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Higher-order Multivariable 
Polynomial Regression to Estimate 
Human Affective States
Jie Wei1,2,*, Tong Chen1,2,*, Guangyuan Liu1,2 & Jiemin Yang3

From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating 
human affective states through computational models such as multivariate linear-regression analysis, 
support vector regression, and artificial neural network, have been proposed in the past decade. In 
these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities 
of complex psychophysiological processes; and nonlinear models commonly adopt complicated 
algorithms. To improve accuracy and simplify model, we introduce a new computational modeling 
method named as higher-order multivariable polynomial regression to estimate human affective states. 
The study employs standardized pictures in the International Affective Picture System to induce thirty 
subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables 
to the higher-order multivariable polynomial model for predicting affective valence and arousal. 
Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98  
and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may 
provide certain indirect evidences that valence and arousal have their brain’s motivational circuit 
origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective 
states.

In order to establish affective human-computer interactions, improve diagnostic-therapy effects for mental dis-
orders, and reveal psychophysiological mechanisms of emotion, it is a crucial first step to detect human affective 
states from direct observations, neural activations, facial videos, voice recordings, body gestures, and physiolog-
ical signals, etc.1–9. In the area of human-computer interaction (HCI), automatically recognizing and respond-
ing to a user’s affective states during interactions with a computer can enhance the quality of the interaction to 
maximize user’s pleasure2–4,10. In mental care, detecting human affects by technological systems and devices has 
quantitative, objective, and automatic accessory diagnostic value for simple mood questionnaires or interviews 
that are commonly used to diagnose pathological emotional fluctuations6,7,9. Further more, the methods, models, 
and conclusions, that are developed in the field of Affective Computing (AC) and used to senor human affects, 
can supply certain valuable references for other scientists to reveal and prove the theoretical and neural psycho-
physiological mechanisms of human affect to enhance human mental health3,7,11.

The affective detection (AD) takes feature vectors extracted from observed signals as input and assigns psy-
chological affective labels to these feature vectors. In current AD researches, there are two main directions: (I) 
classification, in which the state of art machine learning algorithms are applied to classify and recognize different 
affective states (e.g., ‘happy’, ‘anger’, ‘sad’, and ‘fear’, etc.) and (II) estimation, in which function approximation 
methods are adopted to approximate the complex mapping relationships between observations and their corre-
sponding psychological states, and then affective states (e.g., the continuous scores of valence and arousal) are 
computed by obtained function models (see Fig. 1). Since Rosalind Picard published the most influential works1,2, 
most of researchers have been enthusiastic about obtaining high recognition accuracy by inventing and improv-
ing machine learning algorithms, feature extracting methods, signal processing methods, and affective induc-
tion experiments12–20. Intensive reviews about classifying affective states can be found in existing works3,18,21–27. 
Compared with classification methods, estimation methods have been used far less frequently5,28 partly because 
of lacking knowledges of complex psychophysiological mechanisms of human affect. In fact, classification and 
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estimation methods are complementary to each other. Their external main differences are that classification 
methods label psychological states in a discrete categorical manner, while estimation methods regard psycho-
logical states as a continuous process. Estimating individual affective states in a continuous score manner is one 
important aspect of AD because it is more common for people to exhibit their affective experiences in a contin-
uous manner during everyday communications25,29. Further more, continuously estimating individual affect can 
supply more quantitative results than what classification procedures can supply. Methods of estimating human 

Figure 1.  A graphical representation of two main directions in current AD researches. A subject takes 
participate in various affective psychophysiological experiments in which video, picture, music and electric 
stimuli are commonly used to induce subject’s different affective states. For each task, various kinds of 
signals are recorded by physical equipments (e.g., functional magnetic resonance imaging (fMRI) machines, 
physiological signal acquisition systems, cameras, etc.) on the one hand; and on the other hand, the 
corresponding affective states are measured according to psychological scales and inventories. Starting from 
these observed signals, feature vectors are extracted, used to represent response patterns of different affective 
states, and classified into finite classes by using various classifiers (e.g., support vector machine (SVM), artificial 
neural network (ANN), k-nearest neighborhood (KNN), etc.) to realize the classification of affective states. 
Applying the mapping relationships between observed response patterns and the corresponding affective 
psychological states, researchers use function approximation methods (e.g., multivariate linear-regression 
analysis, partial least-square estimation, support vector regression, artificial neural network, fuzzy logical 
analysis, and sequence Bayessian analysis) to approximate the assumed function models (F(xi; yj; zk)). Affective 
states are estimated by these obtained function models and new observed response patterns.
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affective states, such as multivariate linear-regression analysis (MLR), partial least-square estimation (PLS), 
genetic algorithm optimized support vector regression (GA-SVR), artificial neural network (ANN), bidirectional 
long short-term memory neural networks (LSTM-NNs), fuzzy logical analysis (FLA), and sequence Bayessian 
analysis (SBA), have been proposed in the past decade28–34. Although their performances differ with each other, 
these computational models achieve relative good results to some extent, and supply us a good prospect in affec-
tive estimation. It has been well-accepted by the scientific community that affective psychophysiological processes 
should be complex nonlinear ones. In general, the MLR models are lack of precision because of ignoring intrinsic 
nonlinearities of complex psychophysiological processes. The PLS and SVR models have their limitations in pro-
cessing nonlinearities by adopting finite kernel functions. The rest models commonly adopt depth mathematics 
and complicated algorithms that are not easily understood and convenient to practically implement affective esti-
mation. Moreover, they commonly regard affective psychophysiological processes as black boxes to be modeled 
and are lack of actual psychophysiological bases.

To improve estimation accuracy and simplify model, the study specifically introduces the higher-order mul-
tivariable polynomial regression (HMPR) method to approximate the implicit complex nonlinear function 
relationships between observed response patterns and corresponding psychological states, based on the Taylor 
theorem in mathematical analysis that any smooth function can be approximated by its Taylor polynomial (a 
higher-order multivariable polynomial) at any precision in the convergent domain. The interactions among 
diverse physiological systems35,36 and overlapped central nervous system structures of the affective motivational 
brain system and skin conductance9,37 are the psychophysiological foundations of modeling the skin conduct-
ance response (SCR) affective process that translates pure SCR patterns into their corresponding affective states 
(model hypothesis in Methods). Moreover, multivariable regression analysis theory and methods were applied 
to model many other processes very well (e.g., chemical systems, scattered data sets in computational physics, 
the volume computation problem of forest trees, and major depressive disorder problems, etc.)38–43. In order 
to solve the key technical problem of requiring large data sets in executing the HMPR, we propose a statistical 
formula (equation (4) in Methods) to construct the simulated data sets, which is larger than the experimental 
data sets. We carried out the HMPR on the simulated data sets to obtain the optimal higher-order multivariable 
polynomial model (HMPM), and tested the obtained final HMPM on the entire experimental data sets to obtain 
its accuracy. A general overview of the proposed estimation method and analysis are shown in Fig. 2. The results 
indicate that a simple HMPM is able to efficiently estimate the affective valence and arousal from pure skin con-
ductance responses. This may be useful to develop affective smart wearable devices (e.g., Apple Watch, Mi Band, 
and Google Glass, etc.). Further more, through analyzing the gradient fields of the obtained HMPM, we offered 
certain indirect evidences to support that the valence factor is related with the activation of appetitive and defen-
sive subcircuits, and the arousal factor may only reflect activation intensity9.

Results
This section consists of data sets, the affective HMPM, and the comparison with the ANN method. The data sets 
contain the fundamental data sets, experimental data sets, and simulated data sets. Based on the simulated data 
sets, we adopted the HMPR to model the SCR affective process and obtained the optimal affective HMPM. The 
optimal affective HMPM was tested on the entire experimental data sets to obtain its final accuracy. Moreover, 
the comparison of the HMPR and commonly used ANN is given. More specific details are stated in the methods 
section. All of the analysis were implemented by using Matlab R2013b endowed with self-made codes and an 
additional Neural Network Toolbox for the ANN model.

Data sets.  The fundamental data sets contain the affective pattern and physiological SCR pattern (see 
Supplementary Table S1). The valence-arousal ratings and affective physiological signals (Pulse, SC, and ECG) 
of each picture were obtained by the experimental protocol. For each picture, its affective pattern contains its 
mean valence and arousal scores across subjects. The good match between experimental and standardized affec-
tive ratings44 is illustrated in Fig. 3(a). The good distinctions among pleasant, neutral, and unpleasant affective 
ratings also show that three affective states were successfully induced in subjects in our experiment. For each 
picture, its physiological SCR pattern is a four dimensional feature vector that consists of onset time, gain, rise 
time, and decay time constant (Time constant) parameters. Applying the Lim’s nonlinear curve fitting45 with 20 
step iterations, the four parameters are extracted from the SC signal which is obtained by averaging 10-second 
SC segments after picture presentation across subjects. It is seen from Fig. 3(b) that the pure SCR waveforms 
are obviously clustered into three classes. This finding is consistent with the view (supported by a considerable 
experimental literature) that both animals and humans show specific, autonomic reflex patterns in reaction to 
affective cues9,24.

The experimental data sets consists of gain, time constant, valence, and arousal columns of the fundamental 
data sets (see Supplementary Table S1). Applying the one-way ANOVA analysis on each column of the physio-
logical SCR pattern, we find that there are statistical significant differences in three columns (onset time, gain, 
and time constant), and there is no statistical significant difference in one column (rise time) because the corre-
sponding F-values are F(2, 21) =  9.55, 68.21, 2.12 and 38.25, and P-values are P =  0.0011, 6.2504e −  10, 0.1423 and 
9.9679e −  8. Since rise time (no significant difference) can be regarded as a constant for the computing purpose46, 
the three dimensions (onset time, gain, and time constant) were regarded as the potential input variables of the 
SCR affective process. During the latter process of establishing the affective HMPM, we find that gain and time 
constant dimensions have significant contributions for estimating affective valence and arousal. Hence, the data of 
gain, time constant, valence, and arousal columns forms the experimental data sets of the study (see solid markers 
in Fig. 4).
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Figure 2.  A general overview of the proposed estimation method and block scheme of the overall signal 
processing. The subjects were emotionally stimulated through pictures chose from the International Affective 
Picture System (IAPS). For each trial including the 0.5 seconds fixation, 6 seconds picture presentation, and 
random rest (29, 31, and 34 seconds), physiological signals (skin conductance (SC), electrocardiogram (ECG), 
and pulse) were recorded by the Biopac MP150 system and the scores of valence and arousal were measured 
according to the Self-Assessment Manikin (SAM) developed by Margaret M. Bradley and Peter J. Lang57. 
Starting from average skin conductance segments, pure skin conductance response (SCR) patterns were 
acquired by using the Lim’s curve fitting45,68. The features (gain and decay time constant (Time constant)) were 
extracted from these pure skin conductance responses and formed the two dimensions of the physiological 
feature space. Valence and arousal factors form the two dimensions of the affective space. These experimental 
gains, decay time constants, and affective scores form the experimental data sets. Based on the experimental 
data sets, the simulated data sets were statistically constructed by equation (4) in the methods section. Then, the 
optimal affective HMPM were established on the simulated data set. Finally, the obtained HMPM were tested 
on the entire experimental data sets to evaluate its accuracy.
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The simulated data sets are constructed from the experimental data sets. For each affect and column of the 
experimental data sets, we arbitrarily chose two values to simulate a new value by using equation (4). All sim-
ulated new values form the simulated data sets (see Supplementary Table S2 and hollow markers in Fig. 4). It is 
obvious that the simulated data sets keep the patterns of the experimental data sets and contain more data points 
than those of the experimental data sets.

Affective HMPM.  To find the best HMPM to estimate human affect from the physiological SCR pattern, we 
carried out the HMPR for valence and arousal factors, respectively, under the matrix singular criterion 10−8 and 
significant level 10−4. As previously mentioned, the onset time, gain, and time constant dimensions were regarded 
as the potential input variables of the SCR affective process. Based on the simulated data sets and the simulated 
values of the onset time dimension, we established five HMPMs and one MLR model for valence and arousal 
factors, respectively (a first order HMPM is a MLR model). Their performances are seen in the Supplementary 
Table S3. Their Indexes are presented in the upper panel of Fig. 5(a,b). The Index of a model is the ratio of its mean 
squared error (MES) to its Pearson’s correlation coefficient r (equation (8) in Methods). In general, the more accu-
rate the model is, the bigger the correlation coefficient is, the smaller the mean squared error is, and hence the 
bigger the Index is. From the upper panel of Fig. 5, it is easy to find that HMPMs are generally better than MLR 
models, and that the fifth order HMPMs are the best for estimating valence and arousal from onset time, gain, and 
time constant dimensions (model see Supplementary Equation S1). By observing these two higher-order mul-
tivariable polynomial functions, we find that the onset time dimension has no significant effects on computing 
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affective valence and arousal. Hence, we carry out the HMPR only on the simulated data sets with the same set-
tings of the previous one again, and obtain nine HMPMs and one MLR model (with two inputs, gain and time 
constant) for valence and arousal factors, respectively. Their Indexes are seen in the Supplementary Table S4. 
Their Indexes are presented in the lower panel of Fig. 5(c,d). From the lower panel of Fig. 5, it is easy to find that 
HMPMs are again generally better than MLR models, and that the eighth order HMPM is the best for estimating 
valence and the ninth order HMPM is the best for estimating arousal from gain, and time constant dimensions. 
Hence, the final optimal HMPM with two input variables under significant level 0.0001 is as follows:

where g and td are gain and time constant, respectively, αij and βlk are model parameters (see Supplementary Table S5),  
and the terms εV, εA are errors. In fact, the affective HMPM (equations (1) and (2)) consists of two polyno-
mial functions concerning input variables g and td. Tested on the entire experimental data sets (solid markers in 
Fig. 4), the final performance of the affective HMPM is that r =  0.9801(0.9536, 0.9915), p-value =  6.1657e −  17, 
MSE =  0.1948, and Index =  5.0301 for valence estimation; and r =  0.9600(0.9084, 0.9828), p-value =  1.1940e −  13, 
MSE =  0.3894, and Index =  2.4654 for arousal estimation.

To uncover the properties of the affective HMPM, its surfaces are illustrated in the upper panel of Fig. 6(a,b), 
and their corresponding gradient fields are shown in the lower panel of Fig. 6(c,d). The valence and arousal sur-
faces obviously describe the nonlinearities of the SCR affective process which is in line with the consensus that 
affective psychophysiological processes should be nonlinear. The valence factor is sensitive to the gain and decay 
time constant dimensions because the overall trend of its gradient field (see Fig. 6(c)) are not parallel to any coor-
dinate axis. This means that the valence factor is mainly determined by the two dimensions: gain, which has neu-
ral activation intensity meanings, and decay time constant, which has the meanings of skin conductance different 
pathways37,45. Since the EDA1 and EDA2 pathways (Model hypothesis in Methods) have their origins in brain’s 
motivational circuits, this finding may indirectly support that the affective valence is related to the activations 
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of appetitive subcircuits and defensive subcircuits9. And yet, the arousal factor is mainly determined by the gain 
dimension because the overall trend of its gradient field (see Fig. 6(d)) seems to be parallel to the gain axis. This 
is in line with the prior research9 in which the affective arousal may only reflect the activation intensity of brain’s 
motivational circuits. Hence, the affective HMPM can provide certain indirect evidences that the valence and 
arousal have their origins in human brain’s motivational circuits.

Comparison with ANN.  In order to further illustrate the effectiveness of the HMPR method, we compared 
it with the commonly used ANN method. When solving black box modeling problems, people usually use the 
ANN because every continuous function that maps intervals of real numbers to some output interval of real 
numbers can be approximated arbitrarily closely by a multilayer perceptron with just one hidden layer46,47. Using 
the Neural Network Toolbox in Matlab R2013b and simulated data sets, we trained ANN models that include 
three layers: two neurons input layer that accept gains and time constants, one hidden layer whose neurons 
are variable (from 1 to 10 neurons), and one neuron output layer. The performances of these ANN models are 
listed in the Supplementary Table S6. Its index rows illustrate that the ANN model of nine hidden neurons is the 
best for estimating valence, and the ANN model of ten hidden neurons is the best for estimating arousal. The 
final performances of the optimal ANN models on the experimental data sets is that r =  0.9765(0.9534, 0.9865), 
p-value =  1.4077e −  17, MSE =  0.2398, and Index =  4.0726 for valence estimation; and r =  0.9586(0.9473, 0.9634), 
p-value =  5.1062e −  21, MSE =  0.7311, and Index =  1.3111 for arousal estimation (see Supplementary Table S7). 
Since the correlation coefficients and MSEs of the affective HMPM are higher and lower than those of the optimal 
ANN model, respectively, the total performance of the affective HMPM is slightly better than that of the optimal 
ANN model (see Fig. 7). Note that it may be strange that the optimal ANN model performed very well during 
training process (modeling process), but lost its good performances in the testing process. The reason for this 
phenomenon is that the ANN is good at learning the local characteristics of training data sets46. The performance 
of the ANN models rapidly increased during the training process, but the final performance of the ANN models 
may significantly reduced in the testing process. Compared with the ANN, the HMPR is good at learning the 
whole characteristics of training data sets because its foundations are the addition of polynomial surfaces. The 
performance of the HMPR is relatively stable in both training and testing processes. Moreover, although correla-
tion coefficients of the affective HMPM are higher than those of the optimal ANN model, there are no significant 
differences. Hence, the HMPR and ANN both are good methods to obtain accurate estimation, but the HMPR is 
more intuitive and stable.

Discussion
Using the mature affective induction experiment and indicative skin conductance signal, we specifically intro-
duced the higher-order multivariable polynomial regression method to efficiently estimate the affective valence 

Figure 6.  Surfaces and gradient fields of the affective HMPM. The solid and hollow markers are respectively 
drawn from the experimental data sets and simulated data sets. (a) the valence surface is the graph of the 
equation (1). (b) the arousal surface is the graph of the equation (2). (c) the gradient field of valence is the 
gradient field of the valence surface (a). (d) the gradient field of arousal is the gradient field of the arousal 
surface (b).
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and arousal from pure skin conductance responses. The fundamental data sets (see Supplementary Table S1) 
showed that the pleasant, neutral, and unpleasant affects were successfully induced by our experiment (see Fig. 3). 
To solve the technical problem of requiring large data sets in carrying out the HMPR, we proposed an ad-hoc 
statistical formula (equation (4)) to construct the simulated data sets from the experimental data sets. The sim-
ulated data sets maintain the patterns of the experimental data sets and contain more data points than those of 
the experimental data sets (see Fig. 4). The HMPR results yielded three dominating findings. Firstly, we found 
that a nonlinear model (a HMPM) is often better than a linear model (a MLR model) (see Fig. 5). This was in line 
with prior researches5,6,13,14,31,34. In the present study, a HMPM can give a better description of nonlinearities of 
the SCR affective process than what a linear model can do. Secondly, the affective HMPM provides significant 
correlation coefficients, r =  0.9801 for valence estimation, and r =  0.9600 for arousal estimation (confidence level 
0.0001). The affective HMPM visually and accurately stated the nonlinearities of the SCR affective process (see 
Fig. 6(a,b)). Thirdly, the gradient fields of the affective HMPM (see Fig. 6(c,d)) provided certain indirect evi-
dences that the affective valence and arousal have their origins in human brain’s motivational circuits. Moreover, 
the result of comparing the HMPR with the ANN illustrate that both HMPR and ANN are good methods to solve 
the affective estimation problem, and the HMPR is good at learning the whole characteristics of data sets and 
more intuitive and stable than the ANN.

By using the gradient fields (see Fig. 6(c,d)), the affective HMPM indirectly supports that the affective valence 
and arousal have their origins in human brain’s motivational circuits. It seems to be reasonable that evaluative 
affective components (valence and arousal) are associated with the broad functions of brain’s motivational cir-
cuits—appetitive subcircuits activation (pleasant) and defensive subcircuits activation (unpleasant) and an inten-
sity of these two subcircuits activation (arousal)9. Affective cues can induce skin conductance activations through 
the limbic-hypothalamic EDA1 pathway, and the pleasant affect may additionally induce skin conductance acti-
vations through the premotor-basal ganglia EDA2 pathway37. The gradient field of valence (Fig. 6(c)) indicates 
that the valence factor is mainly determined by the two dimensions: gain, that has neural activation intensity 
meanings, and decay time constant, that has the meanings of skin conductance different pathways37,45. The gra-
dient field of arousal (Fig. 6(d)) indicates that arousal factor is mainly determined by the gain dimension. These 
findings may indirectly support prior researches9,48.

The HMPR is an important supplement to emotional estimation methodology. The HMPR, in fact, is not only 
theoretically supported by the Taylor theorem, but also able to obtain an intuitive HMPM to efficiently estimate 
the affective valence and arousal from pure skin conductance responses. Moreover, the result of comparing the 
HMPR with the ANN models (see Supplementary Table S7) showed that both the HMPR and ANN can obtain 
relative accurate computing results. Such accurate estimation results surely increases the impact in the wearable 
computing fields such as smart watches, Mi Band, and Google Glass, etc. It is a trend now to detect human affect 
by multimodal signals (e.g., neural activations, facial videos, voice recordings, body gestures, and physiological 
signals, etc.)3,5,12,15,17–19,24,26,35,36,49. The use of the HPMR on the multimodal signals can bring obvious benefits that 
human affective states can be effectively detected, at the same time, much more detailed psychophysiological and 
neural mechanisms can be revealed for medical and economic applications, if one can effectively solve the three 
main open problems that include illustrating certain neural mechanisms, obtaining pure affective signal patterns 
for each modal, and efficiently fusing these multimodal feature vectors.

Methods
In this section, the model hypothesis, experiment, and mathematical foundations are listed to support the present 
study.

Model hypothesis.  Based on the findings in anatomy and neural sciences, we proposed the hypothesis that 
there exists the implicit complex mapping from pure skin conductance responses (SCRs) to their corresponding 
affective states. The brain and peripheral organs are connected by efferent and afferent neural fibers and mutually 
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influence each other, although the brain is the control and information processing center9,35,36,50. Affective cues 
activate motivational circuits evolved in the mammalian brain that consists of defense and appetitive subcir-
cuits9,48. In the motivational circuits, the bilateral amygdalas play a central role: Motivationally relevant cues 
projected from cortex and thalamus or hippocampus activate the amygdala’s central and lateral nuclei and its 
extension in the bed nucleus of the stria terminalis9. Subsequent projections from these amygdaloid structures 
engage a variety of other brain regions (e.g., nucleus ambiguous, the dorsal motor nucleus of the vagus, and the 
hypothalamus) that activate efferent projecting structures that mediate defensive or appetitive reflex actions9,48,51. 
Although brain defensive and appetitive subcircuits are highly overlapped in their individual neural struc-
tures and connectivity, consisting with the broad similarity in autonomous autonomic nervous system (ANS) 
response24, both animal and human research have implicated that the ventral striatum (e.g., nucleus accumbens) 
and ventral medial prefrontal cortex (VMPFC) are additional neural structures specific to appetitive subcir-
cuits9,52,53. It seems to be reasonable that evaluative affective factors (valence and arousal) are associated with the 
broad functions of brain’s motivational circuits—appetitive subcircuits activation (pleasant) and defensive sub-
circuits activation (unpleasant), and an intensity of these two subcircuits activation (arousal)9. For the time being, 
although the complex central origins of skin conductance is still incomplete, the experimental as well as clinical 
evidence concerning the central nervous system (CNS) elicitation of electrodermal activity (EDA) points to the 
existence of two different origins, a limbic-hypothalamic source labeled EDA1, being emotionally influenced, and 
a premotor-basal ganglia source labeled EDA2, eliciting electrodermal concomitants of the preparation of specific 
motor actions37. The ventral striatum, which is specific to appetitive subcircuits and a part of basal ganglia, and 
VMPFC can elicit skin conductance activity by the EDA2 pathway. Moreover, the responses of peripheral systems 
are very important for people to experience affect. In a word, interactions between brain and peripheral organs 
and the overlapped CNS mechanisms of affect and skin conductance ensure the rationality of the hypothesis.

Experiment.  The experimental protocol for this study was approved by the local ethics committee of the 
Southwest University and an informed consent was obtained from every subject involved in the experiment. The 
methods were carried out in accordance with the approved guidelines.

Two dimensional affective model.  Since the estimation problem in the AD was studied, we adopted the most 
widely used valence-arousal model (the Circumplex Model of Affects (CMA)) to continuously represent subjects’ 
affective states6,18,54–56. The CMA model considers two continuous dimensions, in which the valence (V) dimen-
sion represents how much an affect is perceived as pleasant or unpleasant (ranging from unpleasant to pleas-
ant), whereas the arousal (A) dimension indicates how strongly the affect is felt (ranging from calm to excited). 
According to the work of Lang et al.44,47,57,58, we used the Self-Assessment Manikin (SAM) to assess these two 
affective scores on a scale from 1 to 9.

Subjects.  Thirty second-year undergraduate healthy female subjects (mean age =  19.44; SD =  1.09; 
range =  18–22) not suffering from evident mental pathologies, were recruited to participate in the affective 
experiment. Since previous behavioral and brain researches revealed that women show a great sensitivity to neg-
ative information compared to men44,59–61, the study chose the female subjects to guarantee the validity of the 
experiment. To control the influence of menstrual cycle on processing negative emotions62,63, they took par-
ticipate in the experiment out of their menstrual cycles. The subjects reported no history of affective disorder 
and were free of any psychiatric medication. The subjects were affectively healthy, indicated by the low scores 
in the Spielberger trait and state anxiety scales (total =  80 for either scale). The averaged trait, state anxiety 
scores were 33.27 (SD =  1.24) and 33.73 (SD =  1.12), respectively. All subjects are right-handed, with normal or 
corrected-to-normal visual acuity. Because of operation errors of experimenters in the first day, 27 subjects’ data 
were included in the study.

Stimuli.  As the International Affective Picture System (Peter J. Lang et al.51,58,59) is one of most frequently cited 
tools in the area of affective elicitation6,20, and allows better event-related experimental control, the study selected 
pictures from it as experimental stimuli. The IAPS provides a set of normative colored pictures to induce affective 
states. The standard affective ratings of IAPS pictures were obtained with the easier adapted 9-point SAM scale58. 
Based on the valence and arousal ratings obtained from a prior validation experiment, and the cultural differ-
ences between Chinese and English speaking people, twenty four pictures, depicting 8 pleasant, 8 neutral, and 8 
unpleasant ones, were chosen. The slide numbers of selected pictures are the following: (a) pleasant: 1710, 1722, 
7230, 7260, 7270, 7330, 7460, 8500; (b) neutral: 5510, 5530, 5740, 7000, 7004, 7006, 7010, 7020; and (c) unpleas-
ant: 3010, 3030, 3053, 3060, 3071, 3080, 3102, 3120. In order to train subjects to be familiar with the experimental 
process, three additional neutral pictures (slide No., 5300, 5870 and 7580) were also selected.

Design.  The study adopted the event-related experimental design. subjects were required to passively observe 
affective pictures in the first stage and then rate these pictures in the second stage after the 10 minutes rest (see 
Fig. 8). In the first stage, we presented pleasant, neutral, and unpleasant blocks in sequence, and four-channel 
signals were synchronously recorded by the Biopac MP 150 system. In each block consisting of 8 pictures, picture 
was presented in a random order in the center of the monitor in the testing room for 6 s, with a 0.5 s fixation and 
a random rest time (29 s, 31 s and 34 s). subjects were required to watch each picture during the entire time of 
exposition and try to avoid unnecessary body movements. The recorded signals were environmental temperature, 
Pulse, SC, ECG, and subject’s facial videos. After 10 minutes rest, subjects were required to rate pictures. With a 
0.5 s fixation and 6 s picture presentation, subjects immediately rated pictures that were presented at the complete 
random order by clicking the corresponding buttons in the SAM scales44,47,57,58 on screen. The valence and arousal 



www.nature.com/scientificreports/

1 0Scientific Reports | 6:23384 | DOI: 10.1038/srep23384

scores of each picture were automatically recorded and converted. The particular details of establishing affective 
data acquisition system and signal acquisition settings are stated in the Supplementary Affective data acquisition 
system and settings where the Psychophysics Toolbox Version 364,65 and “standard methodology” for SC66 are 
used.

Mathematical foundations.  Here, four mathematical foundations are stated. They are the Lim’s nonlinear 
curve fitting to extract pure affective SCRs, a statistical formula to construct the simulated data sets, the HMPR to 
approximate the assumed implicit complex mapping relationship that translates pure SCRs into their correspond-
ing affective states, and model evaluation metrics to choose and evaluate models.

Lim’s nonlinear curve fitting.  In 1997, the nonlinear curve fitting was used by Lim et al. to decompose 
event-related skin conductance signals into their tonic and phasic components (SCLs and SCRs)45. The pure SCR 
waveform can be mathematically described by a four-parameter function model as follows:
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where the four parameters are: g is gain, being related with the neural activation intensity; Tos is response onset 
time, indicating its time latency after a stimulus; tr is rise time, indicating its rising slope pattern, and td is decay 
time constant, indicating its decay pattern. Following this pure SCR model (equation (3)), Lim et al. used a 
six-parameter SC model to describe typical SC signals that has a SCR occurring on a decaying limb of a previous 
response by adding a term +−a e c0

t
td  to f(t), where a0 is the initial value of the SC signal at stimulus onset and c 

represents the tonic constant (SCL). Given an event-related typical SC signal, the tail of the previous response 

Figure 8.  Experimental Design. In the first stage, experimental stimuli are grouped in to pleasant, neutral, 
and unpleasant blocks. Each block contains eight pictures. For each trial, after a 0.5 s fixation the picture 
presentation last for 6 s and a random rest followed (29 s, 31 s and 34 s). In the second stage, subjects were 
required to rate pictures’ valence and arousal by the SAM scales.
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−a e0
t

td , one SCR f(t), and the SCL c are successfully separated by the standard iterative non-linear least-squares 
routine known as the Marquardt-Levenberg method45.

A statistical formula.  A statistical formula is stated in the following theorem whose analytical derivations are 
seen in the Supplementary Proof of the data extending theorem. Applying the statistical formula, one can con-
struct a new random variable set from a sample of a population. The size of the new set is −n n( 1)

2
 if the size of the 

sample is n.
Theorem 1 (Data extending theorem) Let ξ1, ξ2, … , ξn be a sample of a population ξ with a finite mean μ and 

variance σ2, then

1):	 The new random variables

η
ξ ξ

µ=
+

+ − ∈ ≠i j n and i j
2

(1 2 ) , , {1,2, , } ,
(4)ij

i j

have the mean μ and variance σ2;
2):		 The correlation coefficient of any two different random variables, ηij and ηkl, i, j, k,  ∈ l n{1, 2, , }, is 0 or 0.5;
3):	 The correlation coefficient of any two different random variables, ηij and ξk, i, j,  ∈ k n{1, 2, , }, is 0 or 2

2
.

Higher-order Multivariable Polynomial Regression.  To accurately approximate a multivariable smoothing func-
tion on experimental observations, the HMPR method is a good choice because of the Taylor theorem. For a 
single-output static system that is governed by a m-variable smooth function = y g x x x( , , , )m1 2 , the pth-order 
multivariable polynomial function 
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can be used to approximate the smooth function g x x x( , , , )m1 2  at any precision no matter how complex the 
function g x x x( , , , )m1 2  is, where x x x, , , m1 2  is the input variables of the system, the order p is a certain non-
negative integer, and β β β β



, , , ,l l l l l l0 p1 1 2 1 2
 are polynomial coefficients. Noting that the multivariable function 

HMP x x x( , , , )p m1 2  (equation (5)) is a linear one with respect to its polynomial coefficients, we can adopt the 
standard linear least square estimation (LSE) to find these polynomial coefficients from experimental 
observations.

Using the HMPR to model a static system, it should be noted that there are two main technical problems: 
requiring big data sets and matrix being singular. In order to obtain an accurate HMPM, it is often to choose a 
relative high order polynomial that has many polynomial coefficients to be estimated. This means that many 
training data points are necessary. To solve the problem of requiring big data sets, we adopted a technology solu-
tion: using equation (4) to construct the simulated data sets, training HMPMs on the simulated data sets, and 
verifying the obtained HMPM on the entire experimental data sets. This technology solution would obtain the 
relative stable performance of the obtained HMPM because testing sets are the entire experimental data sets. 
Since the nonlinear terms 

x x xl l l j1 2
 = j( 1,2,3, ) may result in the occurrence of a numerical singular matrix, 

the singular value decomposition (SVD) and the truncated Least-Squares estimation (tLS) methods are used67. 
The particular details are seen in the Supplementary Particular details on implementing HMPR.

Model evaluation metrics.  In order to evaluate the performance of an estimation model, we adopt the Pearson’s 
correlation coefficient (r) and the mean squared error (MSE) that are the most commonly used evaluation met-
rics5,29, and proposed an index to choose and evaluate computational models. Given an model, the r between 
experimental observations and model predicted values is defined as follows:
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In general, the more accurate the model is, the bigger the r is and the smaller the MSE is. By combining r and 
MSE metrics, the Index is defined as follows:

= .^
^

^
Y Y Y Y

Y Y
Index( , ) r( , )

MSE( , ) (8)

Hence, the better the model is, the bigger the Index is.
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