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Compromised blood–brain barrier permeability: novel
mechanism by which circulating angiotensin II signals to
sympathoexcitatory centres during hypertension
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Abstract Angiotensin II (AngII) is a pivotal peptide implicated in the regulation of blood pressure.
In addition to its systemic vascular and renal effects, AngII acts centrally to modulate the activities
of neuroendocrine and sympathetic neuronal networks, influencing in turn sympatho-humoral
outflows to the circulation. Moreover, a large body of evidence supports AngII signalling
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dysregulation as a key mechanism contributing to exacerbated sympathoexcitation during hyper-
tension. Due to its hydrophilic actions, circulating AngII does not cross the blood–brain barrier
(BBB), signalling to the brain via the circumventricular organs which lack a tight BBB. In this
review, we present and discuss recent studies from our laboratory showing that elevated circulating
levels of AngII during hypertension result in disruption of the BBB integrity, allowing access of
circulating AngII to critical sympathoexcitatory brain centres such as the paraventricular nucleus
of the hypothalamus and the rostral ventrolateral medulla. We propose the novel hypothesis that
AngII-driven BBB breakdown constitutes a complementary mechanism by which circulating
AngII, working in tandem with the central renin–angiotensin system, further exacerbates
sympatho-humoral activation during hypertension. These results are discussed within the context
of a growing body of evidence in the literature supporting AngII as a pro-inflammatory signal,
and brain microglia as key cell targets mediating central AngII actions during hypertension.
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Abstract figure legend Proposed model of circulating angiotensin II (AngII) signalling pathways in the brain under
normotensive and hypertensive conditions. Under normal conditions (left, blue), and due to its hydrophilic nature,
circulating AngII does not cross the blood–brain barrier (BBB) and signals to the brain through the circumventricular
organs (mainly the SFO), which lack a tight BBB. The SFO then engages the PVN–RVLM–IML pathway, increasing
sympathetic nerve activity to the circulation. During hypertension (right, red), circulating AngII leads to BBB breakdown,
allowing its own leakage into the PVN and RVLM parenchyma, resulting in overactivation of the PVN–RVLM–IML
pathway and exacerbated sympathoexcitatory outflow to the circulation. BP, blood pressure; IML, intermediolateral cell
column; LT, lamina terminalis; MnPO, median preoptic nucleus; OVLT, organum vasculosum of the lamina terminalis;
PVN, paraventricular nucleus; RVLM, rostral ventrolateral medulla; SFO, subfornical organ; SNA, sympathetic nerve
activity; SON, supraoptic nucleus.

Abbreviations 2K1C, Goldblatt hypertensive model; two-kidneys, one-clip; AngII, angiotensin II; AT1R, angiotensin
type 1 receptor; BBB, blood–brain barrier; BP, blood pressure; CVOs, circumventricular organs; NTS, nucleus of the
tractus solitarius; PVN, paraventricular nucleus of the hypothalamus; ROS, reactive oxygen species; RVLM, rostral
ventrolateral medulla; SFO, subfornical organ; SHR, spontaneous hypertensive rats; WKY, Wistar Kyoto rats.

Introduction

Hypertension remains a global public health challenge.
It affects one-third of US adults, being a key risk
factor for stroke, myocardial infarction, vascular disease
and chronic kidney disease. A large proportion of the
hypertensive population is categorized as ‘neurogenic’,
displaying an increased activation of the sympathetic
nervous system during the initiation and maintenance
phases of the disease (Parati & Esler, 2012). Importantly,
sympathoexcitation is a major determinant of morbidity
and mortality in hypertensive patients (Mancia et al.
1999; Parati & Esler, 2012). Thus, understanding the
precise neuroanatomical pathways and neurobiological
mechanisms underlying increased sympathetic outflow
in hypertension is of critical physiological and clinical
importance.

Regulation of blood pressure (BP) by the central
nervous system involves coordinated activities among
highly interconnected neuronal networks distributed
throughout the spinal cord, brainstem and forebrain,
including, among others, the nucleus of the tractus

solitarius (NTS), the rostral ventrolateral medulla (RVLM)
and the paraventricular nucleus of the hypothalamus
(PVN) (Swanson & Sawchenko, 1983; Guyenet, 2006).
Within these centres, numerous chemical signals have
been identified to play critical roles in regulating
sympathoexcitatory outflow to the cardiovascular system
(Gabor & Leenen, 2012). Among them, the neuropeptide
angiotensin II (AngII), which also acts as a circulating
hormone, constitutes a pivotal signal modulating the
activities of both central neuroendocrine and sympathetic
neuronal networks. Moreover, a large body of evidence
supports AngII signalling dysregulation as one of the
key mechanisms involved in stimulating the sympathetic
nervous system within the brain (Fink, 1997; Leenen,
2014). There are excellent reviews in the literature covering
the contribution of central and systemic AngII to hyper-
tension (Ferrario, 1983; Osborn et al. 2007; Paton et al.
2008; Coble et al. 2015).

Recent findings from our and other laboratories,
however, provide support for a novel mechanism by which
the peripheral and central renin–angiotensin systems, via
disruption of the blood–brain barrier (BBB), may act
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in tandem to promote exacerbated sympathoexcitatory
activity, contributing in turn to neurogenic hypertension
(Biancardi et al. 2014). We summarize and review here
these novel findings, discussing them in the context of
previous literature in the field.

AngII brain signalling and the regulation
of blood pressure

AngII is the major effector peptide of the renin–
angiotensin systems. It is produced by cleavage of angio-
tensinogen by the proteolytic enzyme renin into
angiotensin I, which is in turn converted to AngII by
the angiotensin-converting enzyme. Besides its classical
peripheral actions, including vasoconstriction and kidney
sodium reabsorption (Cogan, 1990), AngII has been
implicated in the regulation of the cardiovascular system
via actions within the brain. Central AngII actions include
stimulation of fluid intake, sodium appetite, secretion of
hormones (adrenocorticotropic hormone, oxytocin and
vasopressin), modulation of baroreflex and activation
of the sympathetic nervous system (Lang et al. 1981;
Iovino & Steardo, 1984; Ganong & Murakami, 1987;
McKinley et al. 1996, 2001, 2003; Paton et al. 2001;
Grippo et al. 2002; Ito et al. 2002; Sanderford & Bishop,
2002; Guyenet, 2006; Tan et al. 2007; Coble et al.
2015). Because AngII is highly hydrophilic, the general
consensus is that circulating AngII triggers changes in the
brain through actions on the circumventricular organs
(CVOs), which have an incomplete BBB, consisting of
fenestrated capillaries and an incomplete basal membrane
and astrocyte ensheathment (Broadwell & Brightman,
1976; Shaver et al. 1992; Daneman, 2012). This particular
topographical arrangement creates a large perivascular
space that allows passage of large molecules from
the circulation into the brain parenchyma. The CVOs
are divided into secretory and sensory groups. The
secretory group includes the median eminence, the neuro-
hypophysis, the intermediate lobe of the pituitary gland
and the pineal gland, while the sensory group includes the
subfornical organ (SFO), the organum vasculosum lamina
terminalis and the area postrema (Fry & Ferguson, 2007).
Circulating AngII signalling through the sensory CVOs
is then integrated and conveyed to major brain auto-
nomic and neurosecretory centres, including the PVN,
which through descending projections to the RVLM and
the NTS mediate the sympathoexcitatory, neurosecretory
and modulation-of-baroreflex effects of the circulating
peptide (Bains et al. 1992; Ferguson & Bains, 1997;
Anderson et al. 2001; Dampney et al. 2007; Tan et al.
2007; Ferguson, 2009). Indeed, elevated circulating levels
of AngII, resulting in over-activation of the PVN and
RVLM, is recognized as a critical factor contributing to
excessive sympathetic activation and vasopressin outflow
in neurogenic hypertension in different experimental

animal models (Ferguson & Bains, 1997; Bergamaschi et al.
2002; de Oliveira-Sales et al. 2010; Chen et al. 2011; Huber
& Schreihofer, 2011; Qi et al. 2013).

Most of the central AngII actions are mediated by
activation of the AngII type 1 receptor (AT1R), a G
protein-coupled receptor (McKinley et al. 1996). AT1Rs
have been shown to be present within the sensory CVOs,
the hypothalamus and the brainstem in several mammals,
including the human (Mendelsohn et al. 1984; Song
et al. 1992; MacGregor et al. 1995; McKinley et al. 1996;
Lenkei et al. 1997). In fact, AngII microinjected into
those nuclei causes dose-dependent pressor responses
(Casto & Phillips, 1984; Muratani et al. 1991; Jensen
et al. 1992; Toney & Porter, 1993b), while AT1R blockade
with losartan prevents the increase in BP and vasopressin
secretion following intracerebroventricular injections of
AngII (Toney & Porter, 1993a).

In addition to circulating AngII, all the components
of the renin–angiotensin system are also present within
the brain, including the newly discovered (pro)renin
receptor, allowing local formation of AngII and its use
as a central neurotransmitter (Ganten & Speck, 1978;
McKinley et al. 2003; Li et al. 2012). For example, AngII
has been identified as a key neurotransmitter in the
SFO–PVN pathway (Osborn et al. 2007; Ferguson, 2009;
Coble et al. 2015). Ferguson and collaborators have shown
that either electrical stimulation of the SFO, or AngII
directly applied within the PVN, increased the firing
activity of PVN neurons, responses that were attenuated
by the AT1R blocker losartan (Li & Ferguson, 1993; Bains
& Ferguson, 1995). Brain AngII has also been shown
to be functionally relevant within the RVLM, where an
injection of AT1R antagonist decreased mean arterial
pressure (�14 mmHg) in animal models with either high
or low plasma renin activity, such as transgenic rats with
over-expression of a mouse renin gene (Fontes et al. 2000),
the Dahl salt-sensitive hypertensive rat (�35 mmHg)
(Ito et al. 2003) and the spontaneous hypertensive rat
(SHR) (�35 mmHg) (Ito et al. 2002), with no effect in
normotensive animals.

Although local formation has been implicated as
the main source of central AngII contributing to
sympathoexcitation and hypertension (Fink, 1997), we
have obtained recent evidence, as summarized and
discussed further below, that circulating AngII, under
certain conditions, may gain access to cardiovascular
centres within the central nervous system, exerting its own
direct actions on sympathoexcitatory-related nuclei.

AngII and brain inflammation during hypertension

Vascular brain inflammation has emerged as a novel
pathophysiological mechanism contributing to neuro-
genic hypertension (Paton & Waki, 2009; Lazartigues,
2010; Winklewski et al. 2015). A growing body of
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evidence supports AngII as a pro-inflammatory molecule,
particularly in hypertension. For example, AngII has been
shown to be critical for T-cell activation and development
of vascular inflammation during hypertension, via both
central and peripheral mechanisms (Marvar et al. 2010,
2011). Moreover, Francis and collaborators have shown
that in an AngII-induced hypertensive model, AngII
stimulated production and release of the transcription
factor NFκB along with various pro-inflammatory cyto-
kines, including TNFα, IL-1β and IL-6 within the PVN,
all factors that contributed to neurohumoral excitation
via oxidative stress (Kang et al. 2009; Cardinale et al. 2012;
Sriramula et al. 2013). Similar results have been recently
reported in renovascular hypertensive rats (Goldblatt
model, two-kidneys, one-clip (2K1C)), in which mRNA
expression of AT1 receptors and NAD(P)H oxidase sub-
units were shown to be increased within the RVLM and
PVN of hypertensive animals, contributing to elevated BP
and sympathetic activity (Oliveira-Sales et al. 2009), effects
that were attenuated by AT1R blockade within the RVLM
(Nishi et al. 2013). In addition, higher levels of cytokines
(TNFα, IL-1β and IL-6, and chemokine MCP-1) have
also been reported within the RVLM in this hypertensive
model (Li et al. 2014). Likewise, pro-inflammatory factors
such as the junctional adhesion molecule-1 were found to
be upregulated within the NTS of SHR (Waki et al. 2007,
2011).

Microglia cells are the primary resident immune cells of
the brain (Saijo & Glass, 2011), and thus likely candidates
mediating central AngII pro-inflammatory actions. In fact,
several recent papers reported that AngII can turn micro-
glia from a resting state into an activated, inflammatory
state (Miyoshi et al. 2008; Rodriguez-Pallares et al. 2008;
Benicky et al. 2009). Moreover, AngII-mediated micro-
glia cell activation within the PVN has been shown to
contribute to high BP in an angiotensin II-induced hyper-
tensive rat model, via generation of pro-inflammatory
cytokines (IL-6, IL1β and TNFα) (Shi et al. 2010).

Disruption of the blood–brain barrier (BBB) integrity
in neuro-inflammatory disorders and hypertension

The BBB acts as a dynamic physical barrier at the
brain–blood interface, which effectively excludes sub-
stances that are lipid insoluble, as well as those of high
molecular weight (Abbott et al. 2006, 2010; Obermeier
et al. 2013; Wong et al. 2013). The BBB is mainly composed
of tight junctions formed between endothelial cells and the
enwrapping astrocyte endfeet, which limit the paracellular
diffusion of hydrophilic molecules (Stamatovic et al. 2008;
Abbott et al. 2010). In addition, BBB endothelial cells,
under normal conditions, have minimal vesicle transport
activity, which limits transcellular transport (Stamatovic
et al. 2008). This process is essential to maintain homeo-
stasis of the brain environment. In general, astrocytes,

pericytes and neurons that are in direct physical contact
with the capillary endothelium play an important role in
the regulation of BBB integrity (Abbott et al. 2010).

Breakdown of the BBB, resulting in increased
permeability and access to the brain of circulating sub-
stances normally excluded, is a common feature in
neuro-inflammatory disorders, including ischaemia and
multiple sclerosis (Waubant, 2006; Yang & Rosenberg,
2011). An altered BBB state has also been shown in hyper-
tension (Mayhan et al. 1989; Ueno et al. 2004; Vital et al.
2010; Pelisch et al. 2011, 2013). Still, the precise underlying
mechanisms contributing to BBB disruption in hyper-
tension, and the potential consequences in terms of brain
access and actions of circulating AngII within central
nervous system pathways involved in BP regulation have
not yet been thoroughly assessed.

To further study changes in BBB integrity and function,
and to determine whether circulating AngII gains access
to the brain during hypertension, we performed a study
in which we used a combination of fluorescent dyes
of different sizes that were injected into the systemic
circulation of Wistar Kyoto (WKY) and SHR rats. This
approach enabled us to perform a quantitative assessment
of the degree of intravascular and extravascular dyes
within the parenchyma of specific brain nuclei, specifically
within hypothalamus and brainstem regions, crucial to
BP regulation and baroreceptor function (Biancardi et al.
2014). As previously reported (Mayhan et al. 1989), the
presence of extravasated dye within the brain parenchyma
was considered indicative of BBB increased permeability.
To validate this approach, we compared first in control rats
the presence or absence of extravasated dyes in brain areas
known to reside within and outside the BBB. As shown in
Fig. 1A–D, we found large amounts of the intravascularly
injected dye dextran-fluorescein isothiocyanate (FITC) 10
kDa (FITC10) extravasated in the parenchyma of the SFO
(Fig. 1A) and the area postrema (Fig. 1B), both brain
regions known to lack a tight BBB. Conversely, minimal
extravasation was observed in areas known to possess a
tight BBB, such as the PVN (Fig. 1C) and the supra-
optic nucleus of the hypothalamus (Fig. 1D). When we
applied this approach to SHR, we observed a large degree
of FITC10 extravasation within the PVN (�85% increase),
which was significantly more abundant compared to
aged-matched WKYs (Fig. 1E–G). Importantly, similar
results were observed in a renovascular hypertensive
model (the 2K1C model of hypertension) (Fig. 1H–J),
indicating that BBB disruption and increased permeability
is not a unique feature of the SHR model. Similar to the
PVN, the brainstem (RVLM and the NTS) also displayed
disrupted BBB in both hypertensive models (SHR and
2K1C) (Biancardi et al. 2014).

To determine whether in addition to the inert dextran
dyes, physiologically relevant molecules could also leak
through the disrupted BBB during hypertension, we
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repeated the experiments using systemic infusions of
a fluorescently labelled form of AngII (AngII-FITC).
Similar to FITC10, we found large levels of extravasated
AngII-FITC within the PVN of hypertensive animals
(�44%) (Fig. 2A–C). These results indicate that the
increased BBB permeability observed during hypertension
allows the leakage and access of circulating factors,
namely AngII, directly into key sympathoexcitatory brain
areas, such as the PVN and the RVLM. These results
are in line with a recent study by Yao & May, who
showed that when the BBB was disrupted with hypertonic
mannitol, systemically applied AngII activated tyrosine
hydroxylase-expressing RVLM neurons, indicative of
leakage of AngII into the RVLM (Yao & May, 2013).

We found the extravasated AngII-FITC in the PVN of
hypertensive animals to be associated both with neurons
and microglia cells (Fig. 2D and E), supporting these
two cell types as likely targets for circulating AngII
actions within the brain during hypertension. These
results are thus in agreement with several other reports, as
discussed above, supporting microglia as likely mediators
of pro-inflammatory actions of AngII within the CNS.

Mechanisms contributing to BBB disruption during
hypertension

Endothelial dysfunction associated with high BP
conditions is a likely underlying factor contributing to

vascular inflammation and downstream BBB disruption
during hypertension (Ueno et al. 2004; Pires et al.
2013). Alternatively, direct AT1R-mediated signalling
could also contribute to this phenomenon. For example,
AT1R activation has been shown to affect BBB
permeability in cultured microvessels (Fleegal-DeMotta
et al. 2009). Likewise, chronic infusion of AngII, in
an AT1R-dependent manner, has been implicated in
increased BBB permeability, when measured in whole
mouse brain homogenates (Vital et al. 2010). Moreover,
the AT1R blocker olmesartan was shown to prevent
altered BBB permeability within the hippocampus of
AngII-induced and Dahl salt-sensitive hypertensive rats
(Pelisch et al. 2011, 2013).

Thus, to gain more insights into the specific
mechanisms contributing to altered BBB permeability
during hypertension, we experimentally assessed the
relative contribution of high blood pressure itself vs.
AngII-AT1R signalling. To this end, we evaluated the effect
of treating SHR with either the vasodilator hydralazine
(which lowered BP independently of AngII signalling)
or the AT1R blocker losartan, which also lowered BP
by blocking AngII actions. We found that the disrupted
BBB in SHR was prevented by the treatment with
losartan (decrease of �76% in dye extravasation), but not
with hydralazine (Fig. 1G), despite similar decreases in
BP obtained with the two treatments (Biancardi et al.
2014). These results support a major contribution of
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Figure 1. Extravasation of FITC10 within the
brain in different conditions
A–D, representative images showing a comparison of
extravasated (EV) FITC10 in control rats in brain areas
lacking (A, subfornical organ; B, area postrema) or
possessing (C, PVN; D, supraoptic hypothalamic
nuclei) an intact BBB. The inset in B shows a higher
magnification of the squared area. Note the presence
of extravascular FITC10 in A and B, but not C or D. E–J
shows increased extravasated small size FITC10 (green
dye) but not large size dextran-rhodamine 70 kDA
(RHO70) (red dye), indicative of increased BBB
permeability, within the PVN of spontaneous (SHR,
E–G) and renovascular hypertensive rats (RVH, H–J) as
indicated in the respective summary. G, summary data
showing that leakage of FITC10 is blunted in SHR
treated with losartan (Los) but not hydralazine (Hyd).
Scale bars: 25 µm for A, C and D and inset in B;
50 µm for B, E, F, H and I. ∗∗∗P < 0.001 and
∗P < 0.05 vs. WKY or Sham; †††P < 0.001 vs. SHR.
n = 8 SHR/WKY in G; n = 4 SHR-Los/SHR-Hyd in G;
n = 3 Sham/RVH in J. 3V and 4V, third and fourth
ventricle; LV, lateral ventricle; VGL, ventral glial lamina;
OT, optic tract (modified from Biancardi et al. 2014).
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AT1R-mediated signalling to altered BBB permeability
during hypertension, rather than high BP itself.

One technical aspect of these studies that needs to
be taken into consideration is that any residual free
fluorescein-isothiocyanate present in our FITC-dextran
preparations could potentially be transported across the
BBB via organic anion transporters (Sun et al. 2001),
resulting in false positive signals. However, the facts that (a)
we observed a significantly larger amount of leaked FITC10
in hypertensive rats, (b) that only the FITC-dextran of
smaller molecular size leaked, and (c) that these differences
were largely prevented in rats treated with AT1 receptor
blockers, would argue against a positive signal due to
transport of residual free FITC10. Still, the precise route
by which the FITC-dextran influx accessed these areas
of the brain, and particularly whether it occurs via the
paracellular space, remains unknown.
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Figure 2. Circulating angiotensin II leaks into the PVN
parenchyma in SHR, targeting neurons and microglia
A–C, images showing increased extravasated levels of AngII-FITC
(intravascularly delivered) within the PVN of hypertensive (SHR, B)
compared with normotensive (WKY, A) rats, as indicated in the
summary data (C). D and E, extravasated AngII-FITC (green) is
co-localized with neurons (D, neuronal marker NeuN (blue) and the
RHO70 dye contained in the vasculature, red) and with microglia (E,
microglia marker CD11b, red). Scale bars: 50 µm. ∗P < 0.05 vs.
WKY. n = 4 WKY/SHR. 3V: third ventricle (modified from Biancardi
et al. 2014).

Do active microglia contribute to AngII-driven
reactive oxygen species production?

As summarized above, it is now generally recognized that
AngII-mediated pro-inflammatory actions constitute a
critical mechanism contributing to sympathoexcitation in
hypertension, and a growing body of evidence supports
microglia as key cellular targets mediating central AngII
pro-inflammatory effects. Moreover, our recent studies
also support this mechanism to contribute to BBB
disruption during hypertension (Biancardi et al. 2014).

AngII-mediated generation of reactive oxygen species
(ROS) within the SFO–PVN–RVLM pathway has
also been implicated as an important contributor to
sympathoexcitation in hypertension (Zimmerman et al.
2002,2004; Braga et al. 2011; Capone et al. 2012).
Despite the robust evidence supporting this mechanism,
the precise cellular targets and sources of ROS remain
largely unknown. In this sense, activated microglia,
besides releasing a variety of pro-inflammatory cytokines,
also generate and release ROS (Saijo & Glass, 2011).
However, whether AngII-dependent, microglia-derived
ROS contribute to altered BBB permeability during
hypertension remains to be determined.

Final remarks

AngII and its AT1Rs is one of the most important and
most widely studied signalling pathways contributing to
the central regulation of blood pressure, both in health
and disease conditions. We believe that our recent studies
summarized above further our current understanding of
the mechanisms by which circulating AngII exerts its
central effects. While the general consensus in the field
is that circulating AngII accesses the central nervous
system through the CVOs that reside outside of the
BBB, our recent data suggest, that under pathological
conditions such as hypertension, an additional route
for AngII signalling in the brain is gated. Thus, we
propose that a compromised BBB facilitates the direct
access of circulating AngII to critical sympathoexcitatory
brain centres that are normally protected, constituting
a complementary mechanism that, working in tandem
with the local central renin–angiotensin system, further
exacerbates AngII-driven neurohumoral activation during
hypertension. The facts that elevated circulating levels
of AngII at the onset of hypertension (a) contribute
to BBB integrity, (b) facilitate their own access to
brain sympathoexcitatory centres, and (c) contribute
to further increasing BP thus support a highly delete-
rious AngII-mediated feedforward mechanism during
hypertension.

AT1R blockade, as well as angiotensin-converting
enzyme inhibitors, are widely used therapeutic
agents for the treatment of cardiovascular diseases
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(Perret-Guillaume et al. 2009). Moreover, AT1R blockade
has been shown to have neuroprotective effects when
used for inflammatory brain disorders that accompany
BBB disruption such as traumatic brain injury, stroke,
dementia, Alzheimer’s and Parkinson’s diseases (Villapol
& Saavedra, 2015). Thus, AngII and its central AT1
receptors stand as novel therapeutic targets that may help
prevent and/or rescue an altered BBB status in numerous
inflammatory diseases, including hypertension.
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