

HHS Public Access

Semin Reprod Med. Author manuscript; available in PMC 2016 March 21.

Published in final edited form as: *Semin Reprod Med*. 2014 May ; 32(3): 159–165. doi:10.1055/s-0034-1371087.

Intrauterine Environment and PCOS

Author manuscript

Daniel A. Dumesic, M.D.1, **Mark O. Goodarzi, M.D., Ph.D.**2, **Gregorio D. Chazenbalk, Ph.D.**1, and **David H. Abbott, Ph.D.**3,4

¹Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Room 22-178 CHS, Los Angeles, CA 90095, ddumesic@mednet.ucla.edu, telephone 310-794-5542, Fax 310-206-2057; Room 22-222 CHS, Los Angeles, CA 90095 GChazenbalk@mednet.ucla.edu, telephone 310-206-8915, Fax 310-206-2057

²Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Becker B-131, Los Angeles, California, 90048, Mark.Goodarzi@cshs.org, telephone: (310) 423-4774, Fax: (310) 423-0440

³Wisconsin National Primate Research Center, 1223 Capitol Court, Madison, WI, 53715

⁴Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, 53792, abbott@primate.wisc.edu, telephone (608) 263-3583, Fax (608) 263-3524

Abstract

The maternal-fetal environment plays an important role in developmental programming of adult disease. Metabolic and hormonal dysfunction during human fetal development accompanies gestational diabetes as a common occurrence in polycystic ovary syndrome (PCOS) mothers, while human fetal androgen excess from congenital adrenal hyperplasia or virilizing tumors precedes PCOS-like symptoms after birth. To date, clinical studies of infant blood levels at term have yet to confirm that human fetal androgen excess promotes PCOS development after birth. Earlier in development, however, circulating androgen levels in the second trimester female human fetus can normally rise into the male range. Furthermore, midgestational amniotic testosterone levels are elevated in female fetuses of PCOS compared to normal mothers and might influence fetal development, since experimentally-induced fetal androgen excess in animals produces a PCOS-like phenotype with reproductive and metabolic dysfunction. Such alterations in the maternal-fetal environment likely program adult PCOS by epigenetic modifications of genetic susceptibility of the fetus to PCOS after birth. Understanding this phenomenon requires advanced fetal surveillance technologies and postnatal assessment of midgestational androgen exposure for new clinical strategies to improve reproduction in PCOS women, optimize long-term health of their offspring, and minimize susceptibility to acquiring PCOS in future generations.

Keywords

polycystic ovary syndrome (PCOS); hyperandrogenism; hyperinsulinemia; adiposity; developmental programming; fetal development

Corresponding Author: Daniel A Dumesic, M.D., Department Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Room 22-178 CHS, Los Angeles, California 90095, Telephone 310-794-5542; FAX 310-206-2057.

Introduction

Polycystic ovary syndrome (PCOS) is a heterogeneous syndrome in women characterized by luteinizing hormone (LH) hypersecretion, ovarian hyperandrogenism, oligo-anovulation and hyperinsulinemia from insulin resistance. The 1990 National Institutes of Health (NIH)- National Institute of Child Health and Human Development-Conference of PCOS in 1990 recommended that the diagnostic criteria should be hyperandrogenism and/or hyperandrogenemia with oligo-anovulation, excluding other endocrinopathies, including congenital adrenal hyperplasia (CAH), Cushing's syndrome, thyroid dysfunction, hyperprolactinemia, androgen-producing tumors and drug-induced androgen excess¹. With a 6.6% estimated prevalence of NIH-defined PCOS in the United States, the annual economic burden of treating PCOS-related diabetes, menstrual dysfunction and anovulatory infertility was \$4.4 billion in 2005, not considering inflation or pregnancy-related complications, including gestational diabetes, preeclampsia and miscarriage².

In 2003, the Rotterdam consensus expanded the diagnostic criteria of PCOS to include at least two of the following three features: 1) clinical or biochemical hyperandrogenism, 2) oligo-anovulation, and 3) polycystic ovaries (PCO), excluding the previously described endocrinopathies³. These newer Rotterdam criteria for PCOS combine all patients defined by 1990 NIH criteria (i.e., classic PCOS) with additional women with either 1) clinical/ biochemical hyperandrogenism and PCO (i.e., ovulatory PCOS) or 2) PCO with ovulatory dysfunction (but without signs of androgen excess). As a result, the 6–10% worldwide prevalence of PCOS by 1990 NIH criteria has increased to about twice that level using broader Rotterdam criteria due to the inclusion of multiple PCOS phenotypes^{4–6}. As the most common PCOS phenotype, classic PCOS has the greatest reproductive and metabolic dysfunction^{7–8}, while ovulatory PCOS patients have a lower body mass index (BMI) and lesser degrees of hyperinsulinemia and hyperandrogenism than classic PCOS patients. Women with combined PCO and oligo-anovulation (without androgen excess), who do not fulfill the diagnosis of PCOS by the Androgen Excess Society, appear least affected⁷⁻⁹.

Emerging data suggest that the phenotypic expression of adult PCOS may be influenced by the endocrine-metabolic status of the maternal-fetal environment⁵. This hypothesis agrees with the increased prevalence of PCOS in women with classical congenital adrenal hyperplasia (CAH) from 21 hydroxylase deficiency or congenital adrenal virilizing tumors^{10–13}, and with the ability of discrete experimentally-induced prenatal testosterone excess to program a permanent PCOS-like phenotype in several species¹⁴.

This paper addresses the developmental origins of PCOS, whereby maternal maladaptations to pregnancy at a critical gestational age permanently alter fetal susceptibility to PCOS phenotypic expression after birth. This theory of developmental origins of PCOS is based upon the premise that alterations in the maternal-fetal environment permanently program adult disease by epigenetic modifications of genetic susceptibility of the fetus to disease after birth.

Endocrine antecedent to PCOS

Women with congenital adrenal virilizing tumors or classical CAH from 21 hydroxylase deficiency have an increased risk of developing a PCOS-like syndrome in adulthood $10-13$. Such gestational susceptibility to androgens implicates exposure of the female fetus to androgen excess as a modifier of PCOS phenotypic expression after birth. To date, however, a relationship between hyperandrogenism *in utero* and PCOS phenotypic expression in adulthood has been elusive. Women born from opposite sex-twins, for example, do not display an increased prevalence of PCOS-like features, although presumably they share a prenatal environment with a male co-twin that increases their exposure to testosterone¹⁵. Using relative finger length as an anatomical marker of *in utero* androgen exposure, some^{16–17}, but not all^{18–19}, PCOS women have altered length of the second finger relative to the fourth finger as a male characteristic that correlates with hyperandrogenism and ovarian volume (Table 1)^{18–20}. Adult female rhesus monkeys with PCOS-like features induced by early-to-midgestation testosterone excess also exhibit alteration of the same finger length ratio, implying an association between PCOS and finger length mediated by prenatal androgen $excess²¹$. Elevated umbilical cord testosterone levels also occur in some^{22–23}, but not all^{24–25}, newborns of PCOS mothers, but such study findings are inconsistent, perhaps from differences in placental steroidogenesis24–25 or to cord blood collection at term^{22,24,26}, a time point past the critical period of human ovarian differentiation²⁷⁻²⁹.

Perhaps more importantly, amniotic fluid testosterone levels in the second trimester of human development are normally higher in the male than the female fetus, allowing a wider range of testosterone levels to differentially affect fetal development compared to term umbilical vein blood testosterone concentrations that are similar between sexes³⁰. Second trimester amniotic fluid testosterone levels also are elevated in female fetuses of PCOS compared to normal mothers (Table 2^{17} , suggesting that androgen overproduction can occur during human female fetal development under certain pregnancy conditions 31 . Given these findings, therefore, androgen action during the second trimester of human development may influence the developmental programming of the female fetus, assuming a critical time interval in a susceptible fetus when developmental programming occurs.

Ontogeny of the human fetal ovary

If true, a pivotal issue is the ability of the second trimester human fetal ovary to produce androgen during early folliculogenesis. Human ovarian folliculogenesis begins in early fetal development, when germ cells migrate to the gonadal ridge and multiply by mitosis until about 20 weeks of gestation, reaching a maximum number of about 7 million (Figure $1³²$. Oogonial mitosis becomes superimposed with meiosis between 14 and 26 weeks of gestation, as ovigerous cords, packed with oogonia and oocytes, develop into abundant primordial and primary follicles, along with occasional secondary follicles²⁷. Simultaneously, a loose network of primary interstitial cells, containing 17a hydroxylase-17, 20-lyase (P450c17), the major steroidogenic enzyme responsible for androgen production, develops within the stroma as it differentiates in response to local paracrine factors, including extracellular matrix proteins, or fibrillins^{27,33}. Prominent between 15 and 19

weeks of gestation, these primary interstitial cells²⁷ are replaced between 27 and 32 weeks gestation by other P450c17 immunoreactive cells, which collect around growing primary follicles to form the theca interna layer of emerging secondary and small Graafian follicles, joined shortly thereafter by additional P450c17 immunoreactive cells in the hilum. By midgestation, the human fetal ovary has the capacity to produce and detect sex steroids, including androgen and estrogen^{27,29,34–38}, with estrogen believed to regulate folliculogenesis and oocyte development *in utero*39–41. Together, endocrine (i.e., gonadotropins) and paracrine facilitators of follicular growth (i.e., androgens, growth factors such as activin and insulin-like growth factors) interact with survival and atresia factors to establish the maximal germ cell endowment of the fetal ovary, which then diminishes to about $1-2$ million at birth and 300,000 by menarche^{28,32}.

During the second trimester of human fetal development, a transient rise of pituitary gonadotropins increases androgen production by the testes compared to the ovary, temporarily elevating circulating androgen levels in the male compared to the female fetus^{28,42}. This sexual dimorphism in androgen production by the human fetus disappears by birth^{28,42}. At midgestation, human fetal ovaries also have several steroidogenic enzymes; genes encoding multiple steroid signaling pathways; and receptors to steroids, insulin, insulin-like growth factor (IGF)-I and IGF-II^{27,29,34,35}. They do not, however, have functional LH-like receptors³⁷. Nevertheless, cultured human fetal ovaries at this gestational age can metabolize pregnenolone sulfate to dehydroepiandrosterone (DHEA) and androstenedione³⁶ and also can secrete in decreasing amounts DHEA, progesterone and estrone; with lesser amounts of androstenedione, estradiol and testosterone³⁷.

Therefore, although lacking functional LH-like receptors, midgestational human fetal ovaries may produce androgens *in vivo*, particularly in response to insulin, which may contribute to wide variation in fetal androgen production, as evidenced by 40% of midgestational female fetuses having elevated serum androgen levels into the normal male range^{41,42}. This hypothesis agrees with previous reports in diabetic women of elevated amniotic fluid testosterone levels 43 , along with findings of hirsutism, ovarian theca-lutein cysts and thecal cell hyperplasia in their female stillbirth offspring^{44,45}.

Abnormalities of the PCOS maternal-fetal environment

To date, however, the link between androgen excess *in utero* and the maternal environment remains unclear. Maternal serum androgen levels in midgestation are greater in PCOS than normal women⁴⁶, but are unlikely to directly program PCOS in offspring if placental aromatization is normal26, even though reduced aromatase activity in term placenta from PCOS women likely contributes to elevated maternal androgen production²⁵. Rather, an increased risk of developing maternal glucose intolerance in PCOS women may induce intrauterine hyperglycemia, which may stimulate fetal insulin release as a secretegogue for ovarian androgen production and/or folliculogenesis in the female fetus $47-50$. In support of this, prenatal testosterone administration to female rhesus monkeys impairs maternal-fetal glucose-insulin homeostasis and stimulates fetal insulin release⁵¹, consistent with several animal models establishing links between gestational hyperglycemia, fetal androgen excess and various adult PCOS-like phenotypes⁵².

Such maternal-fetal environment dysfunction may underlie several endocrine antecedents of PCOS previously reported in girls born to PCOS mothers. For example, infant girls born to PCOS mothers exhibit anti-mullerian hormone (AMH) overproduction as a marker of growing follicles, which persists in prepubertal life (along with exaggerated ovarian responsiveness to leuprolide administration) and improves when PCOS mothers receive metformin in pregnancy, beginning at or before conception^{53,54}. In addition, serum leptin levels in newborns of PCOS women positively correlate with birth weight and maternal BMI at midgestation⁵⁵. During puberty, enlarged ovaries and hyperinsulinemia in female children of PCOS women coexist with LH hypersecretion and androgen excess⁵⁶⁻⁵⁸.

In addition to glucose intolerance, PCOS women in pregnancy also are at increased risk of developing diabetes, pregnancy-induced hypertension, pre-eclampsia, preterm birth, impaired endovascular trophoblast invasion and abnormal placentation $17,47-50,59$, all of which may alter developmental programming of the infant. Successful fetal adaptation to maternal nutrient overabundance favors the development of large for gestational age infants, contributing to the positive association between maternal BMI at term and infant birth weight $24,60,61$. On the other hand, impaired fetal nutrient availability from placental insufficiency likely accompanies low infant birth weight associated with maternal diabetes⁶¹, PCOS pregnancies in Chilean and Iranian women^{23,62} and precocious puberty accompanying PCOS in northern Spanish women⁶³. Therefore, different pathophysiological mechanisms, based upon the endocrine-metabolic status of the maternal-fetal environment, likely influence the birth weight of infants born to PCOS women.

Such pathophysiological mechanisms also may exert subtle developmental programming effects on the fetus after birth despite normal infant birth weight $24,50,64-67$. For example, exposure of female rhesus monkeys to prenatal testosterone excess impairs fetal glucoseinsulin homeostasis without affecting infant birth weight and alters the trajectory of neonatal growth after birth 51 . As adults, female rhesus monkeys exposed to prenatal testosterone show disrupted development of subcutaneous abdominal adipocytes⁶⁸, mimicking androgen inhibition of human adipose stem cell commitment to predipocyte formation⁶⁹ and possible effects on a more primitive population of human adipose stem cells with pluripotent stem characteristics⁷⁰.

Genetic and epigenetic mechanisms

The inherited nature of PCOS has been well established by family and twin studies. The prevalence of PCOS in female first-degree relatives of affected women is 20–40%, substantially higher than the general population prevalence^{71,72}. Twin studies comparing the correlation of PCOS diagnosis between monozygotic and dizygotic twins have estimated the heritability of PCOS as 70%, suggesting that most susceptibility arises from genetic factors73. Heritability is commonly assumed to reflect the effects of inherited genomic variation; however, it may also reflect the effects from shared disease-predisposing environments. The latter is particularly relevant when considering that adverse intrauterine environments may contribute to disease risk, e.g. daughters of a woman with PCOS would be exposed to the same intrauterine environment. Thus, fetal androgen excess and consequent reprogramming may contribute to some portion of the 70% heritability.

Despite little progress in candidate gene studies of small sample sizes, genome-wide association studies (GWAS) in large Chinese cohorts with robust replication recently have identified variants in 11 genomic regions (loci) as risk factors for $PCOS^{74,75}$. Assuming the gene nearest to each variant is responsible for the risk-altering effect, the GWAS-discoveries include *DENND1A, LHCGR, THADA, FSHR, C9orf3, YAP1, RAB5B/SUOX, HMGA2, TOX3, INSR*, and *SUMO1P1*. Only *LHCGR, FSHR*, and *INSR*, which encode receptors for LH/hCG, FSH and insulin, respectively, have clear functional relevance to the pathophysiology of PCOS. How the remaining genes might influence PCOS remains unknown.

Nevertheless, variants in some of these established PCOS susceptibility genes might influence fetal reprogramming of PCOS by altering 1) fetal or maternal androgen production, 2) fetal responsiveness to androgen exposure, 3) placental steroid production or clearance, or 4) placenta-related (e.g. placental insufficiency, abnormal placentation) as well as pregnancy-related (e.g. pre-eclampsia, pregnancy-induced hypertension, gestational diabetes) complications. For example, perhaps fetal ovaries with inherited PCOSpredisposing variants in *LHCGR*, unlike normal fetal ovaries³⁷, express functional receptors, promoting excessive LH-stimulated androgen production at midgestation. Alternatively, *INSR* variation may increase fetal ovarian responsiveness to insulin, thereby promoting ovarian androgen production in the fetus in response to its own hyperinsulinemia from maternal hyperglycemia. That several PCOS genes (*THADA, HMGA2, SUOX*) have also been implicated in diabetes^{76–78} raises the possibility that fetal reprogramming is related to disturbed maternal-fetal glucose homeostasis. Equally important, several of these loci (*LHCGR/FSHR* region, *INSR, TOX3*) are associated with anthropometric measures (BMI, waist circumference, height)^{79,80}, which could affect fetal reprogramming through fetal growth; while *C9orf3* codes for aminopeptidase O, a testicular and placental protease generating angiotensin IV from angiotensin III^{81} , which might promote placental dysfunction, pregnancy-induced hypertension, and fetal androgen excess.

Although the molecular mechanism of reprogramming by intrauterine events is unknown, epigenetic changes induced by an altered *in utero* environment is a likely mechanism⁸². Epigenetics refers to modifications of genomic DNA that can be passed to subsequent generations (such as DNA methylation and histone modification), allowing the environment to have permanent changes on gene expression. Rodents^{83,84} and rhesus monkeys⁸⁵ experimentally exposed to androgen excess *in utero* have been found to exhibit alterations in DNA methylation at specific genes. Of interest, one of these genes is *LHCGR*83, one of the susceptibility genes discovered by GWAS in humans⁷⁵, which demethylated would likely be overexpressed and capable of promoting fetal androgen excess and enhancing LH stimulation of adipogenesis 86 . Such altered LH signaling in visceral fat of LH hypersecreting infant and adult monkeys, exposed to androgen excess *in utero*, has been linked with differential DNA methylation of specific gene promoter sites in this fat depot⁸⁵, which may be constrained by testosterone in its capacity to safely store $fat^{68,69}$.

Future directions

Future studies need to examine how alterations in the maternal-fetal environment program adult PCOS by epigenetic modifications of fetal genetic susceptibility to PCOS after birth. If metabolic disorders of pregnancy, such as PCOS, obesity and diabetes mellitus, induce androgen overproduction by the midgestational human fetal ovary, then advanced fetal surveillance technologies and postnatal assessment of intrauterine androgen exposure will be required to understand whether adult PCOS can be reprogramed in susceptible female offspring. Equally important, abnormal placentation may simultaneously affect fetal adaptation to maternal nutrient availability, with altered placental DNA methylation⁸⁷ or other epigenetic and metabolic abnormalities influencing fetal growth, infant birth weight and long-term physiology of the offspring^{43,88,89}. As the number of robust susceptibility loci for PCOS emerges from ongoing GWAS data, additional studies will be needed to interrogate the possible role of these genes in fetal reprogramming of PCOS.

Finally, experimental constraints on using human fetal tissue for biomedical research limit our knowledge of the relationships between the human fetus and its maternal environment. Therefore new knowledge of how developmental programming affects human health requires animal models to explore the probable fetal origins of adult disease. Such animal studies need to examine how developmentally relevant endocrine/paracrine factors and genes interact to govern human fetal development, including the role of ovarian steroidogenesis in the developmental programming of target tissues. With such information, new clinical strategies promise to improve the endocrine-metabolic status of PCOS women in pregnancy, optimize long-term health of their offspring, and minimize susceptibility to acquiring PCOS and its metabolic derangements in future generations.

Acknowledgments

This study was funded by a grant from The Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD), NIH through cooperative agreement U54 HD071836.

References

- 1. Zawadzki, J.; Dunaif, A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif, A.; Givens, JR.; Haseltine, FP.; Merriam, GR., editors. Polycystic Ovary Syndrome. Boston, MA: Blackwell Scientific; 1992. p. 377-384.
- 2. Azziz R, Marin C, Hoq L, Badamgarav E, Song P. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab. 2005; 90:4650–4658. [PubMed: 15944216]
- 3. The Rotterdam ESHRE/ASRM-sponsored PCOS consensus workshop group: Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004; 19:41–47. [PubMed: 14688154]
- 4. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004; 89:2745–2749. [PubMed: 15181052]
- 5. Fauser BCJM, Tarlatzis B, Rebar R, et al. Consensus on women's health aspects of polycystic ovary syndrome. The Amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil Steril. 2012; 97:28–38. [PubMed: 22153789]

- 6. March WA, Moore VM, Willson KJ, Phillips DIW, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010; 25:544–551. [PubMed: 19910321]
- 7. Carmina E, Chu MC, Longo RA, Rini GB, Lobo RA. Phenotypic variation in hyperandrogenic women influences the findings of abnormal metabolic and cardiovascular risk parameters. J Clin Endocrinol Metab. 2005; 90:2545–2549. [PubMed: 15728203]
- 8. Welt CK, Gudmundsson JA, Arason G, et al. Characterizing discrete subsets of polycystic ovary syndrome as defined by the Rotterdam criteria: the impact of weight on phenotype and metabolic features. J Clin Endocrinol Metab. 2006; 91:4842–4848. [PubMed: 17003085]
- 9. Azziz R, Carmina E, Dewailly D, et al. POSITION STATEMENT: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab. 2006; 91:4237–4245. [PubMed: 16940456]
- 10. Barnes RB, Rosenfield RL, Ehrmann DA, et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab. 1994; 79:1328–1333. [PubMed: 7962325]
- 11. Merke DP, Cutler GB Jr. New ideas for medical treatment of congenital adrenal hyperplasia. Endocrinol Metab Clin North Am. 2001; 30:121–135. [PubMed: 11344931]
- 12. Phocas I, Chryssikopoulos A, Sarandakou A, Rizos D, Trakakis E. A contribution to the classification of cases of non-classic 21-hydroxylase-deficient congenital adrenal hyperplasia. Gynecol Endocrinol. 1995; 9:229–238. [PubMed: 8540293]
- 13. Stikkelbroeck NM, Hermus AR, Braat DD, Otten BJ. Fertility in women with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Obstet Gynecol Surv. 2003; 58:275–284. [PubMed: 12665708]
- 14. Dumesic DA, Abbott DH, Padmanabhan V. PCOS and its Developmental Origins. Rev Endocr Metab Disord. 2007; 8:127–141. [PubMed: 17659447]
- 15. Kuijper EAM, Vink JM, Lambalk CB, Boomsma DI. Prevalence of polycystic ovary syndrome in women from opposite-sex twin pairs. J Clin Endocrinol Metab. 2009; 94:1987–1990. [PubMed: 19351727]
- 16. Cattrall FR, Vollenhoven BJ, Weston GC. Anatomical evidence for in utero androgen exposure in women with polycystic ovary syndrome. Fertil Steril. 2005; 84:1689–1692. [PubMed: 16359966]
- 17. Palomba S, Marotta A, Cello AD, et al. Pervasive developmental disorders in children of hyperandrogenic women with polycystic ovary syndrome: a longitudinal case-control study. Clin Endocrinol. 2012; 77:898–904.
- 18. Lujan M, Bloski T, Chizen D, Lehotay D, Pierson R. Digit ratios do not serve as anatomical evidence of prenatal androgen exposure in clinical phenotypes of polycystic ovary syndrome. Hum Reprod. 2010; 25:204–211. [PubMed: 19855107]
- 19. Lujan ME, Podolski AJ, Chizen DR, Lehotay DC, Pierson RA. Digit ratios by computer-assisted analysis confirm lack of anatomical evidence of prenatal androgen exposure in clinical phenotypes of polycystic ovary syndrome. Reprod Biol Endocrinol. 2010; 8:156–163. [PubMed: 21189149]
- 20. Lutchmaya S, Baron-Cohen S, Raggatt P, Knickmeyer R, Manning JT. 2nd to 4th digit ratios, fetal testosterone and estradiol. Early Hum Dev. 2004; 77:23–28. [PubMed: 15113628]
- 21. Abbott AD, Colman RJ, Tiefenthaler R, Dumesic DA, Abbott DH. Early-to-mid gestation fetal testosterone increases right hand 2D:4D finger length ratio in polycystic ovary syndrome-like monkeys. PLoS ONE. 2012; 7:e42372. [PubMed: 22927929]
- 22. Barry JA, Kay AR, Navaratnarajah R, et al. Umbilical vein testosterone in female infants born to mothers with polycystic ovary syndrome is elevated to male levels. J Obstet Gynaecol. 2010; 30:444–446. [PubMed: 20604643]
- 23. Mehrabian F, Kelishadi R. Comparison of the metabolic parameters and androgen level of umbilical cord blood in newborns of mothers with polycystic ovary syndrome and controls. J Res Med Sci. 2012; 17:207–211. [PubMed: 23267369]
- 24. Anderson H, Fogel N, Grebe SK, Singh RJ, Taylor RL. Dunaif A Infants of women with polycystic ovary syndrome have lower cord blood androstenedione and estradiol levels. J Clin Endocrinol Metab. 2010; 95:2180–2186. [PubMed: 20228162]

- 25. Maliqueo M, Lara HE, Sánchez F, Echiburú B, Crisosto N, Sir-Petermann T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013; 166:151–155. [PubMed: 23122578]
- 26. Hickey M, Sloboda DM, Atkinson HC, et al. The relationship between maternal and umbilical cord androgen levels and polycystic ovary syndrome in adolescence: a prospective cohort study. J Clin Endocrinol Metab. 2009; 94:3714–3720. [PubMed: 19567524]
- 27. Cole B, Hensinger K, Maciel GAR, Chang RJ, Erickson GF. Human fetal ovary development involves the spatiotemporal expression of P450c17 protein. J Clin Endocrinol Metab. 2006; 91:3654–3661. [PubMed: 16822821]
- 28. Mesiano, S. The endocrinology of human pregnancy and fetoplacental neuroendocrine development. In: Strauss, JF., III; Barbieri, RL., editors. Yen and Jaffe's Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management. Sixth. Philadelphia, PA: Saunders Elsevier; 2009. p. 248-281.
- 29. Fowler PA, Anderson RA, Saunders PT, et al. Development of Steroid Signaling Pathways during Primordial Follicle Formation in the Human Fetal Ovary. J Clin Endocrinol Metab. 2011; 96:1754–1762. [PubMed: 21430025]
- 30. van de Beek C, Thijssen JHH, Cohen-Kettenis PT, van Goozen SHM, Buitelaar JK. Relationships between sex hormones assessed in amniotic fluid, and maternal and umbilical cord serum: what is the best source of information to investigate the effects of fetal hormonal exposure? Horm Behav. 2004; 46:663–669. [PubMed: 15555509]
- 31. Goodarzi M, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011; 7:219–231. [PubMed: 21263450]
- 32. Adashi, EY. The ovarian follicular apparatus. In: Adashi, EY.; Rock, JA.; Rosenwaks, Z., editors. Reproductive Endocrinology, Surgery, and Technology. Philadelphia, PA: Lippincott-Raven; 1996. p. 18-40.
- 33. Hatzirodos N, Bayne RA, Irving-Rodgers HF, et al. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. FASEB J. 2011; 25:2256–2265. [PubMed: 21411746]
- 34. Voutilainen R, Miller WL. Developmental expression of genes for the stereoidogenic enzymes P450scc (20,22-desmolase), P450c17 (17-hydroxy- lase/17,20-lyase), and P450c21 (21 hydroxylase) in the human fetus. J Clin Endocrinol Metab. 1986; 63:1145–1150. [PubMed: 3489728]
- 35. Shifren JL, Osathanondh R, Yeh J. Human fetal ovaries and uteri: developmental expression of genes encoding the insulin, insulin-like growth factor I, insulin-like growth factor II receptors. Fertil Steril. 1993; 59:1036–1040. [PubMed: 8486170]
- 36. Payne AH, Jaffe RB. Androgen formation from pregnenolone sulfate by the human fetal ovary. J Clin Endocrinol Metab. 1974; 39:300–304. [PubMed: 4278871]
- 37. Wilson EA, Jawad MJ. The effect of trophic agents on fetal ovarian steroidogenesis in organ culture. Fertil Steril. 1979; 32:73–79. [PubMed: 156651]
- 38. George FW, Wilson JD. Conversion of androgen to estrogen by the human fetal ovary. J Clin Endocrinol Metab. 1978; 47:550–555. [PubMed: 263310]
- 39. Pepe GJ, Billiar RB, Albrecht ED. Regulation of baboon fetal ovarian folliculogenesis by estrogen. Mol Cell Endocrinol. 2006; 247:41–46. [PubMed: 16420971]
- 40. Albrecht ED, Pepe GJ. Estrogen regulation of placental angiogenesis and fetal ovarian development during primate pregnancy. Int J Dev Biol. 2010; 54:397–408. [PubMed: 19876841]
- 41. Reyes FI, Winter JS, Faiman C. Studies on human sexual development. I. Fetal gonadal and adrenal sex steroids. J Clin Endocrinol Metab. 1973; 37:74–78. [PubMed: 4715296]
- 42. Beck Peccoz P, Padmanabhan V, Baggiani AM, et al. Maturation of hypothalamic-pituitarygonadal function in normal human fetuses: circulating levels of gonadotropins, their common alpha-subunit and free testosterone, and discrepancy between immunological and biological activities of circulating follicle-stimulating hormone. J Clin Endocrinol Metab. 1991; 73:525–532. [PubMed: 1908479]
- 43. Barbieri RL, Saltzman DH, Torday JS, Randall RW, Frigoletto FD, Ryan KJ. Elevated concentrations of the β-subunit of human chorionic gonadotropin and testosterone in the amniotic

fluid of gestations of diabetic mothers. Am J Obstet Gynecol. 1986; 154:1039–1043. [PubMed: 2422936]

- 44. Driscoll SG, Benirschke K, Curtis GW. Neonatal deaths among infants of diabetic mothers. Postmortem findings in ninety-five infants. Am J Dis Child. 1960; 100:818–835. [PubMed: 13724426]
- 45. Hultquist GT, Olding LB. Endocrine pathology of infants of diabetic mothers. A quantitative morphological analysis including a comparison with infants of iso-immunized and of non-diabetic mothers. Acta Endocrinol (Copenh). 1981; 241(Suppl):1–202.
- 46. Sir-Petermann, Maliqueo TM, Angel B, Lara HE, Pérez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovarian syndrome: possible implications in prenatal androgenization. Hum Reprod. 2002; 17:2573–2579. [PubMed: 12351531]
- 47. Boomsma CM, Eijkemans MJC, Hughes EG, Visser GHA, Fauser BCJM, Macklon NS. A metaanalysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update. 2006; 12:673–683. [PubMed: 16891296]
- 48. Kjerulff LE, Sanchez-Ramos L, Duffy D. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis. Am J Obstet Gynecol. 2011; 204:558.e1–558.e6. [PubMed: 21752757]
- 49. Altieri P, Gambineri A, Prontera O, Cionci G, Franchina M, Pasquali R. Maternal polycystic ovary syndrome may be associated with adverse pregnancy outcomes. Eur J Obstet Gynecol Reprod Biol. 2010; 149:31–36. [PubMed: 20056308]
- 50. Bjercke S, Dale PO, Tanbo T, Storeng R, Ertzeid G, Abyholm T. Impact of insulin resistance on pregnancy complications and outcome in women with polycystic ovary syndrome. Gynecol Obstet Invest. 2002; 54:94–98. [PubMed: 12566751]
- 51. Abbott DH, Bruns CR, Barnett DK, et al. Experimentally-induced gestational androgen excess disrupts glucoregulation and stimulates growth in fetal and neonatal female rhesus monkeys. Am J Physiol Endocrinol Metab. 2010; 299:E741–E751. [PubMed: 20682841]
- 52. Abbott. Semin Reprod Med. Present Edition, reference pending. 2013
- 53. Sir-Petermann T, Codner E, Maliqueo M, et al. Increased anti-Mullerian hormone serum concentrations in prepubertal daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006; 91:3105–3109. [PubMed: 16720659]
- 54. Crisosto N, Echiburú B, Maliqueo M, et al. Improvement of hyperandrogenism and hyperinsulinemia during pregnancy in women with polycystic ovary syndrome: possible effect in the ovarian follicular mass of their daughters. Fertil Steril. 2012; 97:218–224. [PubMed: 22088206]
- 55. Maliqueo M, Echiburu B, Crisosto N, et al. Metabolic parameters in cord blood of newborns of women with polycystic ovary syndrome. Fertil Steril. 2009; 92:277–282. [PubMed: 18555232]
- 56. Crisosto N, Codner E, Maliqueo M, et al. Anti-Mullerian hormone levels in peripubertal daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007; 92:2739–2743. [PubMed: 17488788]
- 57. Kent SC, Gnatuk CL, Kunselman AR, Demers LM, Lee PA, Legro RS. Hyperandrogenism and hyperinsulinism in children of women with polycystic ovary syndrome: a controlled study. J Clin Endocrinol Metab. 2008; 93:1662–1669. [PubMed: 18270257]
- 58. Sir-Petermann T, Codner E, Pérez V, et al. Metabolic and reproductive features before and during puberty in daughters of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009; 94:1923–1930. [PubMed: 19223518]
- 59. Yamamoto M, Feigenbaum SL, Crites Y, et al. Risk of preterm delivery in non-diabetic women with polycystic ovarian syndrome. J Perinatol. 2012; 32:770–776. [PubMed: 22261835]
- 60. Cresswell JL, Barker DJ, Osmond C, Egger P, Phillips DI, Fraser RB. Fetal growth, length of gestation, and polycystic ovaries in adult life. Lancet. 1997; 350:1131–1135. [PubMed: 9343501]
- 61. Mumm H, Kamper-Jørgensen M, Nybo Andersen AM, Glintborg D, Andersen M. Birth weight and polycystic ovary syndrome in adult life: a register-based study on 523,757 Danish women born 1973–1991. Fertil Steril. 2013; 99:777–782. [PubMed: 23200688]
- 62. Sir-Petermann T, Hitchsfeld C, Maliqueo M, et al. Birth weight in offspring of mothers with polycystic ovarian syndrome. Hum Reprod. 2005; 20:2122–2126. [PubMed: 15802312]

- 63. Ibanez L, Potau N, Francois I, de Zegher F. Precocious Pubarche, Hyperinsulinism, and Ovarian Hyperandrogenism in Girls: Relation to Reduced Fetal Growth. J Clin Endocrinol Metab. 1998; 83:3558–3562. [PubMed: 9768664]
- 64. Legro RS, Roller RL, Dodson WC, Stetter CM, Kunselman AR, Dunaif A. Associations of birthweight and gestational age with reproductive and metabolic phenotypes in women with polycystic ovarian syndrome and their first-degree relatives. J Clin Endocrinol Metab. 2010; 95:789–799. [PubMed: 19965924]
- 65. Laitinen J, Taponen S, Martikainen H, et al. Body size from birth to adulthood as a predictor of self-reported polycystic ovary syndrome symptoms. Int J Obes Relat Metab Disord. 2003; 27:710– 715. [PubMed: 12833115]
- 66. Haakova L, Cibula D, Rezabek K, Hill M, Fanta M, Zivny J. Pregnancy outcome in women with PCOS and in controls matched by age and weight. Hum Reprod. 2003; 18:1438–1441. [PubMed: 12832369]
- 67. Mikola M, Hiilesmaa V, Halttunen M, Suhonen L, Tiitinen A. Obstetric outcome in women with polycystic ovarian syndrome. Hum Reprod. 2001; 16:226–229. [PubMed: 11157811]
- 68. Chazenbalk, GD.; Aguilera, P.; Keller, E.; Dumesic, DA.; Abbott, DH. Altered transition of adipose stem cell commitment to early preadipocyte differentiation in subcutaneous abdominal adipose tissue of adult PCOS-like female rehsus monkeys. Paper presented at: 95th Annual Meeting of the Endocrine Society; June 15–18, 2013; San Francisco, CA. Poster Mon-555
- 69. Chazenbalk G, Singh P, Irge D, Shah A, Abbott DH, Dumesic DA. Androgens inhibit adipogenesis during human adipose stem cell commitment to predipocyte formation. Steroids. 2013; 78:920– 926. [PubMed: 23707571]
- 70. Heneidi S, Simerman AA, Keller E, et al. Awakened by Cellular Stress: Isolation and Characterization of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose Tissue. PlosOne. 10.1371/journal.pone.0064752.
- 71. Legro RS, Driscoll D, Strauss JF 3rd, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci U S A. 1998; 95:14956– 14960. [PubMed: 9843997]
- 72. Kahsar-Miller MD, Nixon C, Boots LR, Go RC, Azziz R. Prevalence of polycystic ovary syndrome (PCOS) in first-degree relatives of patients with PCOS. Fertil Steril. 2001; 75:53–58. [PubMed: 11163816]
- 73. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab. 2006; 91:2100–2104. [PubMed: 16219714]
- 74. Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011; 43:55–59. [PubMed: 21151128]
- 75. Shi Y, Zhao H, Shi Y, et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet. 2012; 44:1020–1025. [PubMed: 22885925]
- 76. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and largescale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008; 40:638–645. [PubMed: 18372903]
- 77. Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010; 42:579–589. [PubMed: 20581827]
- 78. Hakonarson H, Qu HQ, Bradfield JP, et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes. 2008; 57:1143–1146. [PubMed: 18198356]
- 79. Lango Allen H, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010; 467:832–838. [PubMed: 20881960]
- 80. Fox CS, Heard-Costa N, Cupples LA, Dupuis J, Vasan RS, Atwood LD. Genome-wide association to body mass index and waist circumference: the Framingham Heart Study 100K project. BMC Med Genet. 2007; 8(Suppl 1):S18. [PubMed: 17903300]
- 81. Díaz-Perales A, Quesada V, Sánchez LM, et al. Identification of human aminopeptidase O, a novel metalloprotease with structural similarity to aminopeptidase B and leukotriene A4 hydrolase. J Biol Chem. 2005; 280:14310–14317. [PubMed: 15687497]

- 82. Li Z, Huang H. Epigenetic abnormality: a possible mechanism underlying the fetal origin of polycystic ovary syndrome. Med Hypotheses. 2008; 70:638–642. [PubMed: 17764855]
- 83. Zhu JQ, Zhu L, Liang XW, Xing FQ, Schatten H, Sun QY. Demethylation of LHR in dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome. Mol Hum Reprod. 2010; 16:260–266. [PubMed: 19828691]
- 84. Qu F, Wang FF, Yin R, et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J Mol Med (Berl). 2012; 90:911–923. [PubMed: 22349439]
- 85. Xu N, Kwon S, Abbott DH, et al. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS One. 2011; 6:e27286. [PubMed: 22076147]
- 86. Dos Santos E, Dieudonné MN, Leneveu MC, Pecquery R, Serazin V, Giudicelli Y. In vitro effects of chorionic gonadotropin hormone on human adipose development. J Endocrinol. 2007; 194:313– 325. [PubMed: 17641281]
- 87. Park BH, Kim YJ, Park JS, et al. Folate and homocysteine levels during pregnancy affect DNA methylation in human placenta. J Prev Med Pub Health. 2005; 38:437–442. [PubMed: 16358830]
- 88. Rees WD, Wilson FA, Maloney CA. Sulfur amino acid metabolism in pregnancy: the impact of methionine in the maternal diet. J Nutr. 2006; 136(Suppl 6):1701S–1705S. [PubMed: 16702342]
- 89. Kwong WY, Miller DJ, Wilkins AP, et al. Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses. Mol Reprod Dev. 2007; 74:48–56. [PubMed: 16941667]

Figure 1.

Ontogeny of human fetal development.

Table 1

Reduced second to fourth digit (finger) ratio as a marker of androgen excess in utero in PCOS women. See references 16–19.

Table 2

Second trimester amniotic fluid testosterone levels (nmol/L) from pregnant women with and without hyperandrogenic polycystic ovary syndrome. See reference 17.]

*** , P< 0.001 fetal sex difference

¶ , P< 0.02 female fetus, control vs. PCOS mother