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Contrasting scaling properties of interglacial and
glacial climates
Zhi-Gang Shao1 & Peter D. Ditlevsen2

Understanding natural climate variability is essential for assessments of climate change. This

is reflected in the scaling properties of climate records. The scaling exponents of the inter-

glacial and the glacial climates are fundamentally different. The Holocene record is mono-

fractal, with a scaling exponent HB0.7. On the contrary, the glacial record is

multifractal, with a significantly higher scaling exponent HB1.2, indicating a longer

persistence time and stronger nonlinearities in the glacial climate. The glacial climate is

dominated by the strong multi-millennial Dansgaard–Oeschger (DO) events influencing the

long-time correlation. However, by separately analysing the last glacial maximum lacking DO

events, here we find the same scaling for that period as for the full glacial period.

The unbroken scaling thus indicates that the DO events are part of the natural variability and

not externally triggered. At glacial time scales, there is a scale break to a trivial scaling,

contrasting the DO events from the similarly saw-tooth-shaped glacial cycles.
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T
he climate system is characterized by complex interactions
between atmosphere, oceans, ice, landmasses and the
biosphere over a large range of temporal and spatial scales.

For understanding natural climate variability and the character
of climate change, assessing correlation and persistence times
is important. These are reflected in the scaling properties of
the climatic records. Scaling was first noted in the seminal work
by Hurst1 on reservoir capacity and runoff in the Nile. Hereafter,
it was realized that time series of complex systems such as the
climate system are characterized by fractal2 or even multifractal3

scaling properties. It has been a long-standing discussion to
which extent the fractal nature of the climate dynamics is
universal or if it is more specific to the processes and range of
scales observed3–6.

To identify the underlying dynamics reflected in scale breaks or
robust scaling relations, records covering a large range of
temporal scales are necessary. On the atmospheric variability, a
range of instrumental records of temperatures and other
meteorological parameters have been investigated3,4,7. On
short time scales the turbulent nature of the atmospheric
fields is measured in airplane and drop-sonde campaigns.
From these measurements, multifractal scaling of the fields has
been reported8.

On longer time scales, instrumental records exist for B150
years, typically with daily or twice daily resolution. By filtering
out the annual cycle, the scaling properties of temperature
variations, covering four to five decades, have been investigated.
These indicate universal persistence laws for atmospheric
variability4, where station data from around the globe shows
monofractal (Hurst)-scaling exponents around 0.7. This is
significantly different from the value 0.5 characteristic for a
trivial white noise process. On even longer time scales we rely
on proxy records, where the ice core records are especially suited,
as they can be understood as high-resolution sedimentation
records from the atmosphere. It was in ice core records that it
was first realized that the glacial climate was dominated by
millennial scale instabilities, the Dansgaard–Oeschger (DO)
events9. These events occur all the way from the last inception
through to the termination of the last glacial period. One striking
feature although is that in the period around the last glacial
maximum (LGM, 27–15 kyr) the record only contains a single
small event (DO2).

Here we find, by analysing climate periods separately, that the
Holocene and the glacial climates have distinctly different scaling
properties. The Holocene is monofractal with a scaling exponent
HB0.7, whereas the glacial climate is multifractal with H2B1.2.
The longer persistence time in the glacial period is expected, owing
to the presence of the pronounced millennium scale DO events.
However, the same scaling is found for the LGM period, indicating
that the DO events are not the cause and should be seen as an
intrinsic part of the glacial climate. The DO events have a
characteristic saw-tooth shape in the records, with rapid warming
and slow cooling, similar to the shape of the externally forced
glacial cycles with fast terminations and slow inceptions. By
analysing the much longer 5 Myr ocean sediment climate record10

and the 800-kyr Antarctic EPICA (European Project for Ice Coring
in Antarctica) ice core record11, we find a scale break around
20 kyr, such that on glacial time scales (420 kyr) we have a trivial
scaling H¼ 0.5. We might speculate that this reflects that DO
events are internally generated, whereas glacial cycles are externally
forced. It is noteworthy that for a trivial red noise process, the so-
called Ornstein–Uhlenbeck process, the scaling spectrum shows a
cross-over from H¼ 3/2 for time scales shorter than the
correlation time to H¼ 1/2 for time scales longer than the
correlation time. The cross-over time scale indicates the internal
time scale of built-up of the large ice sheets.

Results
The climate record. To determine to which extent the scaling
behaviour extends to scales beyond the length of the instrumental
temperature records, we thus rely on paleoclimatic proxies.
The stable isotope (d18O and dD) records obtained from the
Greenland and Antarctic ice sheets constitute such temperature
proxies, with a sufficiently linear relationship to the average
atmospheric temperature mixed with an independent noise,
which the scaling properties of the atmospheric temperature can
be assumed to be reflected in the record12.

The issue of nonlinearity and multifractality on multi-glacial
cycle time scales has been addressed before in the analysis of the
Antarctic Vostok record13 and comparison with Greenland Icecore
Project (GRIP), Greenland Ice Sheet Project (GISP) (Greenland)
and Taylor dome (Antarctica) ice core records. The analysis show
slightly different scaling exponents between the different ice core
records, indicating that dating accuracy and period analysed are
important for the results (GRIP and GISP cores should, due to
close proximity, give the same result). The influence of chronology
on the scaling properties is confirmed by an analysis of the North
Greenland Icecore Project (NGRIP) record14,15 (Fig. 1c), where the
scaling properties of the recent 2,000-year d18O record is different
from the properties of the record older than 2,000 years16. This
should be expected, as the climate is influenced by different
processes operating at different time scales. The NGRIP ice core14

has been dated with unprecedented accuracy over the past 122 kyr
(ref. 15) This enables us to accurately calculate the scaling
properties for the different climate states separately.

On multi-millennial time scales, it is known that glacial cycles
are linked, in a nonlinear manner13, to periodic and quasi-
periodic changes in the insolation (incoming solar radiation)
from variations in Earth’s orbit around the Sun. The climate
response is B100 kyr glacial cycles since the middle Pleistocene
transition around 1 Myr ago, where the climate has shifted
regularly between the glacial and interglacial climate states.

The temperature and proxy records ranging from the instru-
mental record to five million years, obtained from the stacked deep
ocean sediment record10, over a huge range of scales are shown in
Fig. 1. As there is a connection between spatial and temporal scales,
the records shown will be more local in the top panels and more
global in the bottom panels. The Greenland ice core record
represent a composite of a local and a Northern Atlantic climate
signal. To eliminate the influence of long-term trends on the
scaling properties, we employ the multifractal detrended
fluctuation analysis (MF-DFA) method17 for the analysis of the
records. We have employed the DFA analysis of both first and
second order (DFA1 and DFA2), and found that our results are
robust in the sense that there is very little difference between the
two for the analysed data (see Supplementary Figs 1 and 2). Here
we report for DFA1 (see Methods section for description of the
MF-DFA). The MF-DFA is complementary to a power spectrum
analysis, where the discrete components such as the diurnal and
seasonal cycle, as well as the orbital periods on Milankovitch
timescales, are mixed with the continuous part of the
spectrum18,19. If the continuous spectrum scales with frequency
P(f)Bf� b, there is a direct linear relation between the scaling
exponents for the spectrum and for the fluctuations20; H¼ (bþ 1)/
2. Thus, the trivial white noise power spectrum b¼ 0 corresponds
to H¼ 0.5, whereas the trivial red noise spectrum b¼ 2
corresponds to H¼ 1.5. This simply follows from the power
spectrum being the Fourier transform of the autocorrelation
function. The multifractality is not captured in the powerspectrum.

Multifractal detrended fluctuation analysis. We first analyse the
Holocene climate (0–11.7 kyr B2K). The scaling of the Holocene
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represented by the ice core compares well with the instrumental
record (Fig. 2); this shows a remarkable range of scaling over
more than five decades, from a day to a few thousand years. In the
insert, the corresponding power spectra are shown. Here the
pronounced spectral peaks, the year and the Milankovitch
periods, are mixed with the continuous part of the spectra. The
Holocene climate shows monofractal scaling, with a scaling
exponent HB0.7, significantly different from the trivial value
H¼ 0.5. Figure 3a shows the spectra Fq(s) for q¼±2, for both
Holocene and the glacial records. For Holocene, the black line

corresponds to H¼ 0.7, which fits for both values of q. This is in
contrast to the glacial record that shows multifractal scaling with
H� 2¼ 1.4 and H2¼ 1.2. The Holocene record is tested against a
Monte Carlo reshuffling, which preserved the probability density
of the data, see Fig. 3b and blue histogram in Fig. 3c. We have
also tested the record against an autoregressive process with
identical lack-one autocorrelation, with similar results (not
shown). To further investigate the reliability, we have generated
time series of same length as the record from a fractional
Brownian motion, with Hurst exponent 0.7 (Supplementary
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Figure 1 | Temperature variations from monthly to geological time scales. (a) A European meteorological station record (http://www.metoffice.gov.uk/

pub/data/weather/uk/climate/stationdata/oxforddata.txt (accessed 2015). URL http://www.metoffice.gov.uk/pub/data/weather/uk/climate/stationdata/

oxforddata.txt). ranging over 150 years (light blue, full range not shown). The record with the seasonal cycle subtracted is shown in blue. (b) The Holocene part

of the NGRIP isotope record6. The instrumental record normalized to the ice core record (arbitrary) is shown in blue. (c) The full NGRIP record, dated using the

‘GICC05modelext’ chronology. The d18O is a linear proxy for temperature. The warm Holocene period 11.7 kyr to present (red, corresponding to plot (b)) is

remarkably stable in comparison with the previous glacial period 12–120 kyr B2K (long black arrow). Before that the end of the previous warm period (Eem) is

seen. LGM (15–27 kyr B2K) experienced only one small DO event. (d) The Antarctic EPICA dD record21 spanning almost eight glacial cycles at 3 kyr resolution.

The black curve covering the last glacial period is the (normalized) record shown in c. (e) The stacked marine benthic foraminiferal isotope record16 (minus).

This is a proxy for global ice volume and global deep ocean temperature. In green is the (normalized) curve in d.
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Figs 3 and 4). The probability density of measured exponents is
shown in Fig. 3c (orange histogram). It is noteworthy that the
consistency with the record (red bar) is a much weaker result than
rejection of the null hypothesis above. It indicates the uncertainty
in the estimated scaling exponent due to the limited length of the
record. As we do not have a full theory of the underlying climate
processes generating the fractal structure, we cannot rule out that
the Holocene is weakly multifractal but the time series is to short
to detect the multifractality. To obtain some indications on this
possibility, we have simulated a known weakly multifractal
process of similar length to the record (Supplementary Figs 5–7),
where the multifractallity can indeed be detected. This we
interpret as further supporting the observation that the Holocene
record is monofractal.

The findings for the Holocene is in agreement with findings
from climate model millennial simulations21. In Supplementary
Fig. 8 we present an analysis of two of the CESM1-CAM5 Last
Millennium Ensemble runs.

For longer time scales we enter the glacial climate state and on
even longer time scales we observe a scale break at the

Milankovitch time scales (420 kyr). Analysis of the 800-kyr
Antarctic Epica Dome C (EDC) core11 with 3 kyr resolution and
the 5.3-Myr stacked ocean benthic foraminiferal isotope record10

(green and orange curves in Fig. 1d,e) does indeed show that
these records have a trivial scaling with a Hurst exponent close
to 0.5 (green and orange dots in Fig. 2). As a further consolidation
of the robustness we also analysed GRIP ice core on the
GICC05 time scale, in agreement with the results for NGRIP
(Supplementary figs 9 and 10). Furthermore, we have analysed
the 420-kyr Vostok core22, which agreed with the results for EDC
(not shown).

The ice core record (Fig. 1c) shows that the warmer climate
of the Holocene period (0–11.7 kyr B2K) is more stable than that
of the last glaciation (12–120 kyr B2K)23. The difference in
climate states is reflected in the scaling properties of the proxy
temperature signal; thus, we split the NGRIP d18O signal into two
parts covering the Holocene warm period and the last glacial
period. The glacial period was characterized by millennium scale
sudden climate shifts, the DO events9, the cause of which is still
unknown. The predominant assumption for the cause of the DO
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Figure 2 | The mean variance in a time window scale with the length of the window. Main panel shows the fractal spectrum F2(s) of the climate records.

The scaling for the Holocene range from days to millennia (blue and red dots). The scaling exponent H¼H2 is the slope of the line. The typical time scales

of different processes in the climate system are indicated. The scale break around 20 kyr is noteworthy. The insert shows the power spectra of the climatic

time series (same colours). The slopes of the continuous part of the spectra corresponds to the (monofractal) Hurst exponent through H¼ (bþ 1)/2. The

power spectra mix the continuous (scaling) part and the discrete peaks corresponding to periodic and quasi-periodic components. The small black bars in

the top left corner of the insert indicates the Milankovitch periods at 19, 23, 41 and 100 kyrs.
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events is abrupt changes in the Atlantic meridional overturning
circulation24,25 perhaps triggered by (negative) changes in
freshwater forcing. Many mechanisms have been proposed as a
trigger, from oscillations in the ice sheets26, ice shelf breakup27 or
sea ice switching28, or changes in solar output29. The occurrence
of DO events influences the correlation time and thus the scaling
properties of the record. One could speculate that the larger
glacial Hurst exponent is a consequence of the presence of the
DO events alone. This is not the case, as the LGM period,
15–27 kyr B2K, with only one short DO event (DO2) does also
show a scaling, which is significantly different from the Holocene
climate (black crosses in Fig. 3d). To assess the robustness, we
furthermore analyse non-overlapping 12 kyr glacial periods (same
duration as the Holocene). For all these periods and for the full
glacial period, we get multifractal scaling with H¼H2B1.2 (thin

black lines in Fig. 3d). As the DO events are a part of the glacial
record scaling, this indicates that they are part of the internal
variability and not externally caused, in contrast to the glacial
cycles, which are forced by the Milankovitch cycles and show
trivial scaling. Confirming the robustness of the results is rather
delicate, as there is only a limited set of truly independent
paleoclimatic records, each influenced by independent noise
processes, which might mask the scaling properties inferred for
the climate. One possible test of the observed difference between
the interglacial and the glacial climate is to investigate the
previous interglacial and glacial periods separately. This we have
done by splitting the EDC record into interglacial and glacial
periods, and analysing them separately. The result is shown in
Fig. 4 and are consistent with the results found for the Greenland
ice cores. Furthermore, we have confirmed the results by
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Figure 3 | Contrasting monofractal scaling for Holocene and multifractal scaling for glacial periods. The scaling spectra Fq(s) for the Holocene and

glacial periods are shown in (a). Holocene shows monofractal scaling, whereas the glacial is multifractal, as there is a significant difference in the slopes for

q¼ � 2 and q¼ 2. (b) The scaling in a set of 100 reshuffled versions of the record (thin lines, not all shown). The black dots are the means for the

reshuffled data (true value is 0.5) and the bars are the 2s spreads. (c) The distribution of Hurst exponent H2 for the 100 reshuffled series, centred around

H2¼0.5 (blue histogram). The Holocene record is marked by the red bar. The orange histogram is the distribution for a set of 100 simulations of fractional

Brownian motion with H2¼0.7. (d) The generalized Hurst exponent Hq is shown for Holocene (red, same as in b) and the glacial period (thick black). The

thin black curves are for non-overlapping 12 kyr sections of the glacial periods, indicating the range of uncertainty. The black crosses is the LGM, where only

one short DO event occurs. (e) The multifractal scaling exponent tq for Holocene (red) and the glacial period (black), where a change in slope from

negative (green line) to positive (blue line) values of q is observed. The Holocene curve is indistinguishable from a straight line with slope 1.00. (f) The

multifractal spectrum f(a) versus a¼dt=dq. The small red wedge indicates that the Holocene record is almost monofractal (for which the spectrum (a, f(a))

would collapse to the point (1, 1). This is also seen in the perfect linear fit in b. The black curve is for the glacial record, indicating strong multifractality.
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repeating the same analysis for the EDML and Vostok cores
(Supplementary Figs 11 and 12).

The Greenland stable isotope ice core records are proxies for
some large-scale North Atlantic mean temperature. Nearby North
Atlantic sea surface temperatures has been reconstructed for the
Holocene from ocean sediment cores30,31 Despite proximity to the
Greenland ice core sites, these show much more variability in the
Holocene climate. The scaling exponents are HB1.1 for LO09-14
from the North Atlantic current at the Reykjanes Ridge south of
Iceland and HB1.4 for MD95-2011 in the Norwegian Atlantic
current (Supplementary Fig. 13). The two records are slightly
anticorrelated (corr¼ � 0.25), indicating that they locally monitor
fractions of the northward Atlantic heat transport, which can be
much more variable than the mean climate of the North Atlantic.

To investigate further their multifractality and difference,
Fig. 3e shows the multifractal scaling exponent tq (see Methods
section) for Holocene and the glacial period, where a change in
slope from negative to positive values of q is observed. This means
that there is an asymmetry in the scaling properties of large and
small fluctuations. This has been quoted a multifractal phase
transition32. In multifractal phase transition, two critical q orders
defined as qsþ and qs� exist16. When q4qsþ or qoqs� , tq will
be linear as a function of q, as the largest fluctuations dominate
the empirical moments6. We observe that qsþE3 and qs�E� 2
for the glacial record; thus, we can limit the plotting interval for q
from � 2 to 3 in Fig. 3e. Figure 3f shows the multifractal
spectrum f(a) versus a¼dt=dq. For monofractals the (a, f(a))

spectrum collapses to the point (1, 1). The small red wedge
indicates that the Holocene record is monofractal, whereas the
black curve shows strong multifractality in the glacial climate.

The tail of the probability distribution. The difference of
multifractality in the records of the two periods reflects that the
climate of the interglacial is quite different from the glacial climate:
The DO events introduce long-range correlations related to the
waiting times of several thousand years for jumping between the
stadial and the interstadial states. This jumping between states is
absent in the Holocene climate. As the DO events do not lead to a
scale break in the scaling of the glacial climate signal, we speculate
that this is an indication that they do not have a trigger, which is
disconnected (such as changing solar radiation) from the climate
dynamics giving rise to the scaling properties. The occurrence of
the DO events seems random in nature33, which agrees well with
internal fluctuations in the Atlantic meridional overturning
circulation as the cause of these events. The reason why DO
variability is absent in the Holocene climate could be attributed to
the absence of the large ice sheets. However, this does not
necessarily imply ice sheet instability to be the trigger. It could well
be that the larger short-term variability in the glacial climate
strongly enhance the triggering. The short-term fluctuations can be
represented by Dxt¼ x(tþDt)� x(t), where x(t) is the given
evenly spaced time series. A generic character of multifractal
processes is that they have fat-tailed probability distributions, that
is, P (DX4Dx)B(Dx)� g, for large Dx (and similar for the negative
tail: P (DXo�Dx)), where g is the corresponding probability
exponent6. Figure 5 shows the comparison of probability
distributions P (|DX|4D) versus Dx for the the Holocene (red)
and last glacial (black) (positive and negative tails have identical
distributions). The sizes of the fluctuations are larger in the glacial
period but interestingly the probability distributions for both the
Holocene and the glacial show fat-tail scaling (straight black line)
for large Dx with gE� 8.3 (Holocene) and gE� 6.3 (glacial). One
could speculate that the less extreme climate of the Holocene
prevents triggering of DO events.

Discussion
In summary, the interglacial climate shows scaling over a
remarkable range of scales from daily to millennial. The
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generalized Hurst exponent of HB0.7 is significantly different
from the trivial value H¼ 0.5. The glacial climate state has a
distinctly more fractal characteristics, with a much larger
generalized Hurst exponent HB1.2. Although neither the
Antarctic- nor the Greenland ice core records represent a global
climate signal, the differences in scaling exponents reported for
different records6 in the range 1.2–1.4 are in our judgement
identical within the uncertainty of measurement.

The glacial record also shows a clear multifractal scaling, with
an asymmetry between small and large fluctuations. The DO
events are a part of the scaling process, indicating that they are
part of the internal variability, and not externally caused, in
contrast to the glacial cycles, which are forced by the
Milankovitch cycles and show trivial scaling.

Methods
Multifractal detrended fluctuation analysis. The MF-DFA17 is a robust and
easily implemented analysis of the scaling properties in strongly fluctuating or
non-stationary time series. It is performed in five steps as follows: (i) determine the
cumulated data series

y kð Þ ¼
Xk

i¼1

xi� xh i½ �; ð1Þ

where hxi is the mean value of the time series xk (k¼ 1,...,N). (ii) The profile is
divided into Ns¼ int(N/s) disjoint segments with same size s. As the congruence
between N and s is often not zero, a part will remain after division. To preserve this
part, the same dividing procedure is repeated from the opposite end. As a
consequence, 2Ns segments are generated. (iii) The variance is calculated as

F2 s; vð Þ ¼ 1
s

Xs

i¼1

y v� 1ð Þsþ i½ � � yv ið Þf g2; ð2Þ

where v¼ 1, ..., Ns and

F2 s; vð Þ ¼ 1
s

Xs

i¼1

y N� v�Nsð Þsþ i½ � � yv ið Þf g2; ð3Þ

where v¼Nsþ 1,..., 2Ns. yv(i) is the least square-fitting line in segment v. Next, the
q-th order fluctuation function is

Fq sð Þ ¼ 1
2Ns

P2Ns

v¼1
½F2ðs; vÞ�q=2

� �1=q

; for q 6¼ 0;

F0 sð Þ ¼ exp 1
4Ns

P2Ns

v¼1
ln F2 s; vð Þ½ �

� �
; for q ¼ 0:

8>>><
>>>:

ð4Þ

(iv) The above steps (ii) and (iii) are repeated as the segment size s increases. (v)
The scaling exponent is determined by fitting log–log plots of Fq(s) versus s as

Fq sð Þ � sHq ; ð5Þ
where Hq is the generalized Hurst exponent. Next, the multifractal spectrum
(f(a) versus a) can be derived using the following relationship16,17:

tq ¼ q Hq � x
� �

� 1;
a ¼ dt

dq ;

f að Þ ¼ qa� tq;

8<
: ð6Þ

where a is the singularity strength, tq is the multifractal scaling exponent and f (a)
is the dimension as a function of the a. x¼H1� 1 is the scaling exponent of the
mean fluctuations. For monofractal time series, the (a, f(a)) spectrum collapses to
the point (1, 1). In practice, for finite time series f (a) versus a will be a tiny arc
solely due to random fluctuation. For multifractal time series, the multifractal
spectrum will typically have a single-humped parabolic shape17.
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