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Abstract The subfornical organ (SFO) is a circumventricular organ recognized for its ability to
sense and integrate hydromineral and hormonal circulating fluid balance signals, information
which is transmitted to central autonomic nuclei to which SFO neurons project. While the role
of SFO was once synonymous with physiological responses to osmotic, volumetric and cardio-
vascular challenge, recent data suggest that SFO neurons also sense and integrate information
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from circulating signals of metabolic status. Using microarrays, we have confirmed the expression
of receptors already described in the SFO, and identified many novel transcripts expressed in this
circumventricular organ including receptors for many of the critical circulating energy balance
signals such as adiponectin, apelin, endocannabinoids, leptin, insulin and peptide YY. This
transcriptome analysis also identified SFO transcripts, the expressions of which are significantly
changed by either 72 h dehydration, or 48 h starvation, compared to fed and euhydrated controls.
Expression and potential roles for many of these targets are yet to be confirmed and elucidated.
Subsequent validation of data for adiponectin and leptin receptors confirmed that receptors for
both are expressed in the SFO, that discrete populations of neurons in this tissue are functionally
responsive to these adipokines, and that such responsiveness is regulated by physiological state.
Thus, transcriptomic analysis offers great promise for understanding the integrative complexity of
these physiological systems, especially with development of technologies allowing description of
the entire transcriptome of single, carefully phenotyped, SFO neurons. These data will ultimately
elucidate mechanisms through which these uniquely positioned neurons respond to and integrate
complex circulating signals.

(Resubmitted 8 April 2015; accepted after revision 26 July 2015; first published online 31 July 2015)
Corresponding author A. V. Ferguson: Department of Biomedical and Molecular Sciences, Queen’s University,
Kingston, ON, Canada, K7L 3N6. Email: avf@queensu.ca

Abstract figure legend This schematic diagram highlights the central role of the subfornical organ (SFO) as a CNS
structure without the normal blood brain barrier which plays critical roles in sensing and integrating peripheral signals
of body fluid and metabolic status which do not cross the normal blood brain barrier. It highlights the primary outputs of
SFO neurons to other CNS autonomic control centres including the arcuate (ARC), paraventricular (PVN), supraoptic
(SON), and median preoptic (MnPO) nuclei, as well as the organum vasculosum of the lamina terminalis (OVLT),
through which these integrative SFO neurons influence autonomic outputs. This diagram also summarises data from
transcriptomic analysis, highlighting the numbers of genes expressed in SFO, the numbers regulated by dehydration and
food deprivation, as well as validated and yet to be validated targets.

Introduction

Cardiovascular disease and hypertension are associated
with the development of obesity, insulin resistance
and diabetes. These comorbidities represent critical
components of ‘metabolic syndrome’, diagnosed in
nearly 25% of the North American population in 2002
(Ford et al. 2002). Since the discovery of leptin
in the early 1990s, a number of other neuroactive
peptides and adipokines associated with metabolic
syndrome, including adiponectin, amylin, angiotensin
II, glucagon-like peptide-1 (GLP-1), oxytocin (OT),
α-melanocyte stimulating hormone (α-MSH), peptide
YY/neuropeptide Y (Buijs, 1990; Ferguson & Washburn,
1998; Cowley et al. 1999; Kadowaki et al. 2006), have
been shown to act not only as peripheral hormones,
but also as neural signalling molecules in critical auto-
nomic control centres of the brain. Importantly, the
majority of these neuroactive signalling molecules exert
what are apparently diverse physiological effects on
cardiovascular (blood pressure, heart rate, baroreflex
sensitivity), metabolic (food intake, metabolic rate),
immune and reproductive functions by acting in these
autonomic control centres in the hypothalamus and
medulla. Although such commonality suggests these CNS
centres are potential sites at which pathological changes

may underlie all of the comorbidities associated with
the metabolic syndrome, an understanding of the CNS
circuitry through which this may occur has yet to emerge.
An additional and intriguing part of such models is the
inclusion of feedback control circuitry, through which
these same molecules (e.g. glucose, adiponectin, amylin,
angiotensin, cholecystokinin (CCK), GLP-1, insulin,
leptin, peptide YY (PYY), ghrelin) act as circulating
signals providing critical information regarding homeo-
static status to the CNS, despite the fact that most of these
messengers do not diffuse freely across the blood–brain
barrier (BBB) (Abstract Figure). Peptide specific trans-
porters, such as the leptin transporter, have been suggested
to mediate blood to brain signalling (Banks & Kastin,
1987), but their roles are not well defined and for
many important circulating signals they do not exist
(Spranger et al. 2006; Price et al. 2007). Intriguingly,
there are specific regions of the brain that lie outside
of the BBB, collectively termed circumventricular organs
(CVOs), and a well-established body of evidence has
shown that these specialized structures do play critical
roles in sensing and responding to circulating signals
associated with fluid balance, cardiovascular, metabolic
and immune function (McKinley et al. 2003; Hoyda et al.
2009; Sisó et al. 2010; Mimee et al. 2013) (Abstract
Figure).

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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Circumventricular organs as sensors of circulating
signals

The CVOs are specialized, structurally unique CNS nuclei
that lack the normal BBB (Weindl, 1986; Gross, 1992).
The area postrema (AP), subfornical organ (SFO), and
organum vasculosum of the lamina terminalis (OVLT)
are the only CVOs containing neuronal cell bodies, as
opposed to nerve terminals. These three regions are
classified as the ‘sensory CVOs’ in view of their roles as
critical integrative centres where circulating peptides act to
regulate the cardiovascular, immune and neuroendocrine
systems (Weindl & Sofroniew, 1981; Ferguson & Bains,
1996; McKinley et al. 2003; Cottrell & Ferguson, 2004; Fry
& Ferguson, 2007). While the AP was initially known for its
ability to sense circulating toxins and trigger nausea and
emesis (Hornby, 2001), this CVO also plays roles in the
regulation of energy balance (Ritter et al. 1981; Contreras
et al. 1982; Hyde & Miselis, 1983), and in central cardio-
vascular regulation (Brody, 1988; Ferguson & Smith, 1991;
Osborn et al. 2000). Receptor localization (Sexton et al.
1994), and electrophysiological (Riediger et al. 2001) and
lesion studies (Rowland & Richmond, 1999), collectively
identified the AP as the primary CNS site at which
circulating amylin acts to inhibit food intake. Other studies
have shown effects of GLP-1 (Rowland et al. 1997), CCK
(Edwards et al. 1986; Sun & Ferguson, 1997), adreno-
medullin (Shan & Krukoff, 2000; Yang & Ferguson, 2003),
orexin (Yang & Ferguson, 2002), adiponectin (Fry et al.
2006), PYY (Price et al. 2008) and ghrelin (Lawrence et al.
2002; Fry & Ferguson, 2009) on AP neurons. In contrast,
the SFO was initially recognized for its pre-eminent role
as the primary CNS site at which circulating angiotensin
acted to stimulate drinking (Simpson & Routtenberg,
1975), increase blood pressure (Mangiapane & Simpson,
1980), and modulate vasopressin secretion (Iovino &
Steardo, 1984). However, this limited perspective of the
physiological roles of the SFO has changed significantly
over the past 5 years, in part a result of our ability to
identify novel targets with transcriptomic technologies,
and this evolution will be the focus of the remainder of
this article.

Subfornical organ. The SFO is a forebrain midline
structure located on the dorsal surface of the third
ventricle below the ventral hippocampal commissure,
and is primarily known for its well established roles in
cardiovascular and neuroendocrine regulation (Ferguson
& Bains, 1997; McKinley et al. 1998). Roles for the SFO
in anorexia and emaciation (Trivedi et al. 2003) and
immune function (Takahashi et al. 1997) have also been
suggested. The SFO can been subdivided anatomically
into ‘core’ and ‘shell’ zones with the primary efferent
projections to the paraventricular nucleus (PVN), supra-
optic nucleus (SON), median preoptic nucleus, OVLT

and arcuate nucleus (Miselis, 1981; Lind, 1986; Gruber
et al. 1987), while those originating from the shell project
primarily to the bed nucleus of the stria terminalis
(McKinley et al. 2003). These neural outputs position
this CVO to effectively communicate with all of the
critical hypothalamic autonomic control centres, and thus
play important roles in the regulation of a much greater
spectrum of homeostatic functions. SFO neurons have
for some time been known to sense circulating signals
involved in fluid (osmolarity, sodium, calcium, relaxin,
atrial natriuretic peptide), cardiovascular (angiotensin,
endothelin, vasopressin (VP)), and immune (interleukin
1β) regulation (Cottrell & Ferguson, 2004). Specific
excitatory projections have been found to VP and oxytocin
(OT) neurons in the SON and PVN, as well as to
parvocellular areas of the PVN that in turn project
either to the median eminence (corticotropin-releasing
hormone (CRH), thyrotropin-releasing hormone (TRH)
neurons), the medulla (OT, VP, TRH neurons), or the
spinal cord (OT, VP neurons) (Ferguson & Bains, 1996).
More recent single cell recordings have shown direct effects
of metabolic signals such as calcitonin (Schmid et al.
1998), amylin (Riediger et al. 1999) and ghrelin (Pulman
et al. 2006) on SFO neurons (Abstract Figure). Thus
studies were slowly building a catalogue describing the
SFO as a structure with neurons able to sense a variety of
different signalling molecules present in the circulation,
but progress was driven effectively by the analysis on
one signalling molecule at a time, with the driving force
originating in studies demonstrating receptors/binding
sites for that molecule in this CVO.

Transcriptomic analysis

The development of reliable tools for whole trans-
criptomic analysis offered an alternative approach where
single studies could describe relative expression levels
of the entire genome. We utilized this technology not
only to catalogue the expression levels of all transcripts
represented on the Affymetrix gene chip (>30,000), but
also to assess changes in expression associated with the
challenges of fluid (72 h) or food (48 h) deprivation in
the SFO (Hindmarch et al. 2008). While these studies
confirmed the expression of many previously identified
receptors in the SFO (AT1A, CaSR, ETB, CLCR), they also
identified for the first time receptors for many of the critical
circulating energy balance signals, including adiponectin,
apelin, endocannabinoids (CB1), leptin, insulin and PYY,
as well as peptides believed to play important roles in
the regulation of feeding such as apelin, cholecystokinin
(CCK) and brain derived neurotrophic factor (BDNF)
(Fig. 1). Although these findings identify new targets
and support the conclusion that the SFO plays important
roles in monitoring these signals, and transmitting this
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information to critical autonomic control centres in
the hypothalamus, in reality they represent only the
first step in a detailed systematic analysis as highlighted
in three examples described below. Importantly, the
original microarray data for these SFO experiments
are held in the NCBI Gene Expression Omnibus, a
functional genomics data repository for Microarray
and Sequence data (http://www.ncbi.nlm.nih.gov/geo;
Accession number: GSE12978), and are thus freely
accessible to all, for additional analysis.

Validation: functional roles for SFO in energy balance?
The transcriptome of the SFO is dynamic and is modified
by physiological state. Food deprivation (48 h) resulted in
687 transcripts regulated by greater than 2-fold while fluid
deprivation resulted in just 44 transcripts (Hindmarch
et al. 2008). These data suggested to us that in addition

to its well-established roles in the regulation of fluid
balance and cardiovascular regulation the SFO may also
play important roles in the regulation of energy homeo-
stasis. We have subsequently demonstrated that electrical
activation of SFO neurons stimulates food intake in
satiated animals (Smith et al. 2010). We have also shown
that while lesion of either AP or SFO in isolation does
not influence long term food intake or body weight, lesion
of both CVOs reduces both parameters (Baraboi et al.
2010b), suggesting complementary sensory functions of
these CVOs. Such double lesions also result in reduced
patterns of c-fos activation in PVN, the hypothalamic
location of adrenal (CRH) and thyroid (TRH) control
neurons, and in the nucleus of the tractus solitarius
(NTS) in response to systemic GLP-1 and PYY receptor
activation, confirming vital roles for these structures in
sensing circulating signals (Baraboi et al. 2010a,b).
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Figure 1. Targets in SFO identified by microarray analysis
This histogram shows data from our microarray analysis (Hindmarch et al. 2008) highlighting the relative expression
levels of transcripts from our microarray analysis, the validation of which we describe in this paper (yellow). In
addition we show here some novel target transcripts identified in our array study which are known to be potential
signalling molecules (blue), or receptors (pink) associated with the regulation of energy balance.
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Validation: adiponectin actions in the SFO – dynamic
changes with food deprivation? Our array studies
not only identified adiponectin receptors in the SFO
for the first time, but in addition suggested that the
expression level of adipoR2 was in fact changed by food
deprivation. In this case our initial approach to validation
began with molecular confirmation that adipoR1 and
R2 were expressed in SFO using standard PCR (Fig. 2A),
and selectively altered levels of AdipoR2 expression
following food deprivation were then confirmed using
quantitative RT-PCR (Fig. 2B). Patch clamp recordings
confirmed functional roles for these receptors showing
that adiponectin hyperpolarized 35% and depolarized
22% of SFO neurons as shown in Fig. 2C (Alim et al.
2010). Intriguingly similar recordings showing that
adiponectin depolarized 77% (compared to only 22% in
controls) of SFO neurons from food deprived animals
while no cells hyperpolarized (Alim et al. 2010) (Fig. 2D),
provided direct evidence of functional consequences

associated with these transcriptome changes induced by
physiological state.

Validation: leptin actions in SFO – dynamic changes in
obesity? The leptin receptor (ObRb) was also reported
as present in SFO by our microarray analysis, although
the extensive literature on CNS distribution of leptin
receptors had not identified expression in this CVO. Our
follow-up validation in this instance included PCR of SFO
tissue with primer sets directed toward different regions
of the leptin receptor which confirmed our array work
(Fig. 3A). Antibodies against the leptin receptors (despite
concerns regarding specificity) also confirmed expression,
as did the induction of p-Stat3 by leptin (Smith et al.
2009). Functional roles for ObRb in SFO were confirmed
both by electrophysiology showing depolarizing (39%)
(the same neurons that were depolarized by amylin) and
hyperpolarizing (25%) effects of leptin on SFO neurons
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Figure 2. The process of adiponectin receptor validation (Alim et al. 2010) following our identification
of these receptors in SFO
A shows an agarose gel from RT-PCR analysis of whole tissue from SFO using primer sets for GAPDH, AdipoR1
and AdipoR2, all of which were seen to be clearly expressed in the SFO. B, the histograms show qRT-PCR data
confirming microarray analysis indicating that while AdipoR2 was significantly increased by 48 h of food restriction
(∗), AdipoR1 was not. C, patch clamp recordings from SFO neurons also validate functional roles for these receptors
in that proportions of these cells are either depolarized or hyperpolarized by bath administration of adiponectin
(ADP, 10 nM, indicated by the bar). D, the histogram summarizes proportions of dissociated SFO neurons from
control and food deprived (48 h) groups showing depolarizations (blue bars) or hyperpolarizations (orange bars)
in response to adiponectin and illustrate a large shift toward depolarizing effects in the latter group.
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(Smith et al. 2009) (Fig. 3B), and by microinjection studies
showing that direct administration into SFO caused
changes in blood pressure (Fig. 3C), effects that are no
longer observed in the diet induced obesity (DIO) obese
phenotype (aged matched chow fed and diet resistant
animals retain responsiveness to leptin as illustrated in
Fig. 3D (Smith & Ferguson, 2012).

Validation: untapped targets? Additional SFO genes
identified by our array studies which are associated
with CNS regulation of energy balance, and have
yet to be validated and pursued, include receptors
for endocannabinoids (CB1), BDNF (BDNFR)
and tumour necrosis factor α (TNFR1) (Abstract
Figure), and signalling molecules such as cocaine
and amphetamine related transcript (CART), OT,
pro-melanin-concentrating hormone (PMCH) and signal
transducer and activator of transcription 3 (STAT3)
(Hindmarch et al. 2008). Finally, we have identified true
glucose sensing neurons in the SFO (Medeiros et al.
2012), and have preliminary data showing that acute
(<24 h) changes in glucose concentration modify the
responsiveness of SFO neurons to CCK. These findings
highlight the role of physiological state in modifying

the sensory abilities of SFO in the regulation of energy
balance. Thus, our initial array interrogation of the
SFO has identified this CVO as a region of the CNS
which performs critical roles in continually monitoring
circulating metabolic, cardiovascular and immune
signalling molecules. Intriguingly, the SFO, through its
efferent connections to hypothalamic autonomic control
centres, may then coordinate the integrated regulation of
metabolic, cardiovascular, immune and neuroendocrine
outputs.

One-cell-at-a-time. We have presented here data that
firstly profile the transcriptome of the control, dehydrated
and fasted SFO, and identified regulated targets that have
been validated by additional studies. That said, it needs
to be emphasized that such profiles of tissue composed of
entire nuclei are based on the average expression of the
entire population of discrete SFO neurons rather than
being representative of the component subpopulations
of cells of this tissue. Thus, describing the properties of
these single neurons will also be critical to understanding
the functional physiological roles of the SFO. We have
already described that significant proportions (>25%)
of SFO neurons respond to signals such as angiotensin
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Figure 3. Leptin receptor validation in SFO
Data adapted from Smith et al. (2009) and Smith & Ferguson (2012). A shows an agarose gel from RT-PCR analysis
of whole tissue from SFO using primer sets for GAPDH, and two different sets for the long form of the leptin
receptor, ObRb1, ObRb2, all of which were seen to be clearly expressed in the SFO. B, patch clamp recordings
are shown from two different dissociated SFO neurons, one of which depolarized with an increase in action
potential frequency (upper panel), and one which hyperpolarized with a decrease in spike frequency (lower panel)
in response to bath administration of 10 nM leptin (red bar). C, normalized blood pressure recordings showing
the hypotensive response to microinjection of 5 pM (in 0.5 µl) leptin into the SFO of control rats (blue) in contrast
to the lack of effect of such microinjections in DIO animals (red). D, summary data showing mean area under
the curve (AUC) for blood pressure changes in rats fed normal chow (control, C), and high fat diet fed animals
which were either similar in weight to chow fed age matched animals (DR) or were obese (DIO). ∗∗P < 0.01,
Newman–Keuls post hoc analysis.
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(>60%), ghrelin (>25%), leptin (>60%), or adiponectin
(>50%) and this suggests that each neuron has specific
receptors (i.e. sensors) for a number of these molecules.
Further, studies have confirmed that single SFO neurons
can sense multiple signals (Anderson et al. 2001; Pulman
et al. 2006; Smith et al. 2009). There is also overwhelming
evidence that expression of a transcript can differ from
cell to cell (Xi et al. 1999; Yamashita et al. 2002; Pulman
et al. 2006; Hoyda et al. 2007) but until recently it has
been technically challenging to describe the entire trans-
criptome of a single neuron. Technological advances have
now paved the way for single-cell profiling of the SFO to
become a realistic ambition. Regardless of the technology
used (Lee et al. 2013) Next Generation Sequencing
(NGS) of the transcriptome (RNAseq) involves the pre-
paration and subsequent sequencing of a library of short
sequences that represent both coding and non-coding
transcripts within a particular tissue or cell. The read-data
that result from these experiments can be aligned back
to the appropriate genome in order to identify the
relative abundance of each transcript. Single cell trans-
criptomics is already changing the way we are able to
describe populations of cells; while previous efforts to
phenotype populations of individual neurons relied upon
physiological profiling (electrophysiological, molecular),
libraries of substantive numbers of individual cell trans-
criptomes can now be sequenced. This approach is not
without its limitations since one must either destroy the
cell (via patch) or dissociate and sort the cells in order
to capture the nuclear material for sequencing. Single cell
transcriptomic analysis is, however, moving within reach,
and the recent identification of 47 molecularly distinct
subclasses following a molecular census of 3005 single
cell transcriptomes from somatosensory S1 cortex and
hippocampus CA1 in mice (Zeisel et al. 2015) substantiates
the potential value of this approach. In the SFO or other
neuronal structures, we expect that the profiling of the
control SFO transcriptome will reveal similar intra-cell
diversity as found in the S1 and CA1 cells. We anticipate
that it will be possible to capture accurate signatures for
those SFO neurons that respond to circulating signals such
as angiotensin, leptin or adiponectin, or core compared to
shell neurons, or interneurons compared to projection
neurons, or neurons that project to one output nucleus
compared to another. Such classification will then open
the door to examination of how these individual sub-
populations of SFO neurons are differentially regulated by
specific physiological challenges.

Concluding remarks

In conclusion, we have described here an emerging
literature supporting the idea that the SFO plays important
roles in the regulation of energy balance in addition to its

well established roles in the control of fluid balance, the
cardiovascular system and immune regulation (Abstract
Figure). We have described the role that transcriptomic
profiling of the whole SFO has played in the development
of these ideas. Transcriptome-wide data analysis continues
to tell us that changes in transcript expression associated
with physiological challenges are complex, integrated and
plastic. Many potential targets remain as subjects for future
validation studies. Electrophysiological and molecular
data also tell us that there is great diversity within a
population of cells even within the same tissue. In order to
properly describe the roles of neuronal tissue like the SFO
in biological phenomena such as energy homeostasis it is
important that we begin to describe the individual cells
that make up these structures.
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