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Summary

Although a major function of B cells is to mediate humoral immunity by

producing antigen-specific antibodies, a specific subset of B cells is impor-

tant for immune suppression, which is mainly mediated by the secretion

of the anti-inflammatory cytokine interleukin-10 (IL-10). However, the

mechanism by which IL-10 is induced in B cells has not been fully eluci-

dated. Here, we report that IjBNS, an inducible nuclear IjB protein, is

important for Toll-like receptor (TLR)-mediated IL-10 production in B

cells. Studies using IjBNS knockout mice revealed that the number of

IL-10-producing B cells is reduced in IjBNS
�/� spleens and that the TLR-

mediated induction of cytoplasmic IL-10-positive cells and IL-10 secretion

in B cells are impaired in the absence of IjBNS. The impairment of IL-10

production by a lack of IjBNS was not observed in TLR-triggered macro-

phages or T-cell-receptor-stimulated CD4+ CD25+ T cells. In addition,

IjBNS-deficient B cells showed reduced expression of Prdm1 and Irf4 and

failed to generate IL-10+ CD138+ plasmablasts. These results suggest that

IjBNS is selectively required for IL-10 production in B cells responding to

TLR signals, so defining an additional role for IjBNS in the control of the

B-cell-mediated immune responses.
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Introduction

Although B lymphocytes play a central role in humoral

immunity through antibody production, they also con-

tribute to immune regulation, such as antigen presenta-

tion and cytokine production. Consequently, B cells

express B-cell receptor (BCR), MHC and a variety of

pathogen recognition receptors including Toll-like recep-

tors (TLRs). Both human and mouse B cells have been

shown to express several TLRs, and certain TLR agonists

induce B-cell proliferation and the differentiation of

plasma cells.1,2 TLRs also provide a signal for the optimal

proliferation and differentiation of human naive B cells,

and cooperate with BCR triggering and T-cell help.3,4

These observations indicate that TLRs control both the

innate and adaptive B-cell responses.

The TLR signals trigger downstream signalling cascades,

leading to activation of the transcription factor nuclear

factor-jB (NF-jB).5,6 The activation of NF-jB is regu-

lated by several IjB proteins, a family that consists of

classical and atypical nuclear IjBs. Classical IjB proteins,

such as prototypic IjBa, are ubiquitously expressed and

associated with NF-jB in the cytoplasm to regulate the

nuclear translocation of NF-jB.7 Conversely, the expres-

sion of nuclear IjB genes is induced via several surface

receptors, and their products are mainly localized in the

nucleus and thought to positively and negatively regulate

NF-jB-dependent gene expression.8 The family of nuclear

IjB proteins contains Bcl-3, IjBf and IjBNS
9–12 as well as

the recently identified IjBg and IjBL.13,14 Although

nuclear IjB proteins have been shown to play an impor-

tant role in the regulation of inflammatory responses by

Abbreviations: BCR, B-cell receptor; BM, bone marrow; IL-10, interleukin-10; IRF-4, interferon regulatory factor 4; LPS,
lipopolysaccharide; MZ, marginal zone; NF-jB, nuclear factor-jB; PE, phycoerythrin; T2-MZP, transitional 2-MZ precursor;
TCR, T-cell receptor; TLR, Toll-like receptor
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TLRs,8 accumulating reports suggest that nuclear IjBs
also play a significant role in the regulation of both

innate and adaptive immunity.15

A nuclear protein, IjBNS, was originally identified in

thymocytes undergoing negative selection. However,

IjBNS-deficient mice (IjBNS
�/�) exhibit only a slight dif-

ference in the development of T cells.16 Instead, Kuwata

et al.17 showed that IjBNS plays a role in the control of

innate immune responses: IjBNS suppresses the TLR-

induced expression of inflammatory cytokines, such as

interleukin-6 (IL-6) and IL-12, in macrophages and den-

dritic cells. In addition, we have shown that IjBNS signifi-
cantly impacts the control of antigen-specific immune

responses: IjBNS positively regulates proliferation and IL-

2 production in T cells upon T-cell receptor (TCR) stim-

ulation,16 and IjBNS
�/� mice failed to produce antigen-

specific antibodies, exhibiting a developmental defect of

B-1 B and plasma cells.18 Arnold et al.19 demonstrated a

critical role for Nfkbid, which encodes IjBNS, in the regu-

lation of B-1 B-cell development and the extrafollicular

antibody response using forward genetic screens. In this

study, we further investigated the impact of IjBNS-defi-
ciency in B cells, and we found that the number of IL-10-

producing B cells is reduced in IjBNS
�/� spleens and that

the TLR-stimulated induction of IL-10 secretion is largely

impaired in the absence of IjBNS.
Recent studies have established that B cells regulate

inflammatory responses by producing anti-inflammatory

cytokines, such as IL-10 and transforming growth factor-

b; B cells with suppressive function are called regulatory

B cells.20–25 The secretion of IL-10 in B cells is controlled

by signals from BCRs, CD40 and TLRs.20,22,24 Various

phenotypes of IL-10-producing B cells have been

reported, such as peritoneal B-1a cells,26 less mature tran-

sitional 2-marginal zone precursor (T2-MZP) cells,22 sple-

nic CD138+ plasma cells,27 and a small subset of murine

splenic B cells expressing a CD1dhi CD5+ phenotype that

is more enriched for IL-10-producing B (B10) cells.28

These B-cell subsets share various surface markers, such

as CD1d, CD5 and CD21. Although the therapeutic

effects of IL-10-producing B cells in inflammatory and

autoimmune diseases have been demonstrated in several

animal models,20–23 the developmental pathway of B10

cells and mechanisms underlying IL-10 expression in B

cells remain poorly understood.

Here, we report a significant role for IjBNS in TLR-

induced IL-10 production in B cells. We also found that

two IL-10-producing B-cell populations increase upon

TLR-triggering: CD138+ and CD138�. Furthermore,

IjBNS
�/� B cells are unable to generate IL-10-producing

CD138+ CD44hi plasmablasts. Our findings indicate that

IjBNS is important for the regulation of B-cell function

in the T-independent early phase of the immune

response.

Materials and methods

Mice

C57BL/6 (B6) background IjBNS
�/� mice were established

as described previously16 and were kindly provided by Dr

E.L. Reinherz from the Dana-Farber Cancer Institute.

B-cell-deficient B6.lMT mice29 were kindly provided by

Dr D. Kitamura from the Tokyo University of Science. B6

wild-type animals were purchased from Japan SLC Inc.

(Shizuoka, Japan). Four- to eight-month-old mice were

used to compare the B-cell subsets between wild-type and

IjBNS
�/� mice. All animal experiments and bleeding pro-

cedures were performed in accordance with the guidelines

for animal experiments at Niigata University.

Mixed bone marrow chimeric mice

Bone marrow (BM) cells were prepared from the femurs

and tibias of sex-matched donor mice (B6.lMT, B6 wild-

type, or B6.IjBNS
�/�) and were depleted of red blood cells

using ACK lysing buffer. BM cells from B6.lMT mice were

mixed with wild-type or IjBNS-deficient BM cells at a ratio

of 4 : 1, and they (1 9 107) were intravenously injected

into sublethally irradiated (8 Gy) recipient B6.lMT mice.

Eight weeks later, recipient mice were used to analyse sple-

nic IL-10-producing B cells by flow cytometry. For the

endotoxin-challenge assay, BM chimeric lMT mice

received daily doses of 10 lg of lipopolysaccharide (LPS)

intraperitoneally (Escherichia coli serotype 055;B5; Sigma-

Aldrich, St Louis, MO) in 100 ll of PBS for 3 days. Con-

trol mice received PBS alone. Two days after the last inocu-

lum, all mice were killed and analysed for IL-10-producing

B cells in the spleens by flow cytometry.

Isolation of splenic B cells, T cells and peritoneal macro-
phages

Resting B cells from B6 wild-type or IjBNS
�/� spleens

were purified by negative selection with anti-CD43 conju-

gated microbeads and the MACS system (Miltenyi Bio-

tech, Bergisch Gladbach, Germany). Subpopulations of

splenic B and lymph node T cells were isolated using a

FACSAria cell sorter (BD Biosciences, San Jose, CA) with

appropriate monoclonal antibodies. To isolate naive

macrophages, the peritoneal cavity was washed with 6 ml

of sterile PBS to retrieve resident leucocytes, and macro-

phages were separated by adherence to a tissue culture

dish after 2 hr of incubation.

Cell stimulation

Isolated splenic B cells were resuspended in complete

RPMI-1640 media at a concentration of 2 9 106 cells/ml
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and stimulated with 5 lg/ml or the indicated amounts of

LPS. Figure 4 shows experiments in which LPS (5 lg/ml),

anti-CD40 (5 lg/ml; BioLegend, San Diego, CA), anti-

IgM F(ab’)2 antibody (10 lg/ml; Jackson ImmunoRe-

search Laboratories, Inc., West Grove, PA, USA), and

IL-4 (10 ng/ml; ProSpec-Tany TechnoGene Ltd., Rehovot,

Israel) were used for B-cell stimulation. Except for LPS,

the following TLR agonists were used in this study:

Pam3CSF4 (1 lg/ml) for TLR1/2, FSC-1 (1 lg/ml) for

TLR6/2, Imiquimod-R837 (2 lg/ml) for TLR7, and

ODN1826 (0�2 lg/ml) for TLR9 (InvivoGen, San Diego,

CA). To detect intracellular cytokines, the cells were stim-

ulated in vitro for the indicated time and further treated

with GolgiPlug (1/1000 dilution; BD Biosciences) for

5 hr. In some cases, PMA (40 ng/ml; Sigma-Aldrich) and

calcium ionophore A23187 (400 ng/ml; Sigma-Aldrich)

were added for the last 5 hr of incubation. FACS-sorted

T cells (2 9 105) were resuspended in 100 ll of complete

RPMI-1640 medium and stimulated with 2 lg/ml plate-

bound anti-CD3e (145-2C11; BioLegend) and 4 lg/ml

soluble anti-CD28 (eBioscience) in a 96-well plate for

3 days. Peritoneal macrophages were resuspended in

100 ll of complete Dulbecco’s modified Eagle’s medium

and stimulated with the indicated amount of LPS for

2 days. The proliferative activity was assessed using a Cell

Counting Kit-8 (Dojijdo Molecular Technology, Inc.,

Kumamoto, Japan), and the expression of cytoplasmic IL-

10 was analysed by flow cytometry. Cell culture super-

natants were collected and used to measure the levels of

secreted cytokines by ELISA.

Flow cytometric analysis

The following monoclonal antibodies were used:

FITC-anti-CD5 (clone; 53-7.3), FITC-anti-CD44 (IM7),

PerCP-Cy5.5-anti-CD1d (1B1), phycoerythrin (PE) -Cy7-

anti-IgM (RMM-1), Alexa647-anti-CD19 (6D5), FITC-

anti-interferon-c (XMG1.2), PE-anti-IL-10 (JES5-16E3)

and PE-Cy-7-anti-IL-10 were purchased from BioLegend.

PE-anti-CD138 (Syndecan-1, 281-2) was purchased from

BD Biosciences. The intracellular staining of cytokines

was performed after cell fixation and permeabilization

with Cytofix/Cytoperm solution (BD Biosciences). Back-

ground staining for intracellular cytokines was assessed

with suitable isotype control antibodies from BioLegend

or BD Biosciences. The FACSARIA (BD Biosciences) and

FACS DIVA software were used. Dead cells were excluded

from the analysis by forward and side scatter gating and

propidium iodide dye exclusion.

RT-PCR

RNA isolated from purified wild-type or IjBNS
�/� B cells

using the TriPure isolation reagent (Roche Diagnostics

GmbH, Mannheim, Germany) was used for both

semi-quantitative and quantitative real-time PCR analysis.

One microgram of total RNA was used to synthesize sin-

gle-strand cDNA by reverse transcriptase (Transcriptor,

Roche). Real-time PCR was performed using the Light

Cycler (Roche Diagnostics GmbH) and SYBR Premix Ex

Taq (TAKARA, Tokyo, Japan). The expression level of

b-actin was used to normalize the template input. Assays

were performed in triplicates.

ELISAs

Cytokine production was induced as described above, and

the culture supernatant fluid was stored at �80° until

use. Cytokines secreted in the culture supernatants were

measured using a mouse ELISA MAX Standard from Bio-

Legend.

Western blot analysis

Cytoplasmic and nuclear extracts were prepared from

purified wild-type and IjBNS
�/� B cells as previously

described.17 The protein concentration was assessed using

a Pierce BCA kit (Thermo Fisher Scientific, Waltham,

MA). To separate proteins, 30 µg of cytoplasmic extracts

or 10 µg of nuclear extracts was loaded onto a 10% poly-

acrylamide gel. The proteins were blotted onto a

polyvinylidene difluoride membrane (GE Healthcare,

Buckinghamshire, UK), and target proteins were detected

using the following antibodies: NF-jB p50 (KAP-TF112;

Stressgen Biotechnologies, Victoria, BC, Canada), NF-jB
p65 (C-20; Santa Cruz Biotechnology, Dallas, TX),

NFATc1 (7A6; BioLegend), and Lamin B (M-20; Santa

Cruz). Anti-IjBNS monoclonal antibody was purified from

the culture supernatant of a hybridoma (mouse IgG2b).12

DNA pull-down assay

DNA pull-down assays were performed as previously

described.17 Splenic B cells were stimulated with 5 lg/ml

LPS for the indicated time and lysed in a lysis buffer

solution.30 The biotinylated DNA probes of two NF-jB
binding sites in the Il10 promoter were obtained from

Greiner Bio-One (Tokyo, Japan). The Origo DNA pairs

were 50-Biotin-TTTGCCAGGAAGGCCCCACTGAGC-30

with 50-GCTCAGTGGGGCCTTCCTGGC for NF-jB site

at –50/–3931 and 50-Biotin-GAGGTAGTAGGAGAAGTC
CCTACTGAA-30 with 50-TTCAGTAGGGACTTCTCCT
ACTAC for the NF-jB site at –861/–851.32 The 30 lg of

nuclear extracts was pre-cleared with streptavidin Mag

sepharose (GE Healthcare). A total of 1 lg of a biotiny-

lated dsDNA probe and 10 lg of poly(dI-dC) were

added, and DNA-bound proteins were collected with

streptavidin Mag sepharose, washed three times with

HKMG buffer (10 mM HEPES, pH 7�9, 100 mM KCl,

5 mM MgCl2, 10% glycerol, 1 mM dithiothreitol, 0�5%
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Nonidet P-40), separated on SDS–PAGE, and identified

by Western blotting using a chemiluminescence reagent

(Immunostar LD; Wako, Tokyo, Japan). Protein signals

were detected using anti-p50, anti-p65, or anti-IjBNS
antibody.

Statistical analysis

The results are shown as the mean � SD of values

obtained from two or three separate experiments. For

ELISAs, the results of a single representative experiment

are provided. The data were analysed by unpaired two-

tailed Student’s t-test to assess the significance of differ-

ences between the wild-type and IjBNS
�/� groups. A p

value of < 0�05 was considered significant.

Results

IjBNS deficiency leads to a significant reduction in
IL-10-producing B cells in the spleen

Mice deficient in IjBNS lack peritoneal B-1 B cells and

exhibit delayed marginal zone (MZ) B-cell develop-

ment.18,19 Both cell populations are known to produce

large amounts of IL-10 in response to infectious stimuli

and share surface markers, such as CD1d and CD5; a

small subset of splenic B10 cells potently express IL-10.28

Based on these observations, we hypothesized that IjBNS
plays a role in the generation of IL-10-producing B cells.

We first examined the IL-10-competent CD1dhi CD5+

B10 cells in IjBNS
�/� spleens. Because the number of MZ

B cells in young IjBNS
�/� mice was previously reported

to be smaller than that in wild-type mice of the same

age,18 we used mice older than 4 months, in which MZ B

cells are almost fully developed, even in the absence of

IjBNS (see Supplementary material, Fig. S1). As shown in

Fig. 1(a, b), the frequency and cell number of the

CD1dhi CD5+ population in CD19+ splenocytes from

IjBNS
�/� mice were less than half those in wild-type

mice. Although the frequency of the CD1dhi regulatory B

cells was reduced in IjBNS
�/� spleens, the frequencies of

the T2-MZP B cells with a CD19+ CD21hi CD23hi CD24hi

phenotype and the Tim-1-expressing B cells in IjBNS
�/�

spleens were comparable with those in wild-type spleens

(see Supplementary materials, Fig. S1).

To examine the IL-10-producing B cells in IjBNS
�/�

mice, splenic B cells isolated from native mice were stim-

ulated with LPS and PMA plus Ca2+-ionophore for 5 hr

to induce the expression of cytoplasmic IL-10 as previ-

ously described.28 The frequencies and the number of

cytoplasmic IL-10-positive B cells in IjBNS
�/� spleens

were markedly reduced compared with wild-type spleens

(Fig. 1c, d). These results indicate that the development

of IL-10-competent CD1dhi CD5+ B cells and IL-10-pro-

ducing splenic B cells is impaired in the absence of

IjBNS.

Impairment of IL-10-producing B cells in IjBNS
�/�

mice is a B-cell intrinsic property

B-cell development is supported by many environmental

factors, such as antigens, cytokines and stromal cells. To
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Figure 1. IjBNS
�/� mice contain reduced numbers of interleukin-10 (IL-10)-producing B cells in the spleen. (a) Flow cytometric analysis of

CD1dhi CD5+ B cells in spleen from wild-type (IjBNS
+/+, WT) and IjBNS-deficient (IjBNS

�/�, KO) mice. Representative FACS profiles of CD19+

spleen B cells for CD1d and CD5 are shown. Numbers represent the percentage of cells in indicated gates. (b) The frequency of CD1dhi CD5+

cells in CD19+ splenic B cells (left) and the numbers of CD1dhi CD5+ B cells in wild-type and IjBNS
�/� spleens (right) are shown. (c) Flow cyto-

metric analysis of IL-10-producing B cells in spleen. Splenocytes from wild-type and IjBNS
�/� mice were incubated with lipopolysaccharide

(LPS) plus PMA, A23187 and GolgiPlug for 5 hr. The cells were then stained with anti-CD19 and anti-IL-10. Representative dot plots show the

frequencies of cytoplasmic IL-10+ cells in CD19+ B cells. (d) The frequency of cytoplasmic IL-10+ cells in CD19+ splenic B cells (left) and the

number of IL-10 producing B cells in the spleen (right) are shown. For (a) and (b), data are representative of at least three independent experi-

ments. For (b) and (d), each symbol indicates an individual mouse. Horizontal bars represent the mean. n > 5; **P < 0�01.
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address whether the impairment of IL-10-producing B

cells in IjBNS
�/� mice is a B-cell intrinsic property, we

generated mixed BM chimeric mice by transferring

IjBNS
�/� or control B6 BM cells mixed with quadruple

the number of lMT BM cells into irradiated recipient

lMT mice. When donor-derived B cells were reconsti-

tuted, and the IL-10-producing B cells in recipient spleen

were analysed. The B-cell compartments with MZ were

observed in the spleens receiving BM cells at 2 months

post transfer. Whereas full reconstitution of the B-cell

compartments was observed in the spleens of wild-type

BM chimeras, the frequencies of CD1dhi CD5+ B cells

and MZ B cells were lower in the spleens of IjBNS
�/�

BM chimeras (see Supplementary material, Fig. S2). The

frequencies of IL-10-producing B cells were lower in

spleens receiving IjBNS
�/� BM cells, although the differ-

ence between the wild-type and IjBNS
�/� groups was not

significant: 0�9 � 0�8% and 0�2 �0�1%, respectively

(Fig. 2a, b). To assess the induction of IL-10-producing B

cells in vivo, mixed BM chimeric mice were inoculated

with low-dose LPS, and IL-10-producing B cells were

analysed by flow cytometry. Reconstituted wild-type B

cells generated a significant level of IL-10-producing cells

in response to LPS (12�0 � 4�4%), whereas IjBNS
�/� B

cells were incapable of generating IL-10-producing cells

(0�4 � 0�4%, and Fig. 2). Hence, the development of

IL-10-competent B cells and the endotoxin-induced gen-

eration of IL-10-producing B cells in vivo require B-cell

intrinsic IjBNS.

IjBNS
�/� B cells fail to secrete LPS-induced IL-10

To determine the competency of IL-10 production in

IjBNS-deficient B cells, purified splenic B cells from

IjBNS
�/� or control B6 mice were stimulated with LPS.

The expression of cytoplasmic IL-10 and the amount of

secreted IL-10 in the culture supernatants were examined.

As shown in Fig. 3(a, b), cytoplasmic IL-10-positive cells

and IL-10 secretion were almost undetectable in IjBNS
�/�

B cells, even in the presence of higher concentrations of

LPS. The addition of PMA plus Ca2+-ionophore to LPS

emphasized IL-10 secretion in wild-type B cells, whereas

only a slight increase in IL-10 was detected in the

IjBNS
�/� B-cell culture even in the presence of PMA plus

Ca2+-ionophore. Note that increased amounts of LPS did

not enhance the frequencies of IL-10-producing cells,

whereas a higher dose of LPS increased IL-10 secretion in

wild-type B cells. A low dose of LPS is probably sufficient

for B cells to commit to IL-10-producing cells, whereas a

higher dose of LPS effectively induces B-cell proliferation.

The impairment of LPS-induced IL-10 secretion in

IjBNS-deficient B cells was confirmed using BALB/c back-

ground IjBNS
�/� mice (data not shown).

The suppressive function of LPS-activated B cells was

also examined. Although the IL-10-mediated inhibitory

function of B cells participates in the suppression of anti-

gen-presenting cells, such as dendritic cells,24 the decrease

in interferon-c production in T cells was attenuated in

the presence of LPS-stimulated IjBNS
�/� B cells com-

pared with in the presence of LPS-stimulated wild-type B

cells (Fig. 3c). In addition, IL-10-producing T cells were

induced only in the presence of wild-type B cells

(Fig. 3c). These IL-10-producing T cells were found in

CD4+ cells (see Supplementary material, Fig. S3). There-

fore, the IjBNS-deficiency in B cells may affect the gener-

ation of regulatory T cells as well as regulatory B cells.

Finally, we evaluated the capability of IjBNS-deficient
splenic B10 cells to secrete IL-10. As shown in Fig. 3(d),

CD1dhi CD5+ B cells isolated from IjBNS
�/� spleens pro-

duced significantly lower levels of IL-10 than wild-type

cells, and similar results were obtained with MZ B cells

from IjBNS
�/� mice (Fig. 3e). Collectively, IjBNS-defi-

cient B cells exhibit a severe defect in LPS-induced IL-10

production.

IjBNS is required for TLR-mediated IL-10 production
in B cells

We then examined IL-10 production induced by anti-

CD40 and anti-IgM because the expression of IjBNS is

transiently induced by LPS, anti-CD40 and anti-IgM.18 As
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Figure 2. B-cell-intrinsic deficiency in IjBNS results in the impaired

generation of interleukin-10 (IL-10) -producing B cells in vivo. bone

marrow (BM) cells from B6.lMT mice were mixed with BM cells

from wild-type or IjBNS
�/� mice at a ratio of 4:1, and 1 9 107 BM

cells were transferred intravenously into irradiated B6.lMT mice.

Lipopolysaccharide (LPS) -induced IL-10 production in donor-

derived B cells was examined 8 weeks post transfer by the daily

administration of LPS (10 lg, intraperitoneally) for 3 days. Controls

received PBS alone. Two days after the last inoculum, splenocytes

were stained with surface CD19 and intracellular IL-10. (a) Repre-

sentative FACS profiles of CD19+ splenocytes for the expression of

cytoplasmic IL-10 with the percentages of cells in gates. (b) The fre-

quency of IL-10-producing cells in CD19+ splenic B cells. Data from

four control and eight LPS-treated mice are shown. Each symbol

shows an individual mouse, and horizontal bars represent the mean.

Two independent experiments were performed, and similar results

were obtained. **P < 0�01.
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shown in Fig. 4(a; top), these agents all induced B-cell

proliferation, irrespective of the presence of IL-4. IjBNS
deficiency modestly affected B-cell proliferation in

response to anti-CD40 and anti-IgM, whereas the prolif-

erative response to LPS was reduced in IjBNS
�/� B cells.

In our ex vivo assay, IL-10 production in wild-type B cells

was predominantly induced by LPS alone or LPS plus

IL-4 but not by anti-CD40 or anti-IgM (Fig. 4a, middle).

Although a defect in IL-6 due to a lack of IjBNS was

much less severe than that in IL-10, the amount of IL-6

secreted by IjBNS
�/� B cells was also significantly

reduced. This reduction probably resulted in the weak

proliferative response to LPS in the absence of IjBNS
(Fig. 4a, top and bottom).

In mice, TLR1, -2, -4, -6, -7 and -9 are expressed in

most B-cell subsets.33 Because TLR agonists other than

LPS also induce the expression of Nfkbid, which encodes

the IjBNS protein in B cells (Fig. 4b), we further exam-

ined the impact of IjBNS deficiency in TLR-mediated IL-

10 production in B cells. IjBNS
�/� B cells failed to secrete

IL-10 in response to TLR agonists of TLR1/2

(Pam3CSK4), TLR2/6 (FSL-1), TLR7 (Imiquimod), TLR9

(ODN1826) and TLR4 (LPS) (Fig. 4b).

Remarkably, IjBNS-dependent IL-10 production in

response to TLR appears to be B-cell-specific because the

levels of IL-10 secretion in LPS-stimulated IjBNS
�/�

macrophages were comparable to those in wild-type

macrophages (Fig. 4c). This finding is consistent with the

previously observed expression level of IL-10 in LPS-sti-

mulated IjBNS
�/� macrophages, which was comparable

to that in control macrophages.17 In addition, a lack of

IjBNS enhanced TCR-mediated IL-10 production in

CD25+ CD4+ T cells (Fig. 4d), whereas the number of

regulatory T cells was reduced in IjBNS
�/� mice, as previ-

ously reported by Schuster et al.34 These results indicate

that the regulatory mechanism of IL-10 production might

depend both on the cell type and on signals via surface

receptors.

A lack of IjBNS reduces Il10 expression in B cells but
does not alter the association of NF-jB with jB sites
in the Il10 promoter

We next examined the expression of the Il10 gene in B

cells from IjBNS
�/� mice. LPS transiently induced the

expression of Nfkbid in wild-type B cells, as shown in
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Fig. 5(a) and as previously described.18 The LPS-induced

expression of Il10 was observed within 2 hr of induction

and continued for several days in wild-type B cells. Com-

pared with the wild-type, the expression level of Il10 in

IjBNS
�/� B cells was lower during the first 24 hr of

induction, and it increased to a level comparable to that

in wild-type B cells after 48 hr of induction (Fig. 5a, b).

Hence, a lack of IjBNS affects the early phase of Il10 gene

expression. The expression of other cytokine genes, i.e.

IL-6, tumour necrosis factor-a and transforming growth

factor-b, was not altered in the absence of IjBNS.
Because TLR signalling pathways stimulate the activa-

tion of NF-jB and IjBNS can directly associate with NF-

jB proteins in the cell nucleus,12,17 we next examined the

LPS-induced translocation of NF-jB to the nucleus and

the association of NF-jB and the Il10 promoter in the

absence of IjBNS. A Western blot analysis revealed that

the levels of nuclear RelA (p65) and NF-jB1 (p50) simi-

larly increased in LPS-stimulated wild-type and IjBNS
�/�

B cells (Fig. 5c). The transient expression of IjBNS

protein was detected only in nuclear extracts prepared

from wild-type B cells, as expected.

The effect of a lack of IjBNS on NF-jB binding to the

Il10 promoter was examined using a DNA pull-down

assay. The mouse Il10 promoter contains two NF-jB
binding sites that enhance Il10 promoter activity in

macrophages.31,32 DNA probes containing NF-jB cis ele-

ments on the Il10 proximal and distal promoters located

at �55 to �46 and �861 to �851, respectively, were

mixed with nuclear proteins extracted from LPS-stimu-

lated B cells, and DNA-bound proteins were detected by

Western blotting. Both p65 and p50 bound to DNA

probes containing the proximal or distal jB site on the

Il10 promoter after LPS induction, and similar levels of

pulled-down complexes were detected in wild-type and

IjBNS
�/� extracts (Fig. 5d). IjBNS was not pulled down

with Il10 promoter DNA (data not shown). These results

suggested that a lack of IjBNS does not affect NF-jB
activity, at least on the Il10 promoter in LPS-stimulated B

cells.
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A further investigation of signalling pathways in TLR-

stimulated B cells revealed that the nuclear translocation

and dephosphorylation of NFATc1 induced by LPS was

reduced in IjBNS
�/� B cells (Fig. 5e). NFAT proteins

control the Ca2+-dependent signalling network and have

been described to be required for IL-10 production.35

Therefore, IjBNS may contribute to the Ca2+-dependent

signalling pathway, which positively regulates IL-10 pro-

duction. Nevertheless, a direct interaction between

NFATc1 and IjBNS was not detected by immunoprecipi-

tation (data not shown).

Impaired differentiation of IL-10-producing
plasmablasts in the absence of IjBNS

Recent studies have shown that the expressions of Prd-

m1/Blimp-1 and Irf4, known as key transcription factors

for the differentiation of plasma cells, are induced during

IL-10 production in T and B cells.36–38 Recently, plas-

mablasts and plasma cells have been identified as the

main B-cell population in mice that produce cytokines,

such as IL-10, IL-35, tumour necrosis factor-a, and

granulocyte–macrophage colony-stimulating factor, under

various conditions.39 Because IjBNS
�/� splenic B cells

exhibit a defect in plasma cell differentiation,18 we exam-

ined the expression of Prdm1 and Irf4 in IL-10-competent

B10 cells isolated from IjBNS
�/� mice. The expression

levels of Prdm1 and Irf4 in CD1dhi CD5+ B cells were sig-

nificantly diminished by a lack of IjBNS (Fig. 6a), and

similar results were obtained with MZ B cells (Fig. 6b).

Because splenic B10 cells can differentiate into anti-

body-secreting plasma cells40 and splenic CD138+ plasma

cells express IL-10,27 we suspected that TLR-induced IL-

10-producing B cells may be plasma cells. As shown in

Fig. 6(c), IL-10-producing B cells could be detected by

flow cytometry within 48 hr of LPS induction in control

B cells, and most IL-10+ B cells were negative for CD138

on day 2. CD138+ IL-10+ B cells were then also differen-

tiated from wild-type B cells on day 3. Conversely, only a

small number of CD138-negative IL-10+ B cells were gen-

erated from IjBNS
�/� B cells, even after 3 days of induc-

tion. Notably, CD138+ IL-10+ cells observed in wild-type

B cells express higher levels of CD44, and CD138� IL-10+

cells consist of both CD44hi and CD44med cells. Hence,

LPS induced the development of both CD138� IL-10+

cells and CD138+ CD44hi IL-10+ plasmablasts in
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wild-type B cells, whereas the development of

CD138+ CD44hi IL-10+ cells was impaired in the absence

of IjBNS. Similarly, a severe defect of the differentiation

of CD138+ IL-10+ cells in IjBNS
�/� B-cell cultures was

observed, even when we used TLR agonists other than

LPS (Fig. 6d). Collectively, the TLR-induced development

of IL-10-producing plasmablasts is impaired in the

absence of IjBNS.

Discussion

We have previously shown that IjBNS deficiency results

in a defective TI antigen response and a developmental

defect in peritoneal B-1 B cells, which are known to pro-

duce large amounts of IL-10 via TLR engagements.41,42

Accordingly, we speculated that IjBNS plays a role in the

development of IL-10-producing B cells responding to

innate signals. As previously reported, splenic B cells with

the CD1dhi CD5+ phenotype predominantly produce IL-

10. Consequently, we examined the development and

function of CD1dhi CD5+ B10 cells in IjBNS
�/� mice.

Our data shown here suggest that IjBNS plays significant

roles in the development of IL-10-competent B cells and

TLR-induced IL-10 production in B cells. Although BCR-

dependent IL-10 production has been demonstrated in

several autoimmune models, TLR signalling has also been
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shown to be required for BCR-mediated IL-10 expres-

sion.35 Therefore, in addition to many studies of regula-

tory B-cell induction through the BCR signals, the

current study addressed the role of innate B-cell responses

in IL-10 secretion.

In addition to splenic B10 and T2-MZP populations,

which can provide IL-10-dependent regulatory function in

recipient mice upon adoptive transfer,22 more recent stud-

ies identified plasmablasts/plasma cells as major B-cell

populations producing immunosuppressive IL-10.39

Recently, Matsumoto et al. demonstrated that IL-10-pro-

ducing plasmablasts developed in the draining lymph

node could suppress experimental autoimmune

encephalomyelitis.38 These findings indicate that the

mechanism regulating IL-10 is, at least partially, shared

with a mechanism regulating antibody production in B

cells. In this context, we examined the expression of Prd-

m1, Irf4 and CD138 in splenic B cells and found that the

expression of these factors was significantly reduced by a

lack of IjBNS. This is consistent with the report that

CD138+ plasmablasts develop under the control of Blimp1

and interferon regulatory factor 4 (IRF4) and that IRF4

regulates Il10 expression in B cells38 and in T cells.36,37

In this study, we showed that B cells stimulated with

TLR agonists differentiate into two IL-10-producing pop-

ulations: CD138� and CD138+. Although both IL-10+

populations were diminished in IjBNS
�/� B-cell cultures,

a severe defect of IL-10-producing CD138+ CD44+ plas-

mablasts was observed in the absence of IjBNS. The

intensity of cytoplasmic IL-10 in response to TLR stimu-

lation was higher in CD138� cells than in CD138+ cells,

although CD138+ plasmablasts were found to predomi-

nantly produce IL-10 during experimental autoimmune

encephalomyelitis.38 This difference might be caused by

differences in the signalling components: the former con-

sists of only TLR signalling, whereas the latter is a com-

plex of signals by BCR, TLRs and cytokines in vivo.

We have examined the mechanisms by which IjBNS reg-
ulates IL-10 production. Because IjBNS lacks a DNA-bind-
ing domain, it may affect the activation of transcription

factors associated with the Il10 promoter. We first specu-

lated that the absence of IjBNS results in the aberrant

expression and/or activation of NF-jB. However, the LPS-

induced expression and nuclear translocation of NF-jB
were similar between wild-type and IjBNS

�/� B cells. How-

ever, we found that IjBNS
�/� B cells express reduced levels

of NFATc1. This observation may provide a clue to under-

stand the molecular mechanism underlying IjBNS-depen-
dent IL-10 production because the Ca2+-dependent

signalling pathway has been shown to be important in IL-

10 production. Specifically, B-cell-mediated IL-10 secretion

after BCR stimulation occurred in a Ca2+ influx-dependent

fashion and consequently required NFAT activation.35

The involvement of IjBNS in BCR-mediated IL-10

expression remains to be explored. As we have previously

reported, mature B cells in IjBNS
�/� mice express slightly

higher levels of surface IgM than B cells in wild-type

mice. As a consequence, the proliferative response

induced by the cross-linking of IgM is slightly higher in

IjBNS
�/� B cells. Therefore, even if IjBNS-deficiency

affects BCR-mediated signals, the increased number of

IgM molecules on a cell may mask a potential response

to BCR signalling in IjBNS
�/� B cells. However, this rela-

tionship may not definitively implicate IjBNS in BCR-

mediated responses because IjBNS deficiency results in

defective TI-2 antigen responses, which require extensive

BCR cross-linking. Indeed, impaired NFAT expression

was observed in BCR-stimulated IjBNS
�/� B cells

(unpublished data). The recently identified function of

IjBNS in TCR-mediated T-cell development34,43,44 implies

a role for IjBNS in the regulation of antigen-specific

immune responses.

The phenotype of IjBNS
�/� B cells partly overlaps with

that of IjB-f-deficient B cells. This overlap is noteworthy

because IjBNS and IjB-f are homologous members of

the nuclear IjB family, and both factors have been

demonstrated to interact with p50.11,12 IjB-f-deficient B

cells exhibit impaired plasma cell differentiation in

response to LPS.45 Interestingly, IjBNS and IjB-f have an

inverse function in the regulation of the TLR-induced

expression of inflammatory cytokines, such as IL-6.8 The

elucidation of the relationship and cooperation within

these IjB proteins may allow us to understand the

regulatory mechanisms of NF-jB in the context of TLR

signalling.

In summary, our study proposes additional roles for

IjBNS in the development of IL-10-competent B cells and

the modulation of B-cell functions induced by TLRs.

B-cell-intrinsic TLR signalling is also crucial for the gen-

eration and activation of autoreactive B cells.46 In this

context, this unique signalling process could affect the

pathogenesis of autoimmune diseases. Hence, further

studies will be required to elucidate the exact mechanism

underlying TLR ligation-triggered B-cell activation and

develop new strategies for immune disorders.
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