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Extensive Hidden Genomic Mosaicism
Revealed in Normal Tissue

Selina Vattathil1,2,3,* and Paul Scheet1,2

Genomic mosaicism arising from post-zygotic mutation has recently been demonstrated to occur in normal tissue of individuals ascer-

tained with varied phenotypes, indicating that detectable mosaicism may be less an exception than a rule in the general population.

A challenge to comprehensive cataloging ofmosaicmutations and their consequences is the presence of heterogeneousmixtures of cells,

rendering low-frequency clones difficult to discern. Here we applied a computational method using estimated haplotypes to characterize

mosaic megabase-scale structural mutations in 31,100 GWA study subjects. We provide in silico validation of 293 previously identified

somatic mutations and identify an additional 794 novel mutations, most of which exist at lower aberrant cell fractions than have been

demonstrated in previous surveys. These mutations occurred across the genome but in a nonrandommanner, and several chromosomes

and loci showed unusual levels of mutation. Our analysis supports recent findings about the relationship between clonal mosaicism and

old age. Finally, our results, in which we demonstrate a nearly 3-fold higher rate of clonal mosaicism, suggest that SNP-based population

surveys of mosaic structural mutations should be conducted with haplotypes for optimal discovery.
Although post-zygotic mosaic mutations have been tradi-

tionally associated with cancer, they have recently been

invoked in explanations of pathways of other diseases

as well. For example, ‘‘selfish selection’’ in spermatogonial

cells for clones carrying certain activating mutations

of genes in the MAPK/RAS pathway provides a parsimo-

nious explanation for the paternal age effect for several

RASopathies and neurodegenerative disease.1 Another

example is the observation that individuals with type 2

diabetes (T2D) have a 5-fold higher risk of bloodmosaicism

than individuals without T2D and that the risk is even

higher in the subset of T2D individuals with vascular com-

plications, suggesting that the ‘‘accelerated aging’’ pheno-

type associated with T2D may be the secondary conse-

quence of genetic instability mediated by inflammation.2

On the other hand, multiple recent large-scale studies

have revealed that apparently healthy individuals harbor

detectable mosaic mutations; the frequencies are low in

young individuals but increase to frequencies of 2%–3%

in elderly (> 70þ years) individuals.3–6 These rates repre-

sent the detectable mutations only.

These examples and others7–10 highlight that mosaic

mutations create a spectrum of phenotypes, in addition

to being a prognostic indicator for hematological cancer

risk (in blood samples),3 and that the effect of any partic-

ular mutation depends on multiple factors, such as the

cell type in which it arises and the number of cells carrying

the mutation. A detailed picture of the landscape of so-

matic mosaic mutations, i.e., their prevalence among indi-

viduals as well as their frequencies among cells of specific

tissues, is therefore of significant value. The low end of

the intra-tissue frequency spectrum might be the most

dense and dynamic, given that all mutations will start

out at very low frequency and some mutations might be
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suppressed as a result of intra-tissue selection pressures. It

is difficult to detect mutations at low frequency by agnostic

whole-genome methods, and it is widely acknowledged

that mosaic mutations in the low end of the frequency

spectrum have been under-characterized.

The goal of our study was to investigate the prevalence

of low-frequency somatic structural mosaicism in healthy

tissue by applying a haplotype-based method to SNP array

data from 31,100 individuals. Several reports have cited

the potential increase in sensitivity from using haplotype

information.11,12 Below, we summarize the genomic

locations of our discovered aberrations and describe

characteristics of these aberrations in comparison to those

discovered in a previous analysis of these data, and we

report on the association between risk of mosaicism

and age.

We obtained SNP microarray data from ten large

genome-wide association studies (Table S1) that were all

previously analyzed for somatic structural mosaicism by

the GENEVA consortium.3 These were case-control

studies investigating the role of genetic variation and

gene-environment interaction in a wide range of disease

phenotypes, including cancer and non-cancer pheno-

types. To these data we applied hapLOH13 for an orthog-

onal assessment of mosaicism due to acquired chromo-

somal mutations that create allelic imbalance, or a

departure from the inherited 1:1 ratio of maternal and

paternal alleles. The method targets segmental (mega-

base-scale to whole-chromosome) alterations by using a

powerful and robust haplotype-based approach to sensi-

tively detect somatic hemizygous deletions, copy-neutral

loss of heterozygosity (CNLOH), and duplications (collec-

tively, somatic chromosomal and copy-number alter-

ations, SCNAs).
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Figure 1. BAF and LRR Deviations per SCNA
The pink lines indicate the expected values for mosaic hemizygous
deletions (lower line), mosaic CNLOH (middle horizontal line),
and mosaic single-copy duplications (upper line) for aberrations
present in 10% to 100% of the sampled cells (dashes are at 10%
increments). The gray shaded area indicates the area within the
thresholds used to define an SCNA as a copy-number gain or
copy-number loss. Each point is colored according to the copy-
number classification on the basis of these deviations.
The DNA samples were collected from blood or buccal

cells, or from blood-derived cell lines, and were genotyped

with Illumina arrays. Genotypes, B allele frequencies

(BAFs), and log R Ratios (LRRs) were downloaded from

dbGaP (study accession numbers: Table S1). We considered

data from bi-allelic SNP markers from both case and con-

trol samples after applying basic quality-control proce-

dures. Specifically, we excluded duplicate samples, samples

derived from whole-genome-amplified DNA or cell-line

DNA, or samples with a LRR waviness score wf (calculated

with PennCNV14) such that jwf j > 0:04. Within each

study, we excluded markers with a missing rate greater

than 10% or that departed from Hardy-Weinberg propor-

tions (Chi-square or exact test p value < 10�5).

Genotypes were phased with fastPHASE15 or Beagle.16

The hapLOH hidden Markov model (HMM) was set to 2

states. Transition parameters for each sample were set to

correspond to an expected imbalance event size of 20 Mb

and a genome-wide imbalance rate of 0.1%. We performed

two runs of the EM algorithm with starting values for

the emission probabilities defined as (pn, pn þ 0.05) and

(pn, 0.95), where pn is the sample-specific average phase

concordance rate calculated from all informative (germline

heterozygous) markers. Each EM run continued until the

log-likelihood increasewas smaller than 0.0001 (usually be-

tween 4 and 20 iterations), and the parameter set with the

highest likelihood was used for calculating posterior proba-

bilities. To create a list of discrete event calls, we applied a

threshold of 0.95 to the probability of being in the aberrant
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state and defined an event as a run of intervals with proba-

bilities exceeding this value. We used a three-state HMM to

reanalyze samples with an event call to improve discovery

in samples with multiple events at possibly varying levels

of imbalance. The start and end base positions for each

SCNAwere defined by the left-side marker of the first inter-

val and the right-side marker of the last interval of the run.

We applied additional quality filters after obtaining

output from hapLOH. First, we excluded samples with

values > 0.52 for a0, the HMM emission parameter corre-

sponding to the ‘‘normal’’ state. Elevated values of this

parameter might indicate a sample-level quality issue,

such as a low level of inter-sample contamination, that

could create a false positive signal of mosaicism. We also

excluded any events overlapping the HLA region (genomic

coordinates chr6: 29,677,984–33,485,677, taken from17)

because the BAF and LRR data from markers in this region

show atypically high variation and might not be reliable.

For one sample, more than 75% of the genome was called

as imbalance. This sample is most likely a case of inter-sam-

ple contamination but did not fail the a0 threshold. We

excluded this sample from analysis. We also excluded

four calls that had fewer than 15 informative markers

and were artifacts of the calling procedure.

We calculated a BAF and LRR deviation for each discrete

event call that passed the above quality-control steps.

These data types can be considered a function of the spe-

cific SCNA type and the proportion of cells harboring the

alteration in the sample. The BAF deviation was defined

as the average of the absolute value of the differences be-

tween the median heterozygote BAF for the sample and

the heterozygote BAFs within the event call. The LRR devi-

ation was defined as the average difference between the

median LRR for the sample and the LRRs within the event

call. We used the observed deviations to identify 1,507

calls from the preliminary set as likely inherited duplica-

tions and removed these from subsequent analyses.

Specifically, we applied a simple thresholding procedure

to classify calls with LRR deviation > 0.08 and BAF devia-

tion < 0.10 as likely inherited duplications. We expect

that with this procedure we might misidentify some true

high-frequency somatic events as inherited duplications;

we accept this loss of sensitivity to maintain specificity.

The remaining calls are putative SCNAs.

We identified 1,141 unique SCNAs in 901 of 31,100 sam-

ples (2.9% of samples). Those with LRR deviation> 0.05 or

LRR deviation < 0.05 were classified as gains or losses,

respectively. The remaining calls included the CNLOH

events and events involving very low cell fractions, for

which we expect the LRR deviation will be small even

if there is a copy-number change. Events with BAF devia-

tion > 0.1 were classified as CNLOH, and the remaining

events (with small LRR deviation and small BAF deviation)

were left as ‘‘undetermined.’’ Of the 1,141 SCNAs, we clas-

sified 70 as single-copy gain, 202 as hemizygous loss, and

30 as CNLOH and left 839 unclassified (Figure 1). Ninety-

four (94) samples (0.3%) exhibited two SCNAs, and 44
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Figure 2. SCNAs by Chromosome
The red shading on each ideogram indicates the range of the plottedmutations. SCNAs are plotted as horizontal bars, colored by inferred
copy-number: red, loss; green, CNLOH; blue, gain; and gray, undetermined. A thin line connecting SCNAs within a chromosome indi-
cates the SCNAs occur in the same sample.
samples (0.14%) exhibited three or more SCNAs; one

exhibited 18 SCNAs that ranged in size from less than

0.3 Mb to 92 Mb. These 138 subjects carrying multiple

SCNAs represent a 5.3-fold enrichment over what would

be expected by chance, consistent with the existence of in-

dividual-level factors that affect the likelihood of observing

a mutation. SCNA locations are presented in Table S2.

The rate of mutation and inferred copy numbers of

SCNAs varied substantially by genomic region (Figure 2).

As a measure of the local mutation rate, we compared

the SCNA overlap count for each gene for 24,383 genes

(we used the largest transcript from RefSeq18 to represent

gene location). For this assessment, we used the SCNAs

observed in the 26,927 blood samples only (we excluded

buccal samples and samples without annotation on

DNA source) because aberration patterns might differ by

tissue. Only 1,318 genes were not covered by an SCNA

in any of the samples. The most frequently overlapped

gene was PTPRT (MIM: 608712) on chromosome 20,

which was overlapped in 60 samples; nearby genes in
The Ame
the surrounding region had the next highest overlap

counts. Multiple chromosomes exhibited similar sharp

peaks in SCNA overlap counts (Figure S1 and Table S3),

the most notable being chromosome 13, which had a

peak overlap count of 49 SCNAs covering the contiguous

genes DLEU1 (MIM: 605765) and DLEU7. Other chromo-

somes showed broader peaks in SCNA overlap counts.

For example, 17 contiguous genes on chromosome 14

were overlapped by SCNAs in 57 samples. Chromosomes

5, 6, 10, and 16 had the lowest SCNA overlap counts,

and indeed the fewest counts in general; fewer than ten

SCNAs covered any gene.

In a recent meta-analysis of SNP array data from more

than 127,000 subjects, Machiela et al.5 reported that

SCNAs aggregated on chromosomes by copy number.

They cited chromosomes 8, 12, and 15 as carrying the

majority of somatic gains, chromosomes 13 and 20 as

carrying the majority of somatic losses, and chromosomes

9 and 14 as carrying the majority of somatic CNLOH.

They also pointed out that focal deletions on 13q and
rican Journal of Human Genetics 98, 571–578, March 3, 2016 573



Figure 3. Phase Concordance versus Genomic Size
The circles and diamonds represent SCNAs called by hapLOH
only, Laurie et al. only, or both in samples that were included in
both analyses. Many of the SCNAs called by Laurie et al. only
had few or no heterozygous calls, so the phase-concordance values
were incalculable or imprecise; all of these were plotted with phase
concordance ¼ 1. The triangles represent the calls made in the
simulated null samples.
20q are frequent. As we describe below, many of the SCNAs

we observed are low frequency (carried in a small propor-

tion of cells) and do not create strong enough deviations

in the BAF and LRR data to allow determination of copy

number. However, most recurrent loci (those at which

SCNAs were observed at relatively high frequency) that

harbored SCNAs with determinable copy number demon-

strated a particular mutation type. For example, we

observed deletions on chromosomes 13 and 20 in regions

that are commonly deleted in hematological cancer, and

we observed multiple instances wherein the entire chro-

mosome 12 was duplicated, in accord with previous

studies.3–5 We also observed large chromosome 15 duplica-

tions that span at least the entire q arm, or possibly the

entire chromosome (these two possibilities are indistin-

guishable in our data because none of the SNP arrays

included markers on the p arm). Some loci do harbor

classifiable SCNAs of multiple copy-number classes; for

example, at 14q (or possibly the entirety of chromosome

14) we observe both duplications and CNLOH.

A large subset of our dataset (30,208 samples) was

analyzed previously for SCNAs by a different method.3

Laurie et al. applied a method designed for discovering

SCNAs on the basis of the magnitude of BAF and LRR

deviations (without using haplotype information). Within

samples common to both analyses, our analysis identified

far more SCNAs (1,093 versus 379). We used the genomic

positions to define the extent of overlap between hapLOH

and Laurie et al. calls in these samples. More than 90% of

overlapping events had more than 80% overlap with

events in the other analysis, although there were instances

in which one analysis called one event but the other split

the same region into multiple events, so that the overlap

with an individual event could be low but the total overlap
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when all overlapping events were considered was high. To

make a comparison of the sets of calls in the two analyses,

we deemed calls to be concordant if they had any overlap

with sample-specific calls in the other analysis and ignored

copy-number classifications, although our conclusions do

not change qualitatively for other overlap criteria (Table

S4). Using these criteria, we classified 299 hapLOH SCNAs

and 293 Laurie et al. SCNAs as concordant (the counts are

not equal because some calls overlapped multiple calls in

the other analysis). A total of 794 SCNAs were unique to

our analysis, and 86 SCNAs were unique to Laurie et al.

Ten of the SCNAs unique to Laurie et al. were part of the

initial hapLOH call set but were excluded as possible in-

herited duplications or because they overlapped the HLA

region. Another 33 of the SCNAs were short (spanning

fewer than 200 markers, mean size 415 Kb), and for the re-

maining 43 SCNAs the mutant cell fraction was high

enough that that there were almost no called heterozygous

genotypes, upon which our method is based; thus, these

mutations were outside the range of events targeted in

our analysis. hapLOH uses phase concordance (a measure

of the switch accuracy between the statistical haplotypes

and the BAFs; see Vattathil and Scheet13) to detect SCNAs.

The observed phase concordance is a function of several

factors, including the copy number of the mutant cells,

mutant cell fraction, and the accuracy of the statistical

phasing, yet can roughly be interpreted as a level of allelic

imbalance created by the mutation, particularly at lower

cell fractions. All of the SCNAs present in both call sets

had phase concordance exceeding 0.8, whereas three-

fourths of the SCNAs uniquely identified in our analysis

had phase concordance values less than 0.8 (Figure 3).

This is in line with expectations because the haplotype-

based method we employed is especially sensitive for

low-cell-fraction SCNAs.

An important characteristic of our method is that the

sensitivity increases with both the magnitude of the phase

concordance and the size of the event (in terms of number

of heterozygous genotypes). SCNAs inducing subtle allelic

imbalance are therefore detectable, but only if their size is

large enough. The lack of SCNAs in the lower left corner of

Figure 3 demonstrates this point. By the same token, short

regions are detectable, but only if the phase concordance is

high enough (upper left corner of Figure 3). The sensitivity

for short events is also restricted in this analysis by the spe-

cific parameter settings we employed; we did not enforce a

minimum size threshold for SCNA identification but chose

parameters that would provide sensitivity for subtle events

yet keep the false-positive rate low. Using this setting, one

can identify kilobase-range SCNAs, but probably only

when the phase concordance is high. We expect that

many SCNAs with low phase concordance exist at small

genomic size, but our analysis was not designed for their

discovery.

One question regarding low-cell-fraction events is

whether they occur randomly across the genome or

show spatial and copy-number patterns similar to
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those of higher-cell-fraction events. To address this, we

looked at the location and copy-number assignments of

hapLOH-exclusive calls (Figure S2). We considered only

calls in blood samples, as we did for the spatial-distribution

analysis of the total call set. Out of the 698 hapLOH-

exclusive calls in blood samples, only 74 were assigned a

copy number (56 gains, 18 deletions, and 0 CNLOH).

These included five deletions on 13q and four deletions

on 20q that overlapped the commonly deleted regions

reported by Machiela et al. One gene on chromosome 7,

MTRNR2L6, also was overlapped by a deletion in four sam-

ples. These were the most common recurrent deletions in

this set. No region was overlapped by more than two gain

events. To get a rough sense of how well our 624 ‘‘undeter-

mined’’ calls match the Machiela et al. set in terms of chro-

mosomal aggregation by copy number, we calculated the

average LRR deviation per chromosome for these calls.

The averages are consistent with the copy-number distri-

bution by Machiela et al.—chromosomes 8, 12, and 15

showed the highest average LRR deviation for undeter-

mined calls, whereas chromosomes 10, 13, and 20 showed

the lowest average LRR deviation. Of note, chromosome

10 had the fewest calls (16), so sampling variation might

explain its unexpected ranking.

We used the observed BAF and haplotype data to

perform a permutation-based simulation to estimate the

false-positive rate of the method. Specifically, for each of

the 31,328 samples that passed our initial quality-control

steps, we permuted the observed BAFs at the informative

markers (that is, the subset of markers at which the sample

had heterozygous genotype calls; this subset was unique

for each sample), and then applied our analysis protocol

to these data. Permuting the BAFs at informative markers

disrupts the dependence in the BAF deviations that would

arise from somatic imbalance while preserving the level

of random variation originally present in the data. So,

any calls made in these ‘‘simulated null’’ samples represent

false positives arising from chance stretches of increased

phase concordance. Because there could be other sources

of false positives (although we have attempted to rule

these out by quality-control procedures), the call rate

estimated here is effectively a lower bound on the false-

positive rate. Application of our analysis protocol to data

generated from a single permutation of each of the

31,328 samples yielded 25 SCNA calls in 25 samples, or

about 0.08% of samples. Thus, the rate of 2.9% we

observed in the original data represents an approximately

37-fold enrichment over the estimated null rate and a false

discovery rate of <3%. The 25 calls in the permuted data

display a very different distribution in terms of phase

concordance and genomic size than the calls from the

real data (Figure 3); they reside along a gradient of lower

values for these features. Therefore, in practice this false-

discovery rate will vary as a function of attributes of the

event call. Of note, none of the simulated null samples

failed the a0 -based quality-control filter, which is the

expected result if elevated a0 values reflect biological
The Ame
contamination and are not simply due to poor parameter

estimation.

Because the BAF and LRR deviations depend on the

mutant cell fraction, we could theoretically attempt to

infer this quantity for each SCNA. However, just as with

the inference of copy number, the low magnitude of the

deviations for most of the SCNAs interfered with precise

characterization. We conjecture that the vast majority of

the SCNAs we observed were present in less than 10% of

the cell population in each sample. It is worth emphasizing

that even when SCNAs displayed small BAF and LRR devi-

ations, the statistical evidence for AI, based on the phase

concordance, was still exceptionally high for all of the

called events. We also note that a majority of large SCNAs

we discovered coincided with chromosomes even though

the HMM is applied to ordered marker data for all 22 auto-

somes concatenated into a single input vector without

regard to specific marker locations or chromosomal anno-

tation; this observation favors a molecular rather than a

stochastic source.

In previous analyses, SCNA prevalence (that is, the

frequency of individuals with one or more SCNAs) was

strongly positively associated with age. In our results, the

prevalence of SCNAs among individuals older than 80

years of age was approximately 12% (Figure 4). Although

the sample size at this age range is modest, the increase

in SCNA rate compared to that in middle age is quite large.

To formally examine the relationship between age and our

observed SCNAs while accounting for the possible con-

founding effect of samples being genotyped in different

studies, we applied the Mantel extension test for trend by

using only the 20,727 samples derived from blood DNA

from individuals for whom we had age information. We

found that age was a significant predictor of the presence

of one or more observed SCNAs (p value ¼ 10�26). We

generally detected two to four times as many SCNAs per

age category as Laurie et al. did. It is interesting to note

that low-cell-fraction clones seemingly went undetected

in every age category.

These results corroborate and augment the current

observational evidence of somatic mosaicism in appar-

ently healthy tissue and suggest that the rate of mosaicism

in phenotypically normal individuals is higher than was

reported in recent large-scale studies. Our analysis was spe-

cifically motivated to detect mosaicism from low-cell-frac-

tion mutations. This part of the landscape of somatic mu-

tations is important because it is likely that the majority of

somatic mutations exist at low cell fractions. Indeed, our

analysis supports this notion even though lower-fre-

quency mutations are more difficult to detect. By using a

haplotype-based method that leverages the dependence

among BAFs in imbalanced regions, we detected a larger

number of low-cell-fraction aberrations than in previous

analyses of these data. Even so, low-cell-fraction SCNAs

create a weak signal that is difficult to discern from back-

ground noise, and when they cover short genomic regions

there is insufficient statistical evidence for their detection.
rican Journal of Human Genetics 98, 571–578, March 3, 2016 575



Figure 4. Mosaic Rate by Age
The gold numbers below each age bin indicate the sample size for that bin. The numbers above each bar are the number of samples that
fall in that age bin and have at least one SCNA.
An analogy is detecting a subtly unfair coin, which is

possible only with a sufficiently large number of coin flips.

In the case of detecting SCNAs with a subtle signal, we

need a large number of informative loci. Thus, to maintain

high specificity in our study, we targeted large aberrations.

Small events with a high cell fraction do create a strong

enough signal that they are also picked up with this

setting. This bias for aberrations of certain sizes and

phase-concordance ranges must be kept in mind when

one interprets the observed distribution of SCNAs—the

lack of observations that are small in size and exhibit low

phase concordance is clearly due to the lack of power to

detect this category of aberrations. We can easily ratio-

nalize that large aberrations will be expected to exist

mostly at low cell fractions because they are more likely

than smaller aberrations to have a negative impact on

cell fitness. Interestingly, we do observe a number of large

SCNAs with cell fractions that are likely to exceed 15%;

these might comprise mutations that increase cell fitness

in the balance, at least for the sampled tissue at the post-

developmental stage of the organism.

Our results support previous reports3,5 of a sharp in-

crease in the rate of detected mosaicism in elderly individ-

uals compared to younger individuals. This observation

may indicate a higher rate of somatic mutation in the

elderly, which is consistent with the hypothesis that muta-

tion rate increases with age as a result of a reduction in

DNA-repair activity or an increase in the incidence of er-

rors (for example, an increase in the incidence of structural

rearrangements and aneuploidy resulting from telomere
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attrition19). An alternative explanation is that the muta-

tion rate is largely constant over time but that detectable

mosaicism is associated with age because in older individ-

uals there has been more time for viable mutant clones to

initiate and expand by drift or selection. Further investiga-

tion of mosaicism in youth and middle age, by methods

tuned for low-frequency mosaic mutations, might shed

light on the relative impact of factors influencing somatic

mutation rates.

The nonrandom distribution of SCNAs and mutation

types across the genome suggests highly preferential muta-

tion initiation or selection for or against mutations in

certain regions. Several of the recurrently imbalanced re-

gions include genes that have been associated with cancer.

Because all of the blood samples analyzed were collected

from individuals without diagnosed hematological cancer,

we can conclude that observed aberrations are generally

insufficient to initiate transformation, but how important

are their potential impacts on proliferation? One exciting

possibility is that low-frequency clones can be used as valu-

able early-disease cancer biomarkers. Indeed, Laurie et al.3

established such a relationship in these data, and this has

been observed elsewhere as well.4,7 Although somatic

mutation is a driving force in cancer, the extreme level

of genomic aberration observed in many cancers high-

lights the high level of robustness of the human genome

and supports the notion that sporadic random somatic

mutations can be of little consequence and should be ex-

pected at a low frequency in normal tissues. In fact, math-

ematical modeling demonstrates that large fractions of the
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single-nucleotide mutations observed in tumors of self-

renewing tissues are passenger mutations acquired during

normal tissue maintenance that happened to be carried

by the initiating tumor cell,20 and a recent study found

that the large variation in lifetime risk among cancers of

different tissues is explained in large part by variation in

the number of normal cell divisions among tissues.21

These observations underscore the need for further charac-

terization of the landscape of somatic mutation in normal

tissue to improve our understanding of the significance of

mutations observed in cancer. Because the landscape of

tolerated and functional somatic mutations is likely to

vary by tissue, studies using samples from other tissues

would complement the largely blood-based studies that

have been recently conducted.
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