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Abstract Transcription factor (TF) networks determine cell-type identity by establishing and

maintaining lineage-specific expression profiles, yet reconstruction of mammalian regulatory

network models has been hampered by a lack of comprehensive functional validation of regulatory

interactions. Here, we report comprehensive ChIP-Seq, transgenic and reporter gene experimental

data that have allowed us to construct an experimentally validated regulatory network model for

haematopoietic stem/progenitor cells (HSPCs). Model simulation coupled with subsequent

experimental validation using single cell expression profiling revealed potential mechanisms for cell

state stabilisation, and also how a leukaemogenic TF fusion protein perturbs key HSPC regulators.

The approach presented here should help to improve our understanding of both normal

physiological and disease processes.

DOI: 10.7554/eLife.11469.001

Introduction
Tight regulation of gene expression is essential for both the establishment and maintenance of cellu-

lar phenotypes within metazoan organisms. The binding of transcription factor proteins (TFs) to spe-

cific DNA sequence motifs represents the primary step of decoding genetic information into specific

gene expression patterns. TF binding sites (TFBSs) or motifs are usually short (6–10 bp), and there-

fore found just by chance throughout the genome. Functional TFBSs often occur as evolutionarily

conserved clusters, which in the case of enhancers can act over long distances, thus necessitating

comprehensive analysis of entire gene loci to understand the transcriptional control mechanisms act-

ing at mammalian gene loci.

Given the complex regulatory circuitries that arise when the control of multiple genes is consid-

ered, transcriptional control is often represented in the form of gene regulatory networks (GRNs),

which carry most mechanistic information when constructed from detailed knowledge on the TFs
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and the cis-regulatory elements with which they interact (Davidson, 2009; Davidson, 2010;

Petricka and Benfey, 2011; Pimanda and Gttgens, 2010; Gottgens, 2015; Schütte et al., 2012).

Importantly, regulatory network models can provide much more than a representation of existing

knowledge, because network simulations can reveal possible molecular mechanisms that underlie

highly complex biological processes. Boolean modelling approaches have been used to reconstruct

core regulatory networks in blood stem cells (Bonzanni et al., 2013) and myeloid progenitors

(Krumsiek et al., 2011), but neither of these studies took into account the underlying regulatory

structure of the relevant gene regulatory elements. Full gene-regulatory information has been used

for an ordinary differential equation-based model (Narula et al., 2010; Narula et al., 2013), but was

restricted to a small three-gene core circuit. Large consortia efforts such as ImmGen and FANTOM5

have created comprehensive networks of either regulatory elements or gene signatures important

for multipotency and differentiation (Gazit et al., 2013; Jojic et al., 2013). Furthermore, studies

looking at gene regulation circuitry in embryonic stem (ES) cells have proposed regulatory networks

important for ES cell identity (Dunn et al., 2014; Zhou et al., 2007). While the complexities of tran-

scriptional control demand approaches such as network modelling, no single experimental method

can provide the complex biological data required for the construction of accurate models. The previ-

ously mentioned studies focus their attention on one specific aspect of network modelling and

importantly did not combine network analysis with comprehensive functional validation. Given that

the key building blocks are gene regulatory sequences and the TFs bound to them, essential infor-

mation for network reconstruction includes (i) comprehensive TF binding data, (ii) in vivo validation

of the functionality of TF-bound regions as bonafide regulatory elements, and (iii) molecular data on

the functional consequences of specific TF-binding events (e.g. activation vs. repression). The regula-

tory network model that we present in this study comprises all of the aforementioned components

and is accompanied by functional validation of model predictions.

eLife digest Blood stem cells and blood progenitor cells replenish a person’s entire blood

system throughout their life and are crucial for survival. The stem cells have the potential to become

any type of blood cell – including white blood cells and red blood cells – while the progenitor cells

are slightly more restricted in the types of blood cell they can become. It is important to understand

how the balance of cell types is maintained because, in cancers of the blood (also known as

leukaemias), this organisation is lost and some cells proliferate abnormally.

Almost all of a person’s cells will contain the same genetic information, but different cell types

arise when different genes are switched on or off. The genes encoding proteins called transcription

factors are particularly important because the proteins can control – either by activating or

repressing – many other genes. Importantly, some of these genes will encode other transcription

factors, meaning that these proteins essentially work together in networks.

Schütte et al. have now combined extensive biochemical experiments with computational

modelling to study some of the transcription factors that define blood stem cells and blood

progenitor cells in mice. Firstly, nine transcription factors, which were already known to be important

in blood stem cells, were thoroughly studied in mouse cells that could be grown in the laboratory.

These experiments provided an overall view of which other genes these transcription factors control.

Additional targeted investigations of the nine transcription factors then revealed how these proteins

act in combination to activate or repress their respective activities. With this information, Schütte

et al. built a computational model, which accurately reproduced how real mouse blood stem and

progenitor cells behave when, for example, a transcription factor is deleted. Furthermore, the model

could also predict what happens in single cells if the amounts of the transcription factors change.

Lastly, Schütte et al. studied a common type of leukaemia. The model showed that the mutations

that occur in this cancer change the finely tuned balance of the nine transcription factors; this may

explain why leukaemia cells behave abnormally. In future these models could be extended to more

transcription factors and other cell types and cancers.

DOI: 10.7554/eLife.11469.002
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Results

In vivo validation of cis-elements as regulatory network nodes
connecting 9 HSPC TFs
For the reconstruction of a core GRN model for HSPCs, we focussed on nine major HSPC regulators

(ERG, FLI1, GATA2, GFI1B, LYL1, MEIS1, PU.1, RUNX1, TAL1), for which genome-wide binding pat-

terns in the murine multipotent progenitor cell line HPC7 have previously been published

(Wilson et al., 2010). First, we searched the literature to summarise known cis-regulatory regions for

the nine TFs that possess haematopoietic activity in transgenic mouse embryos, which recovered a

total of 14 regions: Erg+85 (Wilson et al., 2009), Fli1-15 (Beck et al., 2013), Fli1+12, Gata2-3

(Pimanda et al., 2007), Gata2+3 (= Gata2+9.5) (Wozniak et al., 2007), Gfi1b+13, Gfi1b+16, Gfi1b

+17 (Wilson et al., 2009; Moignard et al., 2013), Lyl1 promoter (Chan et al., 2007), Spi1-14

(Wilkinson et al., 2014), Runx1+23 (Nottingham et al., 2007), Tal1-4 (Gottgens et al., 2004), Tal1

+19 (Göttgens et al., 2002) and Tal1+40 (Gottgens et al., 2010).

To extend this partial knowledge of relevant gene regulatory sequences to a comprehensive defi-

nition of how these nine TFs might cross-regulate each other, we made use of the genome-wide

binding data for the nine TFs (Wilson et al., 2010) as well as information on acetylation of histone

H3 at lysine 27 (H3K27ac) (Calero-Nieto et al., 2014) in the HPC7 blood progenitor cell line. Addi-

tional candidate gene regulatory regions for all nine TFs were selected based on the binding of at

least three TFs and H3K27ac, since it has been shown previously that transcriptionally active regions

are commonly bound by multiple TFs and display H3K27 acetylation (Hardison and Taylor, 2012).

To assign putative candidate regions to a given TF, they had to be located between its respective

upstream and downstream flanking genes, i.e. within the gene body itself or its 5’ and 3’ intergenic

flanking regions. The Erg gene locus for example contains five candidate cis-regulatory regions

based on these criteria, namely Erg+65, Erg+75, Erg+85, Erg+90 and Erg+149 (Figure 1a), of which

only the Erg+85 region had previously been tested in transgenic mice (Wilson et al., 2009). Inspec-

tion of the gene loci of all nine TFs resulted in the identification of 35 candidate cis-regulatory

regions (Figure 1b, Figure 1—figure supplements 1–8). In addition to the 14 haematopoietic

enhancers previously published, eight of the 35 new candidate regulatory regions had previously

been shown not to possess activity in tissues of the blood system of mouse embryos: Gata2-83

(Gata2-77), Gfi1b promoter (Moignard et al., 2013), Spi1-18, Spi1 promoter (Wilkinson et al.,

2014), Runx1 P1 promoter (Bee et al., 2009), Tal1-9, Tal1 promoter (Sinclair et al., 1999) and Tal1

+6 (Sánchez et al., 1999). Of the remaining 27 candidate cis-regulatory regions, two coincided with

genomic repeat regions (Runx1-322 and Runx1+1) and were excluded from further analysis because

mapping of ChIP-Seq reads to such regions is ambiguous. Since a comprehensive understanding of

regulatory interactions among the nine HSPC TFs requires in vivo validation of candidate regulatory

regions, we next tested the remaining 25 candidate cis-regulatory regions for their ability to mediate

reporter gene expression in embryonic sites of definitive haematopoietic cell emergence and coloni-

sation, namely the dorsal aorta and foetal liver of E10.5 to E11.5 transgenic LacZ-reporter mouse

embryos. For the Erg locus, this analysis revealed that in addition to the previously known Erg+85

enhancer, the Erg+65 and Erg+75 regions also displayed activity in the dorsal aorta and/or the foe-

tal liver, while the Erg+90 and Erg+149 regions did not (Figure 1c). Careful inspection of a total of

188 transgenic mouse embryos revealed that nine of the 25 identified regions showed LacZ expres-

sion in the dorsal aorta and/or foetal liver (Figure 1b, Figure 1—figure supplements 1–8, Figure 1—

source data 1). This large-scale transient transgenic screen therefore almost doubled the number of

known in vivo validated early haematopoietic regulatory elements for HSPC TFs.

ChIP-Seq maps for a second progenitor cell line validate core
regulatory interactions
Although HPC7 cells are a useful model cell line for the prediction of genomic regions with haemato-

poietic activity in transgenic mouse assays (Wilson et al., 2009), they are refractory to most gene

transfer methods and therefore not suitable for functional characterisation of regulatory elements

using standard transcriptional assays. By contrast, the 416b myeloid progenitor cell line can be read-

ily transduced by electroporation and therefore represents a candidate cell line for functional dissec-

tion of individual regulatory elements. As ChIP-Seq profiles in 416b cells had not been reported
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Figure 1. Identification of haematopoietic active cis-regulatory regions. (a) UCSC screenshot of the Erg gene locus for ChIP-Sequencing data for nine

haematopoietic TFs (ERG, FLI1, GATA2, GFI1B, LYL1, MEIS1, PU.1, RUNX1 and TAL1 [Wilson et al., 2010]) and for H3K27ac (Calero-Nieto et al.,

2014) in HPC7 cells. Highlighted are all regions of the Erg gene locus that are acetylated at H3K27 and are bound by three or more TFs. Numbers

indicate the distance (in kb) from the ATG start codon. (b) Summary of the identification of candidate cis-regulatory regions for all nine TFs and

subsequent analysis in transgenic mouse assays. The inspection of the nine gene loci and the application of the selection criteria (�3 TFs bound and

H3K27ac) identified a total of 49 candidate cis-regulatory regions. The heatmap shows the binding pattern of the nine TFs to all candidate regulatory

elements in HPC7 cells: green = bound, grey = unbound. Haematopoietic activity in E11.5 transgenic mice is indicated by the font color: black = active,

red = not active. Grey indicates genomic repeat regions that were not tested in transgenic mice. Detailed experimental data corresponding to the

summary heatmap can be found in Figure 1 and Figure 1—figure supplement 1–8. (c) Haematopoietic activity of the five candidate Erg cis-regulatory

regions was determined in E11.5 transgenic mouse assays. Shown are X-Gal-stained whole-mount embryos and paraffin sections of the dorsal aorta

(DA, ventral side on the left/top) and foetal liver (FL), sites of definitive haematopoiesis. Colour coding as in B.

DOI: 10.7554/eLife.11469.003

The following source data and figure supplements are available for figure 1:

Source data 1. Number of PCR and LacZ positive transgenic embryos (E10.5–11.5) for each regulatory region.

DOI: 10.7554/eLife.11469.004

Figure supplement 1. Identification of haematopoietic active cis-regulatory elements for Fli1.

DOI: 10.7554/eLife.11469.005

Figure 1 continued on next page
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previously, we performed ChIP-Seq for H3K27ac and the nine TFs in this cell line (Figure 2a, Fig-

ure 2—figure supplements 1–8). Alongside with our previously published HPC7 data, this new

416b dataset represents the most complete genome-scale TF-binding analysis in haematopoietic

progenitor cell lines to date, with all new data being freely accessible under the following GEO

accession number GSE69776 and also at http://codex.stemcells.cam.ac.uk/. Genome-wide TF bind-

ing patterns in 416b and HPC7 cells were closely related when compared with binding profiles for

the same factors in other haematopoietic lineages (Figure 2b, Figure 2—source data 1). Inspection

of the gene loci for the nine HSPC TFs not only revealed many similarities between 416b and HPC7

cells, but also some differences in TF binding patterns. Overall, TF occupancy at the 23 regions with

activity in haematopoietic tissues (14 previously published (Wilson et al., 2009; Beck et al., 2013;

Pimanda et al., 2007; Wozniak et al., 2007; Moignard et al., 2013; Chan et al., 2007;

Wilkinson et al., 2014; Nottingham et al., 2007; Göttgens et al., 2002; Gottgens et al., 2004;

Gottgens et al., 2010) and 9 newly identified) does not change between the two cell types in 71%

of all cases (147 of 207 binding events), is gained in 416b cells in 16% (33 of 207) and lost in 13% (27

of 207) of cases compared to HPC7 cells (Figure 2c). Next, all 23 elements were filtered to only

retain those elements which were bound by at least 3 of the 9 TFs and displayed elevated H3K27ac

in HPC7 and 416 cells. This led to the removal of the Gata2-3, which is not bound by any of the nine

TFs in either cell type, Gata2-92 and Gfi1b+13, which are only bound by one or no TFs in 416b cells,

and Fli1-15, which is not acetylated in 416b cells (Figure 2c, Figure 2—figure supplements 1–

3). Overall, 19 cis-regulatory regions were therefore taken forward as a comprehensively validated

set of regions for the reconstruction of an HSPC regulatory network model.

Comprehensive TFBS mutagenesis reveals enhancer-dependent effects
of TF binding
The reconstruction of a core regulatory network model requires information about the effect of TF

binding on gene expression, which can be activating, repressing or non-functional. In order to ana-

lyse the effects of all TF-binding events at all 19 regulatory regions, we performed luciferase reporter

assays in stably transfected 416b cells. Based on multiple species alignments between five species

(mouse, human, dog, platypus, opossum), we identified conserved TFBSs for the nine TFs

(Figure 3a, Figure 3—figure supplements 1–18, Figure 3—source data 1), and generated mutant

constructs for each of the 19 regulatory regions, resulting in 87 reporter constructs that were tested

by luciferase assays (19 wild-type, 68 mutants). To ensure that DNA binding of the TFs was abro-

gated, the key DNA bases involved in DNA-protein interactions were mutated and the resulting

sequences were scanned to ensure that no new binding sites were created (Lelieveld et al., 2015).

For each of the 19 regulatory regions, the conserved TFBSs were mutated by family, for example, all

six Ets sites within the Erg+65 region were mutated simultaneously in one construct, and this ele-

ment was then treated as the Erg+65_Ets mutant. TFBS mutations reduced or increased activity

compared to the wild-type enhancer, or indeed had no significant effect (Figure 3b, Figure 3—fig-

ure supplements 1–18). For instance, at the Erg+65 region, mutation of the six Ets binding sites or

Figure 1 continued

Figure supplement 2. Identification of haematopoietic active cis-regulatory elements for Gata2.

DOI: 10.7554/eLife.11469.006

Figure supplement 3. Identification of haematopoietic active cis-regulatory elements for Gfi1b.

DOI: 10.7554/eLife.11469.007

Figure supplement 4. Identification of haematopoietic active cis-regulatory elements for Lyl1.

DOI: 10.7554/eLife.11469.008

Figure supplement 5. Identification of haematopoietic active cis-regulatory elements for Meis1.

DOI: 10.7554/eLife.11469.009

Figure supplement 6. Identification of haematopoietic active cis-regulatory elements for Runx1.

DOI: 10.7554/eLife.11469.010

Figure supplement 7. Identification of haematopoietic active cis-regulatory elements for Spi1.

DOI: 10.7554/eLife.11469.011

Figure supplement 8. Identification of haematopoietic active cis-regulatory elements for Tal1.

DOI: 10.7554/eLife.11469.012
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Figure 2. Comparison of TF binding pattern at haematopoietic active cis-regulatory regions in two

haematopoietic progenitor cell lines, HPC7 and 416b. (a) UCSC screenshot of the Erg gene locus for ChIP-

Sequencing data for nine haematopoietic TFs (ERG, FLI1, GATA2, GFI1B, LYL1, MEIS1, PU.1, RUNX1 and TAL1)

and for H3K27ac in 416b cells. Highlighted are those haematopoietic active Erg cis-regulatory regions that were

identified based on acetylation of H3K27 and TF binding in HPC7 cells followed by transgenic mouse assays.

Numbers indicate the distance (in kb) from the ATG start codon. (b) Hierarchical clustering of the binding profiles

for HPC7, 416b and other published datasets. The heatmap shows the pairwise correlation coefficient of peak

coverage data between the pairs of samples in the row and column. The order of the samples is identical in

columns and rows. Details about samples listed can be found in Figure 2—source data 1. (c) Pair-wise analysis of

binding of the nine TFs to haematopoietic active cis-regulatory regions of the nine TFs in HPC7 versus 416b cells.

Figure 2 continued on next page
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the three Gata binding sites reduced luciferase activity, whereas mutation of the three Ebox or the

three Gfi motifs increased luciferase activity (Figure 3b). Comparison of the luciferase assay results

for all 19 cis-regulatory regions (Figure 3c) reveals that for each motif class mutation can result in

activation, repression or no-change. This observation even extends to single gene loci, where for

example mutation of the Gata site reduced activity of the Erg+65 region, but increased activity of

the Erg+85 enhancer (Figure 3c). Taken together, this comprehensive mutagenesis screen highlights

the dangers associated with extrapolating TF function simply from ChIP-Seq binding events and thus

underlines the importance of functional studies for regulatory network reconstruction.

Dynamic Bayesian network modelling can incorporate complex
regulatory information and shows stabilization of the HSPC expression
state
We next set out to construct a regulatory network model that incorporates the detailed regulatory

information obtained for potential cross-regulation of the nine HSPC TFs obtained in the previous

sections (summarised in Figure 4a). We focussed on three categories of causal relationships: (i) one

or several TFs can bind to a certain type of motif at a given regulatory region, and the probability of

a motif being bound depends on the expression levels of the relevant TFs; (ii) TFBS mutations at a

given regulatory region altered luciferase activities compared to the wild-type, thus capturing the

impact of TF binding on the activity of the given regulatory region; (iii) individual regulatory regions

show varying degrees of activation over baseline controls, which translate into different relative

strengths of individual cis-regulatory regions. To incorporate this multi-layered experimental infor-

mation, we constructed a three-tier dynamic Bayesian network (DBN) to jointly represent all those

causal relationships (see Material and Methods and Figure 4b). The reconstructed DBN represents a

first-order time-homogeneous Markov process, which is a stochastic process where the transition

Figure 2 continued

Green = bound in both cells types, blue = only bound in 416b cells, orange = only bound in HPC7 cells, grey =

not bound in either cell type.

DOI: 10.7554/eLife.11469.013

The following source data and figure supplements are available for figure 2:

Source data 1. List of ChIP-Seq samples included in the heatmap in Figure 2b.

DOI: 10.7554/eLife.11469.014

Figure supplement 1. UCSC screenshot for the Fli1 gene locus demonstrating binding patterns for nine key

haematopoietic TFs and H3K27ac in 416b cells.

DOI: 10.7554/eLife.11469.015

Figure supplement 2. UCSC screenshot for the Gata2 gene locus demonstrating binding patterns for nine key

haematopoietic TFs and H3K27ac in 416b cells.

DOI: 10.7554/eLife.11469.016

Figure supplement 3. UCSC screenshot for the Gfi1b gene locus demonstrating binding patterns for nine key

haematopoietic TFs and H3K27ac in 416b cells.

DOI: 10.7554/eLife.11469.017

Figure supplement 4. UCSC screenshot for the Lyl1 gene locus demonstrating binding patterns for nine key

haematopoietic TFs and H3K27ac in 416b cells.

DOI: 10.7554/eLife.11469.018

Figure supplement 5. UCSC screenshot for the Meis1 gene locus demonstrating binding patterns for nine key

haematopoietic TFs and H3K27ac in 416b cells.

DOI: 10.7554/eLife.11469.019

Figure supplement 6. UCSC screenshot for the Runx1 gene locus demonstrating binding patterns for nine key

haematopoietic TFs and H3K27ac in 416b cells.

DOI: 10.7554/eLife.11469.020

Figure supplement 7. UCSC screenshot for the Spi1 gene locus demonstrating binding patterns for nine key

haematopoietic TFs and H3K27ac in 416b cells.

DOI: 10.7554/eLife.11469.021

Figure supplement 8. UCSC screenshot for the Tal1 gene locus demonstrating binding patterns for nine key

haematopoietic TFs and H3K27ac in 416b cells.

DOI: 10.7554/eLife.11469.022
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Figure 3. TFBS mutagenesis reveals enhancer-dependent effects of TF binding on gene expression. (a) Multiple species alignment of mouse (mm9),

human (hg19), dog (canFam2), opossum (monDom5) and platypus (ornAna1) sequences for the Erg+65 region. Nucleotides highlighted in black are

conserved between all species analysed, nucleotides highlighted in grey are conserved between four of five species. Transcription factor binding sites

(TFBS) are highlighted in: blue = Ebox, purple = Ets, green = Gata, yellow = Gfi, red = Meis. The nucleotides that were changed to mutate the TFBSs

are indicated below the alignment. All binding sites of one motif family (e.g. all Ebox motifs) were mutated simultaneously. (b) Luciferase assay for the

Erg+65 wild-type and mutant enhancer in stably transfected 416b cells. Each bar represents the averages of at least three independent experiments

with three to four replicates within each experiment. The results are shown relative to the wild-type enhancer activity, which is set to 100%. Error bars

represent the standard error of the mean (SEM). Stars indicate significance: **=p-value <0.01, ***=p-value <0.001. p-values were calculated using t-

tests, followed by the Fisher’s method. (c) Summary of luciferase assay results for all 19 high-confidence haematopoietic active regulatory regions.

Relative luciferase activity is illustrated in shades of blue (down-regulation) and red (up-regulation). Crossed-out grey boxes indicate that there is no

Figure 3 continued on next page
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functions are the same throughout all time points, and the conditional probability distribution of

future states depends only on the present state (see Material and Methods). The model is calculated

so that the expression at t+1 is influenced by the expression at t0; analogously, the expression at t0

is influenced by the expression at t-1, and so on. Therefore, though the model does not incorporate

’epigenetic memory’, past expression levels directly influence current expression levels. Model exe-

cution therefore permits the simulation of gene expression states in single cells over time, as well as

the calculation of gene expression distributions for each gene across a population of simulated sin-

gle cells.

Having generated a DBN model incorporating extensive experimental information, we next inves-

tigated the expression states following model execution. First, we investigated whether the network

Figure 3 continued

motif for the TF and/or the TF does not bind to the region. Detailed results and corresponding alignments with highlighted TFBSs and their mutations

can be found in Figure 3—figure supplements 1–18.

DOI: 10.7554/eLife.11469.023

The following source data and figure supplements are available for figure 3:

Source data 1. List of TF binding sites and the TFs that bind to them.

DOI: 10.7554/eLife.11469.024

Source data 2. List of co-ordinates and primer sequences for the regulatory regions analysed in this study.

DOI: 10.7554/eLife.11469.025

Figure supplement 1. Multiple species alignment and luciferase assay results for Erg+75.

DOI: 10.7554/eLife.11469.026

Figure supplement 2. Multiple species alignment and luciferase assay results for Erg+85.

DOI: 10.7554/eLife.11469.027

Figure supplement 3. Multiple species alignment and luciferase assay results for Fli1+12.

DOI: 10.7554/eLife.11469.028

Figure supplement 4. Multiple species alignment and luciferase assay results for Gata2-93.

DOI: 10.7554/eLife.11469.029

Figure supplement 5. Multiple species alignment and luciferase assay results for Gata2+3.

DOI: 10.7554/eLife.11469.030

Figure supplement 6. Multiple species alignment and luciferase assay results for Gfi1b+16.

DOI: 10.7554/eLife.11469.031

Figure supplement 7. Multiple species alignment and luciferase assay results for Gfi1b+17.

DOI: 10.7554/eLife.11469.032

Figure supplement 8. Multiple species alignment and luciferase assay results for Lyl1 promoter.

DOI: 10.7554/eLife.11469.033

Figure supplement 9. Multiple species alignment and luciferase assay results for Meis1+48.

DOI: 10.7554/eLife.11469.034

Figure supplement 10. Multiple species alignment and luciferase assay results for Spi1-14.

DOI: 10.7554/eLife.11469.035

Figure supplement 11. Multiple species alignment and luciferase assay results for Runx1-59.

DOI: 10.7554/eLife.11469.036

Figure supplement 12. Multiple species alignment and luciferase assay results for Runx1+3.

DOI: 10.7554/eLife.11469.037

Figure supplement 13. Multiple species alignment and luciferase assay results for Runx1+23.

DOI: 10.7554/eLife.11469.038

Figure supplement 14. Multiple species alignment and luciferase assay results for Runx1+110.

DOI: 10.7554/eLife.11469.039

Figure supplement 15. Multiple species alignment and luciferase assay results for Runx1+204.

DOI: 10.7554/eLife.11469.040

Figure supplement 16. Multiple species alignment and luciferase assay results for Tal1-4.

DOI: 10.7554/eLife.11469.041

Figure supplement 17. Multiple species alignment and luciferase assay results for Tal1+19.

DOI: 10.7554/eLife.11469.042

Figure supplement 18. Multiple species alignment and luciferase assay results for Tal1+40.

DOI: 10.7554/eLife.11469.043
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Figure 4. A three-tier dynamic Bayesian network (DBN) incorporating transcriptional regulatory information can recapitulate the HSPC expression state.

(a) Representation of the complete network diagram generated using the Biotapestry software (Longabaugh et al., 2005). (b) Schematic diagram

describing the DBN which contains three tiers: I. TF binding motifs within regulatory regions, II. cis-regulatory regions influencing the expression levels

of the various TFs, and III. genes encoding the TFs. The output of tier III, namely the expression levels of the TF, feed back into the TF binding at the

various motifs of tier I. The model therefore is comprised of successive time slices (t). (c) Simulation of a single cell over time. The expression levels of

all 9 TFs are the same at the beginning (0.5). The simulation rapidly stabilizes with characteristic TF expression levels. (d) Simulation of a cell population

by running the model 1000 times. The scale of the x-axis is linear. Each simulation was run as described in (c).

DOI: 10.7554/eLife.11469.044

The following figure supplement is available for figure 4:

Figure supplement 1. Simulation of a single cell over time with different expression levels at the beginning.

DOI: 10.7554/eLife.11469.045

Schütte et al. eLife 2016;5:e11469. DOI: 10.7554/eLife.11469 10 of 27

Research article Computational and systems biology Genes and chromosomes

http://dx.doi.org/10.7554/eLife.11469.044
http://dx.doi.org/10.7554/eLife.11469.045
http://dx.doi.org/10.7554/eLife.11469


model was compatible with the HSPC expression profile from which all the experimental data are

derived, namely co-expression of all nine TFs. To this end, model execution was initiated with

expression levels for all nine TFs set at the midpoint level of 0.5. A representative single cell mod-

elled over time rapidly adopts characteristic levels of expression for each of the nine genes, with

some genes showing perpetual fluctuations (Figure 4c). The same expression levels were reached

when the model was initiated with expression starting at 0.2, 0.8 or with initially only FLI1, RUNX1

and TAL1 being expressed at 0.5 (Figure 4—figure supplement 1). We next modelled the overall

distribution of the nine TFs as might be seen in a cell population by running 1000 model simulations

(Figure 4d). This analysis demonstrated that our model is compatible with co-expression of all nine

genes within the same single cell. Moreover, stable expression over time for some genes as well as

oscillations around a characteristic mean expression level for other genes suggests that our model

may have captured those aspects of HSPC regulatory networks that ensure the maintenance of

stem/progenitor cells.

Relative stability to experimental perturbation is recapitulated by the
model
The TFs TAL1 and LYL1 are important regulators of adult haematopoiesis, but the deletion of each

factor individually has only minor effects on adult HSC function (Mikkola et al., 2003; Hall et al.,

2003; Capron et al., 2006). Combined deletion in adult HSCs however causes a severe phenotype

with rapid loss of HSPCs (Souroullas et al., 2009). We wanted to investigate to what extent our

computer model could recapitulate these known phenotypes through in silico perturbation simula-

tions. To quantify if a change in the expression profile of a given TF was significant, we performed a

Wilcoxon rank-sum test. Interestingly, this significance calculation demonstrated that both large and

small fold-changes can be significant. Simulated perturbation of just LYL1 caused significant altera-

tions to the expression profiles of Gfi1b, Tal1, Fli1 and Gata2, but none of these were associated

with a substantial shift in mean expression levels (Figure 5a, Figure 5—figure supplement 1). Per-

turbation of just TAL1 caused significant changes to the expression profiles of Runx1, Gfi1b and

Gata2, and again none of these were associated with a substantial shift in expression levels

(Figure 5b, Figure 5—figure supplement 1). Simultaneous deletion of both factors caused signifi-

cant changes in gene expression profiles in all TFs except for Fli1. Unlike for the single TF perturba-

tions, Gata2 and Runx1 showed substantial shifts in expression levels when both LYL1 and TAL1

were simulated to be knocked down (Figure 5c, Figure 5—figure supplement 1). Of note, the sig-

nificance calculations highlight that there may be no one perfect way to visualize these small fold-

change alterations. We therefore also generated histogram plots as an alternative visualization (Fig-

ure 5—figure supplement 2).

We next wanted to compare model predictions with actual experimental data in the 416b cell

line, from which the information for model construction had been derived. Because our DBN model

is particularly suited to model the expression states in single cells, we compared predicted and

experimentally observed effects of knockdown or overexpression in single cells. To this end, we

knocked down the expression of TAL1 in 416b cells by transfecting the cells with siRNA against Tal1

(siTal1) or control siRNA (siCtrl). Forty-eight hours after transfection, gene expression for the nine

network genes was analysed in 44 siTal1 treated cells and 41 siCtrl treated cells. Importantly, 29 of

44 cells (66%) transfected with siTal1 showed no expression of Tal1 anymore, demonstrating the suc-

cessful knockdown (Figure 5d, Figure 5—source data 1). Down-regulation of TAL1 caused a signifi-

cant change in the expression profiles of Tal1, Fli1 and Gfi1b, but a substantial shift of median

expression was only observed for Tal1 (Figure 5—figure supplement 1). Experimental validation

therefore confirmed the occurrence of statistically significant small-fold changes in expression pro-

files following single TF knockdown, although there was no perfect match between the genes

affected in the model and experiment. To extend comparisons between model predictions and

experimental validation, we investigated the consequences of knocking down the expression of PU.1

and overexpressing GFI1B. Complete removal of PU.1 in silico after the model had reached its initial

steady state had no effect on the expression levels of the other TFs (Figure 6a). To investigate

whether the model prediction is comparable to experimental data obtained from single cells, single

cell gene expression analysis using the Fluidigm Biomark HD platform was performed using 416b

cells transduced with shRNA against PU.1 (shPU.1) or luciferase (shluc). Three days after transduc-

tion, 121 shPU.1 and 123 shluc transduced single cells were analysed for their expression of Spi1
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Figure 5. The DBN recapitulates the consequences of TAL1 and LYL1 single and double perturbations as seen in vivo and in vitro. Computational

prediction of gene expression patterns for the nine TFs of interest after perturbation of TAL1 (a), LYL1 (b) or both (c). Deletion of TAL1 or LYL1 on their

own has no major consequences on the expression levels of the other eight TFs of the gene regulatory network, but simultaneous deletion of both

TAL1 and LYL1 caused changes in expression of several genes, mainly a decrease in Gata2 and Runx1. This major disruption of the core GRN for blood

stem/progenitor cells is therefore consistent with TAL1/LYL1 double knockout HSCs showing a much more severe phenotype than the respective single

knock-outs. One thousand simulations were run for each perturbation to determine the TFs expression levels in a ’cell population’ by selecting

expression levels at random time points after reaching its initial steady state. Expression levels of 0 resemble no expression, whereas expression levels

of 1 stand for highest expression level that is possible in this system. The scale of the x-axes is linear. (d) Gene expression levels measured in single

416b cells transfected with siRNA constructs against Tal1 or a control. The density plots of gene expression levels after perturbation of TAL1 indicate

the relative number of cells (y-axes) at each expression level (x-axes). The scale of the x-axes is linear. The values indicate the results of the Wilcoxon

rank-sum test: alterations to the expression profiles are indicated by the p-value (statistical significance: p <0.001 for computational data and p <0.05

for experimental data); substantial shifts in median expression level are indicated by the shift of median (SOM) (SOM >0.1 for computational data and

>1 for experimental data). For details, see Figure 5—figure supplement 1; for full expression data, see Figure 5—source data 1 .

DOI: 10.7554/eLife.11469.046

The following source data and figure supplements are available for figure 5:

Source data 1. Raw and normalised data for the single cell gene expression experiments presented in this study.

Figure 5 continued on next page
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and the other eight TFs of the network. 18 shPU.1-transduced cells (15%) showed a complete loss of

Spi1, and expression of Spi1 in the remaining cells was markedly reduced compared to the control

cells (shluc) (Figure 6a, Figure 5—source data 1), highlighting the efficiency of the PU.1 knock-

down. Spi1, Runx1, Erg and Fli1 showed a significant change in expression profiles after the deple-

tion of PU.1, but this involved a substantial shift in median expression levels only for Spi1 and Runx1

(Figure 5—figure supplement 1). Expression profiles of the remaining five TFs did not change as a

result of reduced PU.1 levels (Figure 6a, Figure 5—source data 1), therefore mostly confirming the

model prediction.

Next, we modelled GFI1B overexpression in silico by increasing the expression level of Gfi1b to

the maximum value after the model had reached its initial steady state which led to a significant

change in the expression profiles of Gfi1b, Meis1, Erg and Runx1, although only Gfi1b and Meis1

showed a substantial shift in median expression levels (Figure 6b, Figure 5—figure supplement 1,

Figure 5—source data 1). Expression profiles of the other five TFs were unaltered. Single cell gene

expression analysis of 90 single 416b cells transduced with a GFI1B-expressing vector and 104 single

416b cells transduced with an empty control vector showed a significant increase in the expression

of Gfi1b and a significant alteration to the expression profile of Erg, but only the changes to Gfi1b

involved a substantial shift in median expression levels. No significant expression changes were seen

in any of the other seven network genes (Figure 6b). Both PU.1 and GFI1B perturbation studies

therefore emphasize the resilience of the HSPC TF network to single TF perturbation. Moreover, our

in silico model reflects this, thus suggesting that the comprehensive experimental information used

to construct the network model has allowed us to capture key mechanistic aspects of HSPC regula-

tion. Of note, there were no short-term major expression changes immediately after the perturba-

tion in the in silico simulations for the three single TF perturbations described above. For

completeness, we performed in silico modelling for all permutations of single TF knockdown / over-

expression as well as all pairwise combinations of all 9 TFs analysed (a total of 162 simulations, Fig-

ure 6—source data 1).

Major perturbations by the AML-ETO oncoprotein are captured by the
network model
As the TF network described above is relatively stable to single TF perturbations, we set out to test

whether a simulation that mimics the situation present in leukaemic cells can influence the expression

states of the nine TFs in our network. The Aml-Eto9a translocation is amongst the most frequent

mutations in AML (reviewed in [Licht, 2001]). The resulting fusion protein is thought to act in a domi-

nant-negative manner to repress RUNX1 target genes. To simulate the leukaemic scenario caused

by AML-ETO expression, we fixed the level of Runx1 to be the maximum value 1 and at the same

time converted all activating inputs of RUNX1 to inhibiting inputs in our DBN model. Interestingly,

this simulation of a ’leukaemic’ perturbation caused significant expression changes to all eight of the

core HSPC TFs (Figure 6c). To compare the AML-ETO simulation results with experimental data, we

utilised a doxycycline-inducible expression system to generate 416b cells with inducible expression

of AML1-ETO fused to a mCherry reporter via a self-cleaving 2A peptide spacer. Following doxycy-

cline induction, 56 single mCherry positive and 122 single mCherry negative 416b cells were ana-

lysed by single cell gene expression. Significant gene expression changes can be seen in six of the

nine core HSPC TFs (all except Tal1, Erg and Gata2) thus highlighting significant overlap between

predictions and experimental validation, although there are also notable differences between model

predictions and the experimental data (see for example Gata2; Figure 6c, Figure 5—figure supple-

ment 1, Figure 5—source data 1). These results demonstrate that our new HSPC network model

can capture many gene expression changes caused by ectopic expression of a leukaemia oncogene

Figure 5 continued

DOI: 10.7554/eLife.11469.047

Figure supplement 1. Significance tests for the computational and experimental data after TF perturbations.

DOI: 10.7554/eLife.11469.048

Figure supplement 2. Histogram plots showing the gene expression distributions of all nine genes of the network for the perturbations presented in

this study.

DOI: 10.7554/eLife.11469.049
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Figure 6. The DBN captures the transcriptional consequences of network perturbations. Left panel:

Computational prediction of gene expression after perturbation of specific TFs. 1000 simulations were run for each

perturbation to determine expression levels in a ’cell population’ (expression at 0 resembles no expression,

whereas expression of 1 represents the highest possible expression level). The scale of the x-axes is linear. Right

panel: Density plots of gene expression levels in single 416b cells after perturbation of specific TFs indicating the

relative number of cells at each expression level. The scale of the x-axes is linear. The values indicate the results of

the Wilcoxon rank-sum test: alterations to the expression profiles are indicated by the p-value (statistical

significance: p<0.001 for computational data and p<0.05 for experimental data); substantial shifts in median

expression level are indicated by the shift of median (SOM) (SOM >0.1 for computational data and >1 for

experimental data). For details, see Figure 5—figure supplement 1. (a) PU.1 down-regulation: (Left)

Computational prediction of gene expression after PU.1 knockdown (Spi1 was set to 0 after reaching its initial

Figure 6 continued on next page
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as well as providing a useful model for normal HSPC transcriptional regulation. The inability of any

model to completely recapitulate experimental data is not unexpected. Possible reasons in our case

may include more complex activities of the onco-fusion protein than would be captured by our

assumption that its ’only’ function is as a straightforward dominant-negative effect, or the fact that

the computational model is a closed system of only the 9 network TFs, whereas the experimental sin-

gle cell perturbation is subject to possible knock-on consequences from gene changes outside of

the 9 TF network.

Discussion
Transcription factor networks are widely recognised as key determinants of cell type identity. Since

the functionality of such regulatory networks is ultimately encoded in the genome, the logic that

governs interactions between network components should be identifiable, and in due course allow

for the construction of network models that are capable of capturing the behaviour of complex bio-

logical processes. However, the construction of such network models has so far been severely

restricted because the identification and subsequent functional characterisation of mammalian regu-

latory sequences represent major challenges, and the connectivity and interaction rules within regu-

latory networks can be highly complex. Here, we report a comprehensive mammalian transcriptional

network model that is fully grounded in experimental data. Model simulation coupled with subse-

quent experimental validation using sophisticated single cell transcriptional assays revealed the

mechanistic basis for cell state stability within a haematopoietic progenitor model cell line, and also

how a leukaemogenic TF fusion protein can perturb the expression of a subset of key blood stem

cell regulators.

Pictorial representations of putative network models are commonly shown in publications report-

ing ChIP-Seq TF binding datasets (Tijssen et al., 2011). However, due to the lack of experimental

underpinning, such representations are simple images that do not encode any of the underlying

gene regulatory logic, and importantly therefore cannot provide executable computational models

that can be used to simulate biological systems. Although the experimentally-grounded network

model shows good agreement with the relative expression states of the nine TFs for the wild-type as

well as the perturbation data, model predictions are not correct in all cases. Apart from the obvious

caveat that any computer model is an abstraction of reality and therefore will not be correct in every

detail, it also needs to be stressed that we treat the nine TFs as an isolated module for the computer

simulations, and therefore could not account for possible influences by additional genes that may

affect single cell gene expression measurements in the perturbation experiments.

Statistical significance calculations demonstrated that both the computer model and the experi-

mental data showed significant changes in gene expression profiles that were associated with mini-

mal fold-change alterations to median expression levels. Such alterations to expression profiles were

prevalent in both single and double gene perturbations, whereas substantial shifts in median expres-

sion were mostly restricted to the double perturbations (and also the AML-ETO oncogene overex-

pression). This observation suggests that (i) our approach has the capacity to reveal the aspects of

Figure 6 continued

steady state). (Right) Gene expression levels measured in single 416b cells transduced with shRNA constructs

against shluc (wild-type) or shPU.1 (PU.1 knockdown). (b) GFI1B overexpression: (Left) Computational prediction of

gene expression after overexpression of GFI1B (Gfi1b was set to 1 after reaching its initial steady state). (Right)

Gene expression levels in single 416b cells transduced with a GFI1B-expressing vector compared to an empty

vector control (wild-type). (c) Consequences of the AML-ETO9a oncogene: (Left) Computational prediction of

gene expression patterns after introducing the dominant-negative effect of the AML-ETO9a oncogene (Runx1 was

fixed at the maximum value of 1 after reaching its initial steady state and in addition all Runt binding sites were set

to have a repressive effect). (Right) Gene expression levels measured in single 416b cells transduced with an AML-

ETO9a expressing vector fused to mCherry. mCherry positive cells were compared to mCherry negative cells (wild-

type).

DOI: 10.7554/eLife.11469.050

The following source data is available for figure 6:

Source data 1. Summary of all computational simulations for perturbations of one or two TFs.

DOI: 10.7554/eLife.11469.051
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the fine-grained nature of biological networks, and (ii) the network presented in this study is largely

resistant to perturbations of individual TFs in terms of substantial fold-change alterations in median

expression levels. We believe that it may well be possible that the statistically significant small-fold

changes in HSPC network genes may be responsible for the mild phenotypes seen when major

HSPC regulators are deleted in adult HSPCs. Tal1-/- mice for example are not viable because TAL1 is

absolutely required for embryonic blood development (Shivdasani et al., 1995), yet deletion of

TAL1 in adult HSCs only causes minor phenotypes (Mikkola et al., 2003). Another noteworthy

observation is that it would have been impossible to detect the statistically significant yet small fold-

changes using conventional expression profiling, because they only become apparent following the

statistical analysis of expression distributions generated by assaying lots of single cells. More gener-

ally, it is important to acknowledge that the question of how close the present model comes to cap-

turing the underlying biological processes can only be revealed through much more exhaustive

experimental validation studies.

A potential caveat for network reconstruction based on identification of regulatory elements

comes from the difficulties associated with capturing negative regulatory elements. As shown ele-

gantly for CD4 and CD8 gene silencers in the lymphoid lineage, TFs involved in the early repression

of a locus are not required for the maintenance of the silenced state (Taniuchi et al., 2002a;

Taniuchi et al., 2002b). Identification of negative regulatory inputs may therefore require an expan-

sion of datasets to look across sequential developmental stages. It will therefore be important in the

future to extend the work presented here to include additional HSPC regulators as well as additional

stages along the haematopoietic differentiation hierarchy. Of note, TF-mediated cellular program-

ming experiments have demonstrated that the modules of 3–4 TFs are able to confer cell-type spe-

cific transcriptional programmes (Takahashi and Yamanaka, 2006; Graf and Enver, 2009;

Batta et al., 2014; Riddell et al., 2014), consistent with the notion that a network composed of nine

key HSPC regulators is able to capture useful information about HSPC regulatory programmes.

One of the most striking observations of the regulatory network defined here is the high degree

to which the HSPC expression state is stabilised. As such, this model is different from previous

experimentally-grounded transcriptional regulatory network models (Peter and Davidson, 2011).

These earlier model organism networks have inherent forward momentum, where the model cap-

tures the progression through successive embryonic developmental stages characterised by distinct

expression states.

The model reported here is based on and validated with data from haematopoietic progenitor

cell lines, which can differentiate (Pinto do O et al., 1998; Dexter et al., 1979), but can also be

maintained in stable self-renewing conditions. A recent study by Busch and colleagues tracked

labelled Tie2+ HSCs in the bone marrow, and showed that haematopoietic progenitors in vivo are

also characterised by a substantial self-renewal capability, therefore highlighting the stable state in

which they can reside for several months (Busch et al., 2015). The observed stability of the HSPC

expression state presented here is therefore likely to capture aspects of the regulatory mechanisms

maintaining the steady state of primary haematopoietic progenitor cells, a notion reinforced further

by the fact that our model is based on in vivo validated regulatory elements.

The two types of models therefore accurately capture the properties of the distinct biological

processes, e.g. driving developmental progression on the one hand, and maintaining a given cellular

state on the other. Different design principles are likely to be at play, with feed-forward loops repre-

senting key building blocks of early developmental GRNs, while the network described here shows

an abundance of auto-regulatory feedback loops and partially redundant enhancer elements, both

of which may serve to stabilise a given cellular state.

Of particular interest may be the organisation of the Runx1 gene locus, where RUNX1 protein

provides positive feedback at some, and negative feedback at other HSPC enhancers. Given that

these different enhancers employ overlapping yet distinct sets of upstream regulators, it is tempting

to speculate that such an arrangement not only stabilises a given expression level, but also provides

the means to either up- or down-regulate RUNX1 expression in response to diverse external stimuli

that may act on specific RUNX1 co-factors at either the repressing or activating RUNX1 binding

events.

Taken together, we report widely applicable experimental and computational strategies for gen-

erating fully validated regulatory network models in complex mammalian systems. We furthermore

demonstrate how such a model derived for blood stem/progenitor cells reveals mechanisms for
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stabilisation of the progenitor cell state, and can be utilised to analyse core network perturbations

caused by leukaemic oncogenes.

Materials and methods

ChIP-Sequencing and data processing
The mouse myeloid progenitor 416b cell line (Dexter et al., 1979) was received from Chester Beatty

lab and confirmed to be mycoplasma free. The cells were cultured in RPMI with 10% FCS and 1%

Penicillin/Streptomycin.

ChIP assays were performed as previously described (Wilson et al., 2009; Calero-Nieto et al.,

2014), amplified using the Illumina TruSeq ChIP Sample Prep Kit and sequenced using the Illumina

HiSeq 2500 System following the manufacturer’s instructions. Sequencing reads were mapped to

the mm10 mouse reference genome using Bowtie2 (Langmead and Salzberg, 2012), converted to a

density plot and displayed as UCSC genome browser custom tracks. Peaks were called using

MACS2 software (Zhang et al., 2008). Mapped reads were converted to density plots and displayed

as UCSC genome browser custom tracks. The raw and processed ChIP-Seq data have been submit-

ted to the NCBI Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo) and assigned the identifier

GSE69776. A binary binding matrix was created using in-house scripts, clustered using the dice coef-

ficient and a heatmap was plotted using gplots in R to compare newly generated ChIP-Seq data

with previously published data (Sanchez-Castillo et al., 2015).

Analysis of enhancer activity in transient transgenic mouse embryos
Genomic fragments spanning the candidate cis-regulatory regions were generated by PCR or

ordered as gBlocks (Life Technologies GmbH, Germany) and cloned downstream of the LacZ gene

in an hsp68LacZ (Runx1 constructs) or SVLacZ (all other constructs) reporter vector. Coordinates of

candidate chromosomal regions and corresponding primer sequences are given in Figure 3—source

data 2. For Runx1, E10 mouse transient transgenic embryos carrying LacZ enhancer-reporter con-

structs were generated by pronuclear injection of (C57BL/6 x CBA)/F2 zygotes following standard

procedures. Transgenic embryos were identified by LacZ-specific PCR on genomic DNA isolated

from yolk sac (5’-GCAGATGCACGGTTACGATG-3’; 5’-GTGGCAACATGGAAATCGCTG-3’). Xgal

staining and cryostat sectioning were performed as previously described (Nottingham et al., 2007).

Embryos were photographed using a Leica MZFLIII microscope, Leica DFC 300F digital camera

(Leica Microsystems, Milton Keynes, UK) and Openlab software (Improvision, Coventry, UK) and sec-

tions were examined using a Nikon Eclipse E600 microscope (Nikon, Japan) equipped with 20x and

40x Nomarski objectives. Photographs were taken using a Nikon DXM 1200c Digital Camera (Nikon,

Tokyo, Japan). E11.5 transient transgenic embryos of all other candidate cis-regulatory regions were

generated by Cyagen Biosciences Inc (Guangzhou, China). Whole-mount embryos were stained with

5-bromo-4-chloro-3-indolyl-b-d-galactopyranoside (X-Gal) for b-galactosidase expression and photo-

graphed using a Nikon Digital Sight DS-FL1 camera attached to a Nikon SM7800 microscope (Nikon,

Kingston-upon-Thames, UK). Candidate transgenic mouse embryos with LacZ staining in haemato-

poietic tissues were subsequently embedded in paraffin, stained with 0.1% (w/v) Neutral Red and

cut into 6 mm deep longitudinal sections. Images of sections were acquired with a Pixera Penguin

600CL camera attached to an Olympus BX51 microscope. All images were processed using Adobe

Photoshop (Adobe systems Europe, Uxbridge, United Kingdom).

Luciferase reporter assays
Wild-type and mutant DNA fragments for candidate regulatory regions were either cloned using

standard recombinant DNA techniques, ordered as gBlocks (Life Technologies) or obtained from

GeneArt by Life Technolgies. DNA fragments were cloned into pGL2 basic or pGL2 promoter vec-

tors from Promega using restriction enzymes or by Gibson Assembly. TFBSs for the nine TFs of inter-

est (corresponding DNA sequences are listed in Figure 3—source data 1) were identified based on

multiple species alignments between five species (mouse, human, dog, platypus, opossum). Where a

region contained multiple instances of the same motif, a single mutant construct with all relevant

motifs mutated simultaneously was generated (for generated point mutations check Figure 3a and

Figure 3—figure supplements 1–18). Where TF binding was observed in ChIP-Seq experiments in
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416b cells, but the TFBS was not conserved, the motifs present in the mouse sequence were

mutated. Stable transfections of the 416b cell line were performed using 10 mg reporter construct,

2 mg neomycin resistance plasmid and 1x107 416b cells in 180 ml culture medium per pulse. The

sample was electroporated at 220 V and capacitance of 900 mF using the GenePulser Xcell Electro-

poration System (Bio-Rad, United Kingdom). Immediately after transfection, the sample was split

into four culture plates. Twenty-four hours after transfection Geneticin G418 (Gibco by Life Technol-

ogies) at a final concentration of 0.75 mg/ml was applied to the culture to select for transfected

cells. The activity of the luciferase reporter constructs was measured 12–16 days after transfection

by using a FLUOstar OPTIMA luminometer (BMG LABTECH, United Kingdom). The luciferase activity

was normalised to the cell number and presented as relative activity compared to the wild-type con-

struct. All assays were performed at least three times in quadruplicates.

Single cell gene expression and data analysis
The TAL1 knockdown was performed using pools of siRNA against Tal1 (Dharmacon, United King-

dom) which were transfected into 416b cells. Briefly, 1 x 106 cells were electroporated with either a

control or Tal1 siRNA. Forty-eight hours after transfection, cells were sorted into 96-well PCR plates

containing lysis buffer using the BD Influx Cell Sorter.

The PU.1 knockdown was performed as previously described (Calero-Nieto et al., 2014).

The MigR1-Gfi1b retroviral expression vector and the corresponding empty vector control

(Xu and Kee, 2007) were used for GFI1B overexpression. Two million 416b cells were transduced

with the above listed vectors by adding viral supernatant and 4 mg/ml polybrene to the cells, fol-

lowed by centrifugation at 900 x g for 90 min at 32˚C and incubation with 5% CO2 at 32˚C. Half of
the media was then replaced with fresh culture media, and cells were incubated at 37˚C with 5%

CO2. Forty-eight hours after transduction, GFP+ cells for each cell population were sorted into 96-

well PCR plates containing lysis buffer using the BD Influx Cell Sorter.

To induce AML1-ETO9a expression, the 416b cell line was co-transfected with: 1) a plasmid con-

taining the tetracycline transcription silencer (tTS), the tetracycline transactivator (rtTA) and blastici-

dine resistance under the control of the EF1a promoter; 2) a plasmid containing the entire Aml-

Eto9a cDNA (obtained from vector MigR1-AE9a, Addgene no. 12433) in frame with a F2A element

and the mCherry protein under the control of a tetracycline responsive element; and 3) transposase

PL623 (Wang et al., 2011) (kindly donated by Pentao Liu, Sanger Institute, Cambridge) to promote

simultaneous stable integration of the two constructs described above. After 6 days of culture with-

out selection, cells were incubated with 1 mg/ml of Doxycycline for 24 hr and then stained with

DAPI. mCherry positive and negative cells that did not stain with DAPI were sorted into 96-well PCR

plates containing lysis buffer using the BD Influx Cell Sorter.

Single cell gene expression analysis was performed using the Fluidigm BioMark platform followed

by bioinformatics analysis as previously described (Moignard et al., 2013). All cells that express less

than 48% of genes assayed were removed from the analysis for PU.1 knockdown and GFI1B overex-

pression, all cells expressing less than 56% of genes assayed were removed from the TAL1 knock-

down and all cells that express less than 44% of genes assayed were removed from the analysis for

the AML-ETO9a induction. Importantly, this thresholding resulted in the removal of similar numbers

of cells in both the perturbation and control arms of the experiments. The raw data as well as the

normalised data (normalised to Ubc and Polr2a) of the gene expression analysis are listed in Fig-

ure 5—source data 1).

Computational modelling
The first-order DBN shown in Figure 4b was established on the basis of regulatory information sum-

marized in Figure 4a. The DBN essentially presents a discrete-time stochastic process that has the

Markov property, i.e. the state of the process at the next time point depends purely on its state at

the current time point. Also note that this is a time-homogeneous (or time-invariant) DBN, where the

transition functions/matrices are the same throughout all time points.

To specify parameters of the DBN, we defined a motif family at a specific regulatory region as a

unique binary variable; with value ’1’ indicating that no motif of a motif family is bound at the spe-

cific region and value ’2’ indicating that at least one motif of the motif family is bound by a TF at this

region. We assumed that any of the following three factors can lead to a higher probability of a
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motif being bound by a TF and therefore taking the value 2: (i) more motifs of the same type present

within a regulatory region; (ii) multiple TFs that can bind to the same motif, such as TAL1 and LYL1

both binding to Eboxes; (iii) higher expression levels of the TFs. The probabilities were thus calcu-

lated based on these three sources of information (see below for an example). We next defined that

every regulatory region was a continuous variable on the close interval [0, 1], and its value was deter-

mined by the accumulated effects of all motifs present within the regulatory region. Finally, the

expression levels of the nine TFs were also defined as continuous variables ranging from 0 to 0.8,

and their expression levels were determined by the accumulated activities of the relevant regulatory

regions.

Considering that variables in the top tier of the DBN are binary whereas those in the middle and

bottom tiers are continuous, we found conditional linear Gaussian distribution (Koller and Fried-

man, 2009) to be an appropriate generic representation of the intra-slice conditional probability dis-

tributions. Specifically, the regression coefficient of a regulatory region on a motif family was

estimated by normalizing the logarithmic deviation of luciferase activity, where deviation refers to

the change of luciferase activity between the wild-type and the mutated (one motif family at a time)

regulatory region (see below for a demonstration). Using the logarithmic deviation allowed us to

account for the differences in effect sizes of various motif families by rescaling the differences to a

comparable range. Similarly, for each of the nine genes, the regression coefficient of its expression

level on a relevant regulatory region was estimated by normalizing the logarithmic deviation of lucif-

erase activity, where deviation refers to the change of luciferase activity compared to the empty vec-

tor controls. All Matlab source codes are available at https://github.com/Huange and also at http://

burrn-sim.stemcells.cam.ac.uk/.

Detailed explanation of the modelling of each tier of the DBN
a) Estimating the discrete probability distribution of a motif variable
The probability of a motif family at a given regulatory region taking value 1 or 2 (i.e. being unbound

or bound) was calculated based on: (i) the number of such motifs in that regulatory region; (ii) the

expression levels of the relevant TFs.

For example, three Ebox motifs were found at Erg+65 (Figure 3a). They can be bound by either

TAL1 or LYL1. Thus, we assigned that P(Ebox@Erg+65=1) and P(Ebox@Erg+65=2) were determined

by {3, TAL1, LYL1}. We assumed that (i) the expression level of a TF is proportional to the probability

of that TF binding to a target motif; and (ii) the bindings of TFs to multiple motifs are independent

events. Gene expression levels were defined within the closed interval [0, 1], which is identical to the

possible range of probabilities. For ease of calculation, we took the expression level of a TF as its

probability of binding to a motif. Accordingly, we have

P

~ �

Ebox@Ergþ 65¼ 1Þ ¼ ð1� pÞ3 �ð1� qÞ3

P

~ �

Ebox@Ergþ 65¼ 2Þ ¼
X3

n¼1
Cð3;nÞ� pn�ð1� pÞð3�nÞ �ð1� qÞ3

(1)

þ
X3

n¼1
Cð3;nÞ� qn�ð1� qÞð3�nÞ�ð1� pÞ3

þ
X2

n¼1

X3�n

m¼1
Cð3;nÞ� pn �ð1� pÞð3�nÞ�C

�

ð3�nÞ;m
�

� qm�ð1� qÞð3�mÞ
(2)

where p and q represent the expression levels of TAL1 and LYL1, respectively.

However, to remove the bias introduced by simply taking the expression level of a TF as its prob-

ability of binding to a motif, we further normalized the resulting probabilities as below:

Z

~

¼P

~

ðEbox@Ergþ 65¼ 1ÞþP

~

ðEbox@Ergþ 65¼ 2Þ (3)

P
�

Ebox@Ergþ 65¼ 1Þ ¼P

~

ðEbox@Ergþ 65¼ 1Þ=Z
~

(4)

P
�

Ebox@Ergþ 65¼ 2Þ ¼P

~

ðEbox@Ergþ 65¼ 2Þ=Z
~

(5)

It should be mentioned that the number of the same motifs in a regulatory region was directly

taken into account in the estimation of probabilities. One may raise the question of whether this

number has such strong power. Specifically, should the exponents in equations (1) and (2) change
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linearly, or less than linearly, along with the increase in the number of Ebox motifs? To address this

issue, we replaced all exponents with their square roots and re-run the whole set of simulations

(data not shown). Results showed that using the square roots instead of the original numbers (i)

caused a more evenly distributed expression of the nine TFs over the hypothetical interval [0, 1], (ii)

captured the same trend in gene expression changes in some perturbations (e.g. the AML-ETO sim-

ulation), but (iii) led to decreased expression levels of certain TFs in other perturbations (e.g. PU.1

knockdown and GFI1B overexpression), which therefore disagrees with the experimental data. In

order to capture a better agreement of computational and experimental results, we directly used

the number of motifs to estimate the discrete probability distributions.

b) Estimating the activity of a regulatory region
The regression coefficient of a regulatory region on a motif family was estimated by normalizing the

logarithmic deviation of luciferase activity, e.g. comparing the change of luciferase activity between

the wild-type and mutated constructs. For example, when the luciferase activity for the wild-type Erg

+65 region was set to 100%, the simultaneous mutation of all Ebox or Gfi motifs at this region

resulted in increased luciferase activity (181.2% or 475.9%, respectively) (Figure 3b). In contrast,

simultaneous mutation of all Ets or Gata motifs at this region led to reduced luciferase activity (1.3%

or 14.5%, respectively). Based on this information, we estimated the regression coefficient of the Erg

+65 region on a relevant motif family in the following way:

ai ¼ log
100

lk

� �

�
X

k

jlog
100

lk

� �

j�1

 !

(6)

where k 2 f1; :::; 4g, l1 ¼ 181:2, l2 ¼ 475:9, l3 ¼ 1:3, l4 ¼ 14:5; accordingly, a1 ¼ �0:070, a2 ¼ �0:185,

a3 ¼ 0:515, a4 ¼ 0:230. We can then formulate a linear regression equation as below:

~y ¼ a1x1 þa2x2þa3x3 þa4x4 (7)

where ~y denote the estimated luciferase activity of Erg+65, and x1, x2, x3 and x4 represent the bind-

ing status of Ebox, Gfi, Ets and Gata motifs at Erg+65.

However, the minimum and maximum ~y obtained by the above formula are 0.235 (when x1 ¼

x2 ¼ 2 and x3 ¼ x4 ¼ 1) and 1.235 (when x1 ¼ x2 ¼ 1 and x3 ¼ x4 ¼ 2). To make the values of ~y fall in

the desired closed interval [0, 1], an intercept of -0.235 has to be introduced into the linear regres-

sion model. In addition, a disturbance term has been included in the model to satisfy the generic

assumption of conditional linear Gaussian distribution. Finally, the fully defined linear regression

model regarding Erg+65 is given as:

~y ¼ cþa1x1þa2x2 þa3x3þa4x4 þ " (8)

where c ¼ �0:235, "~Nð0;s2Þ, and s should be a very small value.

c) Estimating the expression level of a gene
For each gene studied, the regression coefficient of its expression level on a relevant regulatory

region was estimated by normalizing the logarithmic deviation of luciferase activity, where deviation

refers to the change of luciferase activity compared to an empty vector control.

For example, when setting the luciferase activity of the wild-type constructs to 100%, the lucifer-

ase activity of the empty vector controls relative to Erg+65, Erg+75 and Erg+85 wild-types are

1.9%, 1.0% and 15.2%, respectively (Figure 3b, Figure 3—figure supplement 1 and 2). Based on

these data, we estimated the expression level of Erg on a relevant regulatory region in the following

way:

bi ¼ log
100

lk

� �

�
X

k

jlog
100

lk

� �

j

 !�1

(9)

where k 2 f1; 2; 3g, l1 ¼ 1:9, l2 ¼ 1:0, l3 ¼ 15:2; accordingly, b1 ¼ 0:379, b2 ¼ 0:441, b3 ¼ 0:180. We

can then formulate a linear regression equation as below:

~z ¼ b1~y1 þb2~y2þb3~y3 (10)
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where ~z denote the estimated expression level of Erg; and ~y1, ~y2 and ~y3 represent the estimated

activities of Erg+65, Erg+75 and Erg+85. Again, a disturbance term has been introduced to the

model in order to meet the generic assumption of conditional linear Gaussian distribution. Thus, the

fully defined linear regression model regarding Erg is given as:

~z ¼ b1~y1 þb2~y2þb3~y3 þ " (11)

where "~Nð0;s2Þ and s should be a very small value.

Statistics
Significance for the results of the luciferase reporter assays was calculated by combining the p-values

of each experiment (generated by using the t-test function in Excel) using the Fisher’s method, fol-

lowed by the calculation of Stouffer’s z trend if necessary. Significance tests for changes in TF

expression levels caused by TF perturbations (both computational and experimental) were evaluated

by Wilcoxon rank-sum tests.
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J, Kaimakis P,
Chilarska PM,
Kinston S,
Ouwehand WH,
Dzierzak E, Pimanda
JE, de Bruijn MF,
Göttgens B

2010 Combinatorial transcriptional
control in blood stem/progenitor
cells: genome-wide analysis of ten
major transcriptional regulators

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE22178

Publicly available at
the NCBI Gene
Expression Omnibus
(Accession no:
GSE22178).

Kassouf MT,
Hughes JR, Taylor S,
McGowan SJ, Soneji
S, Green AL, Vyas P,
Porcher C

2010 Genome-wide identification of
TAL1’s functional targets: insights
into its mechanisms of action in
primary erythroid cells

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE18720

Publicly available at
the NCBI Gene
Expression Omnibus
(Accession no:
GSE18720).

Heinz S, Benner C,
Spann N, Bertolino
E, Lin YC, Laslo P,
Cheng JX, Murre C,
Singh H, Glass CK

2010 Simple combinations of lineage-
determining transcription factors
prime cis-regulatory elements
required for macrophage and B cell
identities

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE21512

Publicly available at
the NCBI Gene
Expression Omnibus
(Accession no:
GSE21512).

Wontakal SN, Guo
X, Will B, Shi M,
Raha D, Mahajan
MC, Weissman S,
Snyder M, Steidl U,
Zheng D, Skoultchi
AI

2011 A large gene network in immature
erythroid cells is controlled by the
myeloid and B cell transcriptional
regulator PU.1

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE21953

Publicly available at
the NCBI Gene
Expression Omnibus
(Accession no:
GSE21953).

Trompouki E,
Bowman TV, Lawton
LN, Fan ZP, Wu DC,
DiBiase A, Martin
CS, Cech JN, Sessa
AK, Leblanc JL, Li P,
Durand EM,
Mosimann C,
Heffner GC, Daley
GQ, Paulson RF,
Young RA, Zon LI

2011 Lineage regulators direct BMP and
Wnt pathways to cell-specific
programs during differentiation and
regeneration

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE29193

Publicly available at
the NCBI Gene
Expression Omnibus
(Accession no:
GSE29193).

Tanaka Y, Joshi A,
Wilson NK, Kinston
S, Nishikawa S,
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MA, Sasidharan R,
Rubbi L, Fujiwara Y,
Pellegrini M, Orkin
SH, Kurdistani SK,
Mikkola HK

2015 Scl binds to primed enhancers in
mesoderm to regulate
hematopoietic and cardiac fate
divergence

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE47085

Publicly available at
the NCBI Gene
Expression Omnibus
(Accession no:
GSE47085).

Calero-Nieto FJ1,
Ng FS, Wilson NK,
Hannah R,
Moignard V, Leal-
Cervantes AI,
Jimenez-Madrid I,
Diamanti E,
Wernisch L,
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J, Ladopoulos V,
Mitchelmore J,
Goode DK, Calero-
Nieto FJ, Moignard
V, Wilkinson AC,
Jimenez-Madrid I,
Kinston SJ, Spivakov
M, Fraser P,
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