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Abstract

In the past few decades, nucleoside analog drugs have been used to treat a large variety of cancers. 

These antimetabolite drugs mimic nucleosides and interfere with chain lengthening upon 

incorporation into the DNA or RNA of actively replicating cells. However, efficient delivery of 

these drugs is limited due to their pharmacokinetic properties, and tumors often develop drug 

resistance. In addition, nucleoside analogs are generally hydrophilic, resulting in poor 

bioavailability and impaired blood-brain barrier penetration. Conjugating these drugs to lipids 

modifies their pharmacokinetic properties and may improve in vivo efficacy. This review will 

cover recent advances in the field of conjugation of phospholipids to nucleoside analogs. This 

includes conjugation of myristic acid, 12-thioethyldodecanoic acid, 5-elaidic acid esters, 

phosphoramidate, and self-emulsifying formulations. Relevant in vitro and in vivo data will be 

discussed for each drug, as well as any available data from clinical trials.
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1. Introduction

Nucleoside analogs are a class of synthetic cytotoxic antimetabolite drugs commonly used 

as primary treatment for a variety of cancers, particularly hematologic malignancies (Figure 

1). These drugs closely resemble endogenous purine and pyrimidine nucleosides, and their 

primary mechanism of action is chain termination upon incorporation into nucleic acid 

strands via inhibition of DNA or RNA polymerases.
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Nucleoside analogs require transport by the human equilibrative nucleoside transporter 1 

(hENT1) to enter cells [1]. Once inside the cell, phosphorylation to the monophosphate form 

of the drug is mediated by cellular kinases, which is often the rate-limiting step of activation 

[2]. Two further phosphorylation steps are required to produce the active triphosphate form, 

which can then be incorporated into growing nucleic acid chains. Once incorporated, these 

drugs cause DNA chain termination and DNA strand breaks, leading to apoptosis [3]. The 

nucleoside analogs, gemcitabine and clofarabine, also can inhibit ribonucleotide reductase 

[4, 5], and two others, decitabine and azacytidine, can inhibit DNA methyltransferases [6]. 

The activity of these drugs depends on their incorporation into replicating DNA during S 

phase of the cell cycle and is not specific to cancer cells; rapidly dividing normal cells 

(including those in the bone marrow, gastrointestinal tract, and hair follicles) are often 

damaged as well. This results in the unwanted side effects that limit clinical administration 

of nucleoside analogs including myelosuppression, mucositis, and hair loss.

Many patients develop resistance to nucleoside analog agents, ultimately reducing their 

clinical benefit. Resistance mechanisms include reduced drug uptake due to decreased 

expression of transport proteins such as hENT1, increased activity of the P-glycoprotein 

drug efflux pump, lower rates of drug activation due to loss of deoxycytidine kinase (dCK) 

expression, and inactivation due to deamination by cytidine deaminase for Ara-C and 

gemcitabine or ribonucleotide reductase and nuclear exonucleases for fludarabine [7]. 

Conventional nucleoside analogs exhibit poor passive diffusion across the gastrointestinal 

tract and require active transport by either concentrative or equilibrative transporters [8]. All 

these factors limit oral bioavailability of these drugs, so they must be given intravenously 

[1]. The short comings of current nucleoside analogs are summarized in figure 2. 

Researchers began modifying nucleoside analogs shortly after they were first approved for 

clinical use. The development of novel pro-drugs or conjugates by attaching various lipid 

moieties to the parental drugs has improved their pharmacokinetic properties, including 

uptake, plasma half-life, and activity in vivo. This review will focus on recent advances in 

nucleoside analogs conjugated to phospholipid groups, fatty acids or packaged in liposomes.

2. Lipid-Drug Conjugate Chemistry

Most lipid-drug conjugate chemistry utilizes liposomal incorporation, salt formation with a 

fatty acid, or covalent linkage of esters, ethers, glycerides, or phospholipids to create novel 

pro-drugs [9–11]. Fatty acid conjugates generally attach a drug with an amino or alcohol 

function to the carboxylate group of the fatty acid or attach the drug to the ω-position of a 

modified fatty acid. In phospholipid conjugates, the drug is linked via the phosphate group 

or glycerol backbone of the phospholipid. Alternatively, one or two fatty acids of the 

phospholipid can be replaced by the drug. Glycerides can form drug conjugates via an ester 

bond with carboxylate-containing drugs [11]. Unilamellar liposomes are primarily 

composed of cholesterol and phospholipids (either phosphoglycerides or sphingolipids). 

Liposomal drugs are well-studied and have altered tissue distribution compared to their 

parental drugs, as the conjugated drugs tend to take on the pharmacokinetic properties of the 

liposomal carrier [12]. Liposomeen-capsulated drugs exhibit reduced elimination by the 

body [12] and generally have milder toxicity profiles [13, 14], as well as increased 

solubility, stability, and circulation [15–17] and can improve blood-brain barrier (BBB) 
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penetration of the active drug [18]. These effects can vary depending on liposomal size, 

charge, rigidity, and dose [12].

2.1 Lipid-conjugated Drugs and the Blood-Brain Barrier

The BBB protects the brain and central nervous system (CNS) from circulating substances 

and is composed of several types of barriers, including the vascular BBB and blood-

cerebrospinal fluid barrier (primarily the choroid plexus) [19]. The various barriers include 

the brain and choroid plexus endothelium (endothelial and capillary cells), astrocytes, 

pericytes, and microglia. Endothelial cells form tight and adherens junctions strengthened by 

astrocytes and pericytes and also highly express various transporter and efflux proteins. The 

BBB utilizes the ATP-binding cassette p-glycoprotein efflux pumps, including the multidrug 

resistant protein (MRP) family members, to transport biologically active molecules away 

from the brain [20]. In particular, hydrophilic drugs have difficulty crossing the BBB due to 

the lack of active transport and drug efflux pumps. These features act as a physical and 

transport barrier that effectively block most drugs (98% of all small-molecule drugs) from 

entering the brain and CNS [21].

Drugs can cross the BBB passively by transmembrane diffusion, especially if they are lipid 

soluble and have a molecular weight under 600 Da. To a lesser degree, other factors that 

influence drug solubility across the BBB include tertiary structure, degree of protein 

binding, and charge [19]. Small lipid and amphipathic molecules including 

phosphatidylcholine and phosphatidylethanolamine are known to be effectively effluxed by 

p-glycoprotein pumps in an ATP-dependent fashion [22, 23]. An estimated 50% of clinically 

used anti-cancer therapeutic agents are effluxed by this system spanning a variety of drug 

types including taxanes, vinca alkaloids, campothecin, mitomycins, and anthracyclines [24]. 

Despite the fact that nucleoside analogs are generally not considered to be substrates of p-

glycoprotein for efflux [25], the activity of these transporters must be taken into 

consideration when administering lipid-conjugated nucleoside analogs. Studies have found 

increased cellular concentrations of drug-lipid conjugates containing amphiphilic glycerides, 

polysorbates, and polyethoxylated castor oil. The increase in accumulation is believed to be 

due to inhibition of the activity of P-glycoprotein efflux pumps by the anionic amphiphilic 

lipid groups, resulting in reduced drug efflux [26]. Changes in uptake mechanisms and 

inhibition of P-glycoproteins are the most likely explanations for the increase in BBB 

penetration of lipid-conjugated drugs. The size and degree of lipid solubility are factors that 

must be taken into careful consideration for lipid-containing drugs to successfully deliver 

their payload with the brain and CNS.

2.2 Clinically Approved Cytarabine Conjugates

Based on advances in drug delivery, several lipid conjugates of cytarabine have been used 

clinically in Japan for the treatment of acute leukemias, including enocitabine, ancitabine 

and cytarabine ocfosfate (Figure 3). Enocitabine and ancitabine require dCK for activation 

and must be infused intravenously.

After demonstrating efficacy as a single agent or synergy in combination with 

cyclophosphamide, daunorubicin or vinblastine in a mouse model of leukemia [27], 
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ancitabine was tested as a single agent in patients with melanoma [28] or combined with 

daunorubicin [29] or amsacrine [30] in children with refractory acute nonlymphocytic 

leukemia. This drug had virtually no effect in patients with melanoma and did not 

demonstrate superiority when combined with daunorubicin over patients treated with Ara-C 

and daunorubicin. Both studies also found significant toxicity, including thrombocytopenia 

and cardiotoxicity. Combination with amsacrine produced complete remission in almost half 

of evaluated patients, but about 10% of patients did not survive therapy.

Enocitabine was shown to significantly increase survival compared to Ara-C in a mouse 

model of leukemia [31, 32] and demonstrated prolonged release when administered i.v. in 

patients with acute leukemia [33, 34]. Despite the drug’s lipophilicity, poor CSF penetration 

was observed, while a significant increase in bone marrow fluid availability was seen 

compared to plasma [34]. In a Phase II study in patients with naïve AML, 36% of patients 

reached complete remission and 24% achieved partial remission, and increased response 

was correlated with higher doses [35]. Toxicity was found to be mild and acceptable. 

Enocitabine combined with mitoxantrone, 6-mercaptopurine and prednisolone was shown to 

be an effective treatment for naïve patients with acute leukemia [36], and combination with 

aclarubicin and prednisolone was an effective salvage therapy in patients with AML [37]. 

However, a more recent study found reduced remission and survival rates in patients with 

naïve AML treated with enocitabine compared to cytarabine [38]. These studies suggest that 

enocitabine has limited efficacy as a single agent, particularly in the relapsed setting, but can 

be highly effective when administered in combination with other therapeutics.

Cytarabine ocfosfate, a prodrug of cytarabine 5′-monophosphate conjugated to a long-chain 

fatty alcohol group, can be delivered orally and is resistant to deamination. It first 

demonstrated efficacy in a mouse model of leukemia [39, 40] and colorectal 

adenocarcinoma [41], and lipophilicity was found to be improved by conjugation of the 

long-chain fatty acyl group. Phase II trials testing subcutaneous or oral administration of 

cytarabine ocfosfate with interferon-α2b and found some success in improving survival and 

response rate in patients with hematological malignancies. Patients were unable to continue 

treatment due to side effects, and a modified dosing regimen might hold promise in the 

future [42–44]. Oral administration of cytarabine ocfosfate in AML patients with relapsed 

disease induced complete remission in ~10% of patients and partial remission and stable 

disease in some of the other patients studied. Pharmacokinetic analysis suggested intestinal 

and hepatic absorption of the drug, resulting in prolonged release mimicking continuous i.v. 

infusion. Off-target toxicities limited dose-escalation in these studies as well [45, 46]. A 

small combination study of orally administered cytarabine ocfosfate and etoposide showed 

higher induction of complete remission in treating patients with hematological malignancies 

compared to previous single agent or combination trials [47], and two recent follow-up 

studies supported these findings [48, 49].

Ancitabine, enocitabine and cytarabine ocfosfate have not been approved for clinical use in 

the United States. Their clinical efficacy appears to be ultimately limited by dCK 

dependence for activation and various toxic side effects [50]. They may have potential to 

treat hematological malignancies when used in combination with other drugs, but there 

appear to be few clinical trials still interested in testing these drugs.
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DepoCyt (DTC 101) is an extended release formulation of cytarabine (8,9,11,17), produced 

by Sigma-Tau [51]. Cytarabine is encapsulated inside vesicles within a lipid foam composed 

mainly of cholesterol and dioleoylphosphatidylcholine [52]. This drug was developed to 

treat neoplastic and lymphomatous meningitis, fairly common symptoms of CNS infiltration 

by solid and hematologic malignancies [53, 54] that can quickly become fatal if left 

untreated [55]. Previous treatment options involved combinations of intrathecal 

chemotherapy using Ara-C, methotrexate, and steroids [56], high-dose systemic 

chemotherapy using methotrexate (5–8 g/m2) or Ara-C (1–7.5 g/m2), and radiation therapy 

[57–59]. These therapeutic options come with undesirable side effects, including increased 

toxicity, cognitive deficiency, infection, chemical meningitis, and inaccurate lumbar 

puncture [58]. Depocyt was shown to be more effective than intrathecally administered 

methotrexate [60, 61] or cytarabine [56, 62] in multiple tumor types. However, Depocyt still 

requires intrathecal administration and caused neurotoxicity in approximately 15% of 

patients tested [56]. The T1/2 of Depocyt was 141 hours in the brain and 277 hours in the 

lumbar space, compared to 3.4 and 2 hours for cytarabine, respectively [63–65]. This large 

difference in half-life is the most likely explanation for the increase in toxicity. Ideally, CNS 

involved cancer would be treated by a drug that does not require intrathecal administration 

and has reduced neurotoxic side effects.

2.3 Drug Duplex Conjugates

One strategy of modifying the pharmacokinetic properties of nucleoside analogs is to 

conjugate two drug molecules together. The lipophilicity of these conjugates can be 

increased by using a lipid backbone or by using a drug with lipid moieties attached. 

Utilizing drug duplexes is expected to improve cellular uptake and alter distribution profiles 

in vivo due to the conjugated drug’s lipophilic and amphiphilic properties. Previous studies 

suggest that the conjugated drugs act similarly to free drugs upon uptake and cleavage inside 

the cell. Delivering nucleoside analogs in this fashion may protect the drugs from 

inactivation or degradation due to lack of substrate recognition, resulting in improved 

intracellular delivery [66].

Teams led by Drs. Herbert Schott and Reto Schwendener created two novel drug duplexes 

by conjugating the 5-Fluorouracil (5-FU) derivative 2’-deoxy-5-fluorouridine (5-FdU) and a 

3-ethynyl nucleoside (ECyd). These nucleoside analogs were either coupled directly via a 

phosphodiester bond – producing 2’-deoxy-5-fluorouridylyl-(3’–5’)-3’-C-ethynylcytidine 

(5-FdU(3’–5’)ECyd) – or indirectly via a lipophilic octadecylglycerophospholipid backbone, 

producing 3’-C-ethynylcytidinylyl-(5’→1-O)-2-O-octadecyl-sn-glycerylyl-(3’-O→5’)-2’-

deoxy-5-luorouridine (ECyd-lipid-5-FdU) (Figure 4). Combining these two drugs should 

inhibit both DNA and RNA synthesis and may reduce chemoresistance. Both complexes are 

believed to require phosphodiesterase cleavage for activation. Cleavage of ECyd-lipid-5-

FdU results in the monophosphate form of both drugs, while cleavage of 5-FdU(3’–5’)ECyd 

produces one drug in the monophosphate form and one that requires phosphorylation, 

depending on which side of the phosphate group is cleaved.

5-FdU(3’–5’)ECyd and ECyd-lipid-5-FdU were screened against the NCI-60 cancer cell line 

panel. 5-FdU(3’–5’)ECyd acted additively, synergistically, or antagonistically in different 
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cell lines compared to individual drug treatment of 5-FdU or ECyd [67]. These differences 

in cytotoxicity are hypothesized to be due to the chemical properties of the duplexes, 

including cytostatic potential and the direction of the cleaved phosphodiester bond [67]. 

These results highlight the importance of comparing the toxicity of multidrug complexes to 

simultaneous administration of their component drugs.

5-FdU(3’–5’)ECyd and ECyd-lipid-5-FdU were tested in various pre-clinical cancer models. 

Both drugs did not significantly affect survival in DBA/2J mice bearing L1210 murine 

leukemia cells. ECyd-lipid-5-FdU did have greater anti-leukemic activity compared to 5-

FdU(3’–5’)ECyd treatment, most likely due to a combination of increased lipophilicity and 

intracellular release of two monophosphate nucleoside analogs. The duplexes had more off-

target toxicity than 5-FdU alone but less than ECyd [68]. 5-FdU(3’–5’)ECyd was effective 

against in vivo melanoma models, but efficacy depended on dose and schedule [69]. 5-

FdU(3’–5’)ECyd was found to be cleaved extracellularly and required nucleoside 

transporters for transport, unlike ECyd-lipid-5-FdU. Treatment with 5-FdU(3’–5’)ECyd, 

caused rapid nucleotide accumulation in the tumor site followed by the liver, whereas ECyd-

lipid-5-FdU resulted in gradual nucleotide accumulation in the tumor and more rapid 

nucleoside uptake by the liver. However, these pharmacokinetic differences did not affect 

the anti-tumor response [70].

In vitro studies of these duplex drugs may underestimate their clinical benefit due to the 

benefit of their unique pharmacokinetic properties in vivo. Association with the lipid 

membrane by duplex drugs may delay their cytoplasmic release and active metabolism, 

resulting in prolonged intracellular exposure compared to unmodified parental drugs. 

Delivering these modified drugs in liposomal formulations may increase drug delivery by 

increasing solubility and stability, decreasing toxicity, and enhancing receptor-free tumor 

accumulation compared to the parental drugs [69]. More in vivo studies are required to 

determine if 5-FdU(3’–5’)ECyd and ECyd-lipid-5-FdU can be successfully delivered orally 

in other tumor models and to determine optimal dosing schedules. Rational combinations of 

drugs linked by lipid complexes may be a promising avenue for increasing anti-tumor 

efficacy of treatments and preventing chemoresistance.

2.4 Myristic Acid and 12-Thioethyldodecanoic Acid Conjugated Analogs

Previous work by the Parang group has shown that conjugation of fatty acid derivatives to 

antiviral agents changes their biological properties compared to the parent drugs. They 

recently applied this approach against cancer cells in vitro using several cytarabine 

conjugates, with the expectation of sustained release and improved cellular uptake of the 

drugs based on previous studies [71–73]. Chhikara et al. created cytarabine prodrugs by 

synthesizing three classes of lipophilic fatty acyl conjugates – 5’-O-substituted, 2’-O-

substituted, and 2’,5’-disubstituted using myristic acid or 12-thioethyldodecanoic acid 

(Figure 5). These conjugates displayed varying antitumor effects in vitro against a human T 

cell leukemia line. The 5’-O-substituted compounds did not inhibit growth, suggesting that 

the location of substitution may prevent the release of cytarabine. The 2’,5’-dimyristoyl 

derivative was as effective as cytarabine in a time-dependent fashion, while 2’-fatty acyl 

derivatives of cytarabine demonstrated lower degrees of inhibition. These results show a 
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clear dependence on chemical conformation of cytarabine derivatives for biological activity, 

and time-dependent cytotoxicity suggests a gradual intracellular release of the active drug. 

Further in vivo testing of these drugs is required to determine if the lipophilic formulation 

also increases bioavailability and cellular uptake, and the potential benefit of conjugating the 

monophosphate form of cytarabine to avoid dependency on dCK activation [74].

2.5 Phosphoramidate Conjugated Analogs

NuCana has developed several nucleoside analog pro-drugs by adding a phosphoramidate 

moiety (ProTide) to the monophosphate form of the drug (Figure 6) [75]. This moiety has 

been shown to protect the phosphate group, reducing metabolic degradation [76], as well as 

potentially increasing intracellular delivery of the active drug. NUC-1031 (Acelarin) is a 

gemcitabine monophosphate analog designed to bypass hENT1 uptake, dCK activation, and 

deactivation by cytidine deaminase [77, 78] and was found to be active against gemcitabine-

resistant human pancreatic cancer cell lines in a xenograft model [79]. NUC-1031 is 

currently being tested in an ongoing Phase I/II trial in patients with various refractory solid 

cancers. Patients received multiple four-week cycles of NUC-1031 with two different 

schedules. The drug could be safely administered at four times the maximum tolerated dose 

(MTD) of gemcitabine, and over half the patients treated had stable disease. Five out of 36 

patients were even able to achieve tumor shrinkage of over 30%.

Pharmacokinetic data revealed a 13-fold increase in the intracellular active form of 

gemcitabine (dFdCTP) compared to the parental form of gemcitabine, suggesting greater 

activity independent of increased dose [80]. NuCana plans on beginning Phase III trials in 

2015 for patients with pancreatic, ovarian, non-small cell lung, and biliary cancers. The 

safety and efficacy of NUC-1031 in combination with carboplatin is currently being tested 

in a Phase IB trial for patients with recurrent ovarian cancer and will also be tested in 

patients with biliary cancers mid 2015.

NuCana is also modifying the pyrimidine analogs 5-FU and 5-fluoro-2'-deoxyuridine 

(FUdR) by attaching a phosphoramidate moiety to the active form of these drugs, 

fluorodeoxyuridine monophosphate (FdUMP). These modified drugs, NUC-3373 and 

NUC-3641, respectively, prevent degradation by phosphorolytic enzymes, bypass thymidine 

kinase-mediated activation, and are taken up passively. A screen of 39 FUDR conjugates 

against several human tumor cell lines found these two drugs to be much more cytotoxic in 

vitro than 5-FU, independent of thymidine kinase and hENT1 [81]. NuCana plans to begin 

testing NUC-3373 in clinical trials for patients with colorectal and non-small cell lung 

cancers mid 2015. The company is also in the early stages of applying the same lipid 

conjugate technology to fludarabine (NUC-4545), clofarabine (NUC-5435), and cladribine.

2.6 Phospholipid Gemcitabine Conjugate

Kucera et al. has conjugated gemcitabine monophosphate to an amido-containing 

phospholipid moiety [82], producing the drug KPC34 (Figure 7). It was rationally designed 

to overcome multiple forms of chemoresistance, including dCK-independent activation and 

hENT1-free uptake, improve pharmacokinetics, increase BBB penetration, and inhibit PKC. 

KPC34 has been shown to be as effective or superior compared to gemcitabine treating 
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several types of cancer in vitro and in vivo. In the human promyelocytic cell line HL60, 

pharmacological inhibition of hENT1 by dipyridamole decreased the IC50 of gemcitabine 

35-fold, compared to only 4-fold for KPC34. In the same study, KPC34’s cytotoxicity was 

tested in the human breast cancer cell line MCF-7 and a clone over-expressing the multidrug 

resistance protein 1 (MDR1) efflux pump, BC-19. KPC34 maintained much of its 

cytotoxicity when compared to doxorubicin, a known substrate of MDR1. [82] Based on 

drugs previously synthesized with similar chemistry [83], KPC34’s phospholipid group is 

predicted to act as a diacyglycerol mimetic upon cleavage by a phospholipase C-like 

enzyme. Diacylglycerol is necessary for the activation of classical members of the PKC 

family by recruiting them to the plasma membrane. Increased PKC signaling is associated 

with chemoresistance in acute leukemia [84]. KPC34’s cleaved moiety may antagonize PKC 

signaling by sequestering PKC away from the plasma membrane and reducing its activation. 

Treatment of acute lymphoblastic leukemic cells in vitro with KPC34 inhibited PKC 

signaling by over 50% as assessed by immunoblotting for p-PKC α and βII (Alexander et al., 

manuscript in preparation).

In the Lewis lung mouse tumor model 50 mg/kg of KPC34 prolonged survival as effectively 

as 120 mg/kg of gemcitabine. KPC34 could be administered orally with similar survival 

benefit, was well-tolerated, and had a greatly improved plasma half-life compared to 

gemcitabine [82]. In a syngeneic immunocompetent model of murine acute lymphoblastic 

leukemia, KPC34 was also well-tolerated and oral dosing provided a greater survival benefit 

compared to intraperitoneal administration of cytarabine, gemcitabine, or KPC34 

(Alexander et al., manuscript in preparation). KPC34 overcame induced cytarabine 

chemoresistance in vivo and was more effective than gemcitabine. Cytarabine and 

gemcitabine share similar mechanisms of resistance. The efficacy of KPC34 in this model of 

chemoresistance suggests the value of phospholipid conjugation for improving outcomes.

The amphipathic nature of KPC34 may result in the formation of water-soluble lipid 

aggregates. In one report, KPC34 formed spherical particles in aqueous media with an 

average size of 115 nm [82]. The hENT-1 independent uptake suggests that KPC34 may 

enter the cell by endocytosis or passive diffusion across the cell membrane. Previous studies 

have shown that water-soluble small lipid molecules (400–600 Da) can cross the BBB via 

diffusion through the endothelial plasma membranes [85]. Improved survival seen with 

KPC34 versus gemcitabine in a naïve model of acute lymphoid leukemia may be due to 

increased clearance of CNS-involved disease, as hind limb paralysis occurred later in the 

KPC34 treated animals (studies ongoing). Further, KPC34 successfully restored motor 

function in mice that developed hind limb paralysis after treatment with cytarabine and 

doxorubicin, indirect evidence of its ability to cross the BBB (Alexander et al., unpublished 

data). KPC34 appears to be a promising new option for patients with relapsed acute 

lymphoblastic leukemia, and this drug is scheduled to enter early phase clinical trials in the 

next few years.

2.7 5-Elaidic Acid Ester Conjugated Analogs

Clavis Pharmaceuticals developed and tested two novel lipid-conjugated nucleoside analogs, 

CP-4055 and CP-4126, in an attempt to improve the pharmacokinetics of cytarabine and 
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gemcitabine respectively. CP-4055 (elacytarabine) is cytarabine covalently conjugated to 

elaidic acid ester at the 5’-OH of the ribose sugar, and CP-4126 is gemcitabine similarly 

attached to the same hydrophobic lipid moiety (Figure 8). The rationale for this conjugation 

is that linkage of fatty acids to the nucleoside analogs is predicted to increase receptor-

independent drug uptake by passive diffusion across the plasma membrane, resulting in 

increased levels of active intracellular drug. The lipid formulation is also believed to 

increase plasma half-life and prevent intracellular deamination. These compounds are 

hydrolytically cleaved into their respective parent nucleoside analog, possibly by 

carboxylesterases, and require phosphorylation by dCK to reach the active triphosphate form 

[86]. In vitro studies demonstrated that the lipid formulation increased uptake of the 

prodrugs in a hENT-1-independent fashion compared to the parental forms of the drugs [87, 

88]. Both novel drugs demonstrated gradual increased nuclear accumulation of the active 

drug compared to the parental drugs, even after drug removal. The gradual intracellular 

release of drug suggests that the lipid formulation may trap conjugates in an intracellular 

compartment after uptake [87]. Both CP-4055 and CP-4126 overcame resistance to 

cytarabine and gemcitabine in a human T-cell leukemia cell line lacking hENT1 [89, 90]. In 

mouse models using a variety of human cancer xenografts, CP-4126 was as effective as 

gemcitabine when administered intraperitoneally. When administered orally, CP-4126 was 

well tolerated and as effective as intraperitoneal delivery [88]. A significant increase in 

survival after CP-4055 treatment was seen compared to cytarabine in a variety of human 

xenograft models in mice [91].

These promising results led to clinical trials of CP-4055 and CP-4126 as orphan drugs in 

Europe and America, with fast-track designation by the FDA. Both drugs have undergone 

various Phase I and II clinical trials for solid and hematologic malignancies. A Phase I study 

of CP-4126 administered orally to patients with solid tumors once a week found few adverse 

side effects, with a maximum tolerated dose of 3,000 mg/day. However, the best anti-tumor 

outcome was stable disease, and no patients achieved partial or complete response. Low 

plasma levels of active gemcitabine were attributed to high intestinal absorption and 

deamination by the liver [86]. These preliminary results led Clavis to abandon testing oral 

delivery of CP-4126 for intravenous delivery. CP-4126 was tested in a Phase II study with 

pancreatic cancer patients who expressed low levels of hENT1. No difference was found in 

overall survival compared to gemcitabine treatment [92]. As a result, Clavis suspended all 

further developmental work on CP-4126.

A Phase I dose escalation study of CP-4055 in patients with solid tumors was well-tolerated 

and produced few significant adverse effects. The major dose-limiting toxicity (DLT) was 

myelosuppression [93]. CP-4055 was then tested in a Phase I study of 77 patients with 

refractory leukemia starting at 2000 mg/m2 on days 1–5 with various infusion times. Patient 

deaths were not attributed to CP-4055 or affected by dose, and 11% of patients displayed a 

complete remission. The DLT was hyperbilirubinemia, which lasted up to 13 days and was 

reversible once treatment was discontinued. Optimal scheduling of CP-4055 appeared to be 

2,000 mg/m2 per day for 5 days by continuous intravenous administration (CIV), as minimal 

toxicities were seen at this dose [94].
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CP-4055 was tested as a single agent therapy in a Phase II trial for patients with refractory 

acute myeloid leukemia (AML) in whom two other therapies were not effective. When 

CP-4055 was given (2,000 mg/m2/d for 5 d by CIV) a remission rate of 18% and an overall 

survival rate of 5.3 months were observed. The adverse events profile was similar to that of 

cytarabine [95]. A randomized Phase III clinical trial in AML patients found no significant 

difference in overall survival or adverse events between patients given CP-4055 (same dose 

as the Phase II study) and investigator’s choice of treatment [96]. However, a lower dose of 

CP-4055 (1,000 mg/m2/d CIV on days 1–5) combined with idarubicin (12 mg/m2/d IV on 

days 1–3) produced a 40% complete remission rate [97].

Despite discouraging results as single-agent therapy, CP-4055 may be useful in combination 

with other drugs, or as an option for patients with refractory disease. In vitro studies found 

synergy between CP-4055 and gemcitabine, irinotecan, and topotecan in a promyelocytic 

cell line, while co-treatment with cloretazine or idarubicin were additive. Further 

consideration must be given to the scheduling of combination therapies, as 24-hour pre-

treatment with topoisomerase inhibitors was antagonistic when combined with CP-4055 in 

vitro [98].

2.8 Self-Emulsifying Compounds

InnoPharmax has developed an orally available self-microemulsifying formulation of 

gemcitabine, known as D07001-F4 using proprietary OralPAS® technology. Self- 

microemulsifying formulation of poorly absorbed lipophilic drugs has been shown to 

improve oral delivery of these poorly water-soluble molecules by incorporation of oils, 

solvents, surfactants, and co-solvents/surfactants [99]. D07001-F4 was found to be more 

bioavailable, 3-fold less susceptible to deamination, and more effective at inhibiting growth 

in a panel of tumor cell lines compared to gemcitabine. In mouse models of pancreatic and 

colon cancer, oral delivery of D07001-F4 was well-tolerated and more effective than 

intravenous gemcitabine [100]. InnoPharmax has started a Phase I dose-escalation trial in 

patients with advanced solid tumors or lymphoma. So far, no dose-limiting toxicity has been 

observed and the drug has shown some signs of anti-tumor activity against solid tumors. 

Further clinical testing is planned upon completion of this Phase I trial.

2.9 Liopsome Encapsulation

Celator Pharmaceuticals has developed CPX-351, a liposomal formulation of cytarabine 

combined with daunorubicin in a fixed molar ratio of 5:1. The rationale for this is that the 

precise ratio of cytarabine to daunorubicin has been shown to effect anti-leukemic efficacy 

in preclinical studies [101]. Liposomal encapsulation of the two drugs allows for improved 

half-life and circumvents the issue of constantly changing ratios between simultaneously 

administered therapies with different pharmacokinetics [102]. This compound has shown 

promise in treating secondary AML patients when compared to the current standard of care, 

continuous infused cytarabine and bolus daunorubicin (7+3) [103]. These findings have led 

to a phase III randomized study in older patients with high risk AML that has recently 

completed accrual. The results of this trial are eagerly awaited.
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3. Discussion

The past few years have produced great advances in the development of lipid-conjugated 

nucleoside analogs. The various chemical modifications described above have been shown 

to increase drug circulation and stability in the body, circumvented hENT1 uptake and dCK 

activation, and overcome chemoresistance in vitro and in vivo. The observed change in 

uptake from carrier-mediated to passive diffusion may be efficacious for the treatment of 

relapsed disease, where reduced active drug uptake is a common mechanism of resistance. 

Continued incremental modifications can help elucidate the effects of choice and position of 

phospholipid group conjugation on biological activity of nucleoside analogs, as not every 

modification studied has proven to be successful pre-clinically or in clinical trials. Further 

research is needed to better understand the precise effects of such modifications on drug 

pharmacokinetics, uptake, and intracellular activation. Still, conjugation of fatty acids or the 

use of liposomes shows great promise as methods to deliver drugs to the lymphatic system 

or to avoid the first-pass effect by the liver when delivered orally.

The failure of CP-4055 highlights the need for better pre-clinical models of chemoresistance 

in testing novel drug conjugates. Given that many drugs will be first tested clinically in 

patients resistant to traditional therapy, pre-clinical testing should have a strong focusing on 

relapsed disease. Most studies have tested overcoming common mechanisms of drug 

resistance in vitro, which while still useful is limited as pharmacokinetic properties cannot 

be tested in a dish. Further, most in vivo efficacy testing is performed against previously 

untreated tumors, often using immunocompromised mouse models. A more relevant animal 

model would include chemoresistant disease in an immunocompetent model, ideally arising 

within the same animal to better mimic clinical conditions. There are benefits and 

drawbacks of testing both human and murine cancer models, but ideally drugs would be 

tested in both types to fully account for the effects of the immune system and differences in 

species.

Despite the poor outcomes of clinical trials testing the efficacy CP-4055 and CP-4126, many 

other phospholipid nucleoside analog conjugates are currently undergoing or are poised to 

enter clinical trials, and many more are entering the early stages of pre-clinical development. 

As is currently ongoing with CP-4055, switching treatment to a different type of cancer may 

help salvage drugs that initially fail Phase III trials. Potential mechanisms to improve the 

efficacy of phospholipid drug conjugates involve increasing cytotoxicity and reducing 

unwanted side effects. This may be accomplished by incorporating active tumor targeting 

mechanisms via conjugation of antibodies or tumor-specific substrates, by creating multi-

drug complexes, or by incorporating moieties that have additional anti-carcinogenic effects. 

Once the efficacy, safety profiles, and mechanisms of action of these novel drugs are better 

understood, rational combinations with other clinically approved anti-neoplastic agents can 

be further explored in clinical trials. Such combinations could test anthracyclines, other 

nucleoside analogs, anti-tumor antibodies, and kinase inhibitors with nucleoside analog 

conjugates. Continued rational modification of lipid-conjugated nucleoside analogs, 

combinations with other anti-neoplastic agents, and application to other types of cancer will 

hopefully lead to improved outcomes for patients suffering from advanced cancer.
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Figure 1. 
Chemical structures of conventional nucleoside analogs: A) Cytarabine, B) Gemcitabine, C) 

Clofarabine, D) Cladribine, and E) 5-Fluorouracil.
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Figure 2. 
Graphical depiction of the common short comings of nucleoside analogs. A) Inconvenient 

administration, B) Minimal blood brain barrier penetration at standard doses, C) Rapid 

elimination and short half-life D) Do not penetrate the tumor cell membrane.
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Figure 3. 
Chemical structures of clinically approved cytarabine conjugates: A) Ancitabine, B) 

Enocitabine, and C) Cytarabine ocfosfate.
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Figure 4. 
Chemical structures of duplexes created by Drs. Herbert Schott and Reto Schwendener: A) 

ECyd-lipid-5-FdU and B) 5-FdU(3’–5’)ECyd. Both complexes contain the 5-FU derivative 

2’-deoxy-5-fluorouridine and the novel 3’-ethynyl nucleoside 1-(3-C-ethynyl-beta-D-

ribopentofuranosyl)cytosine.
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Figure 5. 
Chemical structures of cytarabine prodrugs synthesized by Dr. Keykavous Parang: A) 5’-O-

Monosubstituted dimyristoyl/thioethyl dodecanoyl, B) 2’-O-Monosubstituted dimyristoyl/

thioethyl dodecanoyl, and C) 2’,5’-Disubstituted dimyristoyl.
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Figure 6. 
Chemical structures of NuCana’s phosphoramidate-conjugated prodrugs: A) NUC-1031 

(Gemcitabine monophosphate) and B) NUC-3373 (5-FU).
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Figure 7. 
Chemical structure of KPC34, the gemcitabine phospholipid conjugate developed by 

Kucera, et al.
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Figure 8. 
Chemical structures of lipid-conjugated nucleoside analogs developed by Clavis Pharma: A) 

CP-4055 (cytarabine) and B) CP-4126 (gemcitabine).
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