Mol Biol. 2015 Nov 11;428(5 Pt B):837–861. doi: 10.1016/j.jmb.2015.10.019

Table 2.

A summary of various categories of community modeling approaches using genome-scale metabolic models.

Modeling formalism Modeling condition Type of optimization problem Reference
Compartmentalized community- level metabolic models based on FBA Steady-state Linear programming Stolyar et al 181, Shoaie et al 184, Heinken and Thiele 186, Bordbar et al 187, Klitgord and Segre 56, Gomes de Oliveira Dal’Molin et al 189, Bizukojc et al 190, Merino et al 191, Nagarajan et al 192
Compartmentalized community- level metabolic models based on MOMA Steady-state Quadratic programming Wintermute and Silver 22
(De-)Compartmentalized community-level metabolic models based on elementary mode analysis Steady-state NA Taffs et al 195,
Analysis of metabolic model- derived metrics quantifying the degree of cooperation and/or competition Steady-state NA Zelezniak et al 196, Kreimer et al 197, Levy et al 198; 200, Borenstein and Feldman 199
Community FBA based on the balanced growth of microorganisms Steady-state Linear/Nonlinear programming Khandelwal et al 194
Multi-level and multi-objective modeling Steady-state Nonlinear programming Zomorrodi and Maranas 201, El-Semman et al 202
Dynamic multi-species metabolic modeling based on the extension of dynamic FBA 211 for single species Dynamic Linear programming Zhuang et al 203, Salimi et al 204, Hanly and Henson 206; 207,209, Tzamali et al 208, Chiu et al 212
Multi-level and multi-objective dynamic metabolic modeling Dynamic Nonlinear programming Zomorrodi et al 214
Direct integration of community-level dynamic FBA and diffusion models Spatiotemporal Linear programming Harcombe et al 215, Cole et al 216