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Abstract

The physiologically predominant signal for pancreatic beta cells to secrete insulin is glucose. 

While circulating glucose levels and beta cell glucose metabolism regulate the amount of released 

insulin, additional signals emanating from other tissues and from neighbouring islet endocrine 

cells modulate beta cell function. To this end, each individual beta cell can be viewed as a sensor 

of a multitude of stimuli that are integrated to determine the extent of glucose-dependent insulin 

release. This review discusses recent advances in our understanding of inter-organ 

communications that regulate beta cell insulin release in response to elevated glucose levels.
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Intestine to beta cell communication

Incretin hormones

The incretin hormones glucagon-like peptide 1 (GLP-1) (1–4) and glucose-dependent 

insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide) are among 

the most widely studied modulators of beta cell function (5–8).

GLP-1—GLP-1, a proteolytic product of pre-proglucagon, which is synthesised and 

secreted from intestinal L cells upon stimulation by intestinal nutrients, is released into the 

circulation shortly after meal intake, increasing circulating GLP-1 levels. At the endocrine 

pancreas, through binding to its cognate stimulatory G protein (Gαs)-coupled receptor 

(GLP-1R), it suppresses alpha cell glucagon secretion and potentiates insulin secretion from 

Correspondence: Mehboob A Hussain, Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, 
Baltimore, MD 21287, USA, mhussai4@jhmi.edu. 

Duality of interest
The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement
All authors were responsible for drafting the article and revising it critically for important content. All authors have approved the 
version to be published.

HHS Public Access
Author manuscript
Diabetologia. Author manuscript; available in PMC 2017 April 01.

Published in final edited form as:
Diabetologia. 2016 April ; 59(4): 659–667. doi:10.1007/s00125-015-3862-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



beta cells in a glucose-dependent manner. It is important to note that GLP-1 action on beta 

cells only occurs when the circulating glucose level is above a certain threshold, which in 

humans lies in the low normoglycaemic range. In the presence of elevated glucose levels, 

beta cell GLP-1R stimulation results in a more pronounced rise in intracellular calcium, and 

the frequency and number of insulin vesicles exocytosed (i.e. insulin secretion) is increased. 

GLP-1 is rapidly degraded enzymatically by dipeptidyl peptidase IV (DPP-IV) located in the 

endothelium, rendering the biological half-life of GLP-1 shorter than 5 min (9)

The above-described concept of GLP-1–GLP-1R action is successfully exploited by diabetes 

pharmacotherapy, with GLP-1R agonists or DPP-IV inhibitors that both augment GLP-1 

action in beta cells and increase insulin secretion in patients with type 2 diabetes mellitus. In 

general, in type 2 diabetic patients, the meal-induced increase in circulating GLP-1 levels is 

similar to that observed in non-diabetic individuals; however, it is not as effective in 

potentiating insulin secretion. The underlying reasons for this remain incompletely 

understood (9). Experimental findings suggest that signals external to beta cells inhibit the 

beta cell response to incretin action (see below) and that, at least in humans with a prolonged 

history of type 2 diabetes, a beta cell autonomous defective response to GLP-1 is 

demonstrable during experimental studies on isolated islets, attributable to the loss of key 

beta cell-defining transcription factors (10).

Recent studies using sophisticated genetic mouse models have provided new insights into 

the physiological and pharmacological mechanisms of GLP-1 action. Mouse models of 

conditional, tissue-specific GLP-1R ablation (11) indicate that the presence of GLP-1R on 

beta cells is not necessary for physiological (not during diabetes and insulin resistance) 

GLP-1 action in modulating beta cell function, and suggest the possibility that GLP-1R 

activation in afferent neurons located in the intestine or portal venous vasculature may relay 

GLP-1 action indirectly via neuronal mechanisms to beta cells (11). Selective beta cell 

ablation of GLP-1R in mice did not alter insulin secretion or glucose tolerance during oral or 

intraperitoneal glucose tolerance tests, while systemic treatment of these mice with a 

pharmacological GLP-1R agonist did result in the absence of insulin secretion potentiation. 

The investigators of these studies concluded that, under physiological conditions, incretin 

action through GLP-1R is independent of the presence of GLP-1R on beta cells, and that the 

effects of GLP-1 may be mediated via non-endocrine mechanisms. These findings raise the 

possibility that in type 2 diabetes the absence of incretin action may not be solely due to the 

diminished response of beta cells to GLP-1, but, rather, may be due to disruptions in 

neuronal relay mechanisms between the intestine and the endocrine pancreas (11).

In addition to GLP-1, L cells synthesise and secrete other endocrine hormones that may 

influence beta cell function. In the rat, the epithelium of the proximal portion of the intestine 

contains L cells that produce cholecystokinin (CCK) and neurotensin, while distally 

localised L cells express peptide YY (PYY) (12).

GIP and xenin-25—In contrast to GLP-1 agonist treatment, pharmacological 

administration of GIP fails to augment glucose-stimulated insulin secretion (GSIS) in 

humans with type 2 diabetes. The mechanisms of action of GIP, which is secreted from 

intestinal epithelial K cells, as an incretin hormone appear to be more complex than those of 
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GLP-1. Importantly, a second protein, called xenin-25, is co-synthesised and secreted from 

K cells (13). Mice selectively lacking K cells exhibit a blunted response to exogenous GIP 

replacement, and in vivo co-administration of xenin-25 restores GIP incretin action (13). In 

vitro studies on xenin-25 and GIP treatment of mouse islets indicate that xenin-25 does not 

act directly on beta cells. Rather, xenin-25 acts by stimulating cholinergic signalling to beta 

cells via non-ganglionic circuitry that, to date, remains to be characterised (14).

Co-administration of xenin-25 with GIP potentiates GSIS in non-diabetic people but not in 

individuals with established type 2 diabetes. However, co-treatment with recombinant 

xenin-25 and GIP reduces postprandial glycemia by delaying gastric emptying in humans 

with or without type 2 diabetes (15). Thus, while GIP is considered an incretin hormone, its 

mechanisms of action and its significance in glucoregulation remain to be fully understood. 

Importantly, establishing why combined recombinant xenin-25/GIP treatment is ineffective 

in type 2 diabetic patients may further our understanding of beta cell failure in type 2 

diabetes.

Furthermore, studies in mice lacking GIP (as opposed to lacking K cells, described above) 

suggest a wider role for GIP in metabolic control. Absence of GIP production in mice, 

slightly impairs GSIS and glucose tolerance. However, when placed on a high-fat content 

diet, the absence of GIP protects against obesity and insulin resistance and maintains 

increased fatty acid oxidation (16).

More recently, studies of GIP receptor (GIPR) ablation specifically in mouse beta cells (17) 

reveal at least two signalling pathways that are engaged by GIPR activation in beta cells. 

The first is the well-known activation of cyclic AMP (cAMP) production, the second is the 

extracellular signal-regulated kinase (ERK)-dependent pathway. GIPR–ERK but not cAMP-

dependent signalling in beta cells stimulates the expression of T cell-specific transcription 

factor-1 (TCF1), which is encoded by Tcf7 (17). Mice lacking GIPR specifically in beta 

cells exhibit normal glucose tolerance, while glucose-stimulated insulin secretion is slightly 

dampened. Interestingly, the response to GLP-1R activation in GIPR-ablated islets is 

augmented, suggesting potential compensatory mechanisms that maintain insulin secretion 

in the absence of GIPR signalling.

Importantly, Tcf7 levels are lower in islets of diabetic mice and in humans with type 2 

diabetes, and Tcf7−/− mice exhibit increased susceptibility to apoptotic injury and glucose 

intolerance with aging or during increased metabolic demand in the fact of high fat content 

diet feeding (17) The antiapoptotic actions in beta cells of TCF1 are likely to be mediated by 

the TCF7 target pituitary tumour-transforming gene 1 (Pttg1), which encodes securin, a 

protein involved in DNA repair and chromosome stabilising mechanisms. Thus, a GLP-1R-

independent, GIPR–ERK–TCF1–PTTG1 axis is proposed to exert protective and 

antiapoptotic effects on beta cells (17).

Decretin hormones

Neuromedin U—While the incretin hormones stimulate increased insulin release from 

beta cells in the feeding state, prolonged nutrient deprivation and fasting are accompanied 

by reduced insulin secretion (i.e. ‘fasting diabetes’) (18). This dampened insulin secretion is 
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not readily reversed by i.v. glucose supply, arguing against a simple absence of nutrients 

(i.e. glucose) and for an active suppression of beta cell insulin secretion as a regulatory 

mechanism of beta cell function during periods of nutrient deprivation (17). Such 

observations have propagated the concept of decretin hormones that act during fasting to 

regulate in a manner inverse to that of incretins.

Indeed, using a nutrition-deprived Drosophila melanogaster model, limostatin was found to 

be upregulated in gut-associated endocrine cells and to suppress secretion from Drosophila 

insulin-like peptide-producing cells by interacting with the Drosophila orthologue of the 

inhibitory neuromedin U receptor (NMUR) (19). NMUR1 is a G protein-coupled receptor 

that, in mammals, mediates the peripheral actions of NMU. It can be localised to human beta 

cells, and in perifusion assays of human islets, NMU suppresses GSIS. Furthermore, in 

humans, NMU expression is detectable in foregut-derived stomach and duodenum, and its 

immunoreactivity is localised to chromogranin B-positive enteroendocrine cells in the 

duodenal epithelium (19). Circulating NMU concentrations during fasting and feeding have 

not been reported to date. Although it is unclear whether NMU fulfils this classical criterion 

of a bone fide hormone, NMU appears to possess all the other properties expected of a 

decretin (19).

Remarkably, an NMU variant, NMU R165W, which in humans confers autosomal-dominant 

early-onset obesity, fails to suppress GSIS in perifusion studies, suggesting a sequential 

pathogenic link between increased insulin secretion followed by increased risk of obesity in 

humans (19).

Ghrelin and galanin—Ghrelin and galanin are two more hormones that are synthesised 

and secreted from the gastrointestinal tract and suppress beta cell glucose responsiveness. 

Ghrelin is produced in foregut-derived stomach epithelium and also in endocrine cells 

located in the pancreatic islet (epsilon cells) (20–22). Specific post-translational acylation by 

ghrelin O-acyltransferase (GOAT) is required for ghrelin to bind to and activate its receptor 

(23). Fasting induces ghrelin expression in both stomach epithelium and the central nervous 

system. Circulating acyl-ghrelin levels increase during nutritional deprivation. Furthermore, 

acyl-ghrelin potently inhibits GSIS in vivo in mice and in cultured islets in vitro via 

interaction with the ghrelin receptor. Ghrelin-deficient mice are less protected from fasting-

induced hypoglycaemia (24, 25). Collectively, these findings indicate that ghrelin may 

function as a fasting-induced hormone, exerting, among other effects, homeostatic effects 

that serve to suppress insulin secretion and protect against hypoglycaemia. Furthermore, 

specific pharmacological inhibition of GOAT, an enzyme with the exclusive function of 

activating ghrelin function, results in increased in vivo insulin secretion and improved 

glucose homeostasis in animal models of diet-induced obesity and glucose intolerance (26).

Galanin is expressed in neuronal and intestinal tissue and, in vitro, suppresses GSIS from 

isolated rodent islets. The regulation of galanin secretion and the mechanisms by which it 

regulates insulin secretion in humans remain unknown. In experimental systems, it is likely 

that galanin inhibits insulin secretion via interaction with a G protein-coupled receptor that 

signals through Gα(o2) (27, 28).
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Liver to beta cell communication

Hyperglucagonaemia has long been recognised as a hallmark of type 2 diabetes. 

Furthermore, subsets of individuals who are at risk for developing type 2 diabetes (i.e. first-

degree relatives of patients with type 2 diabetes) also exhibit relative hyperglucagonemia. 

The mechanistic link between hyperglucagonemia and defective insulin secretion in type 2 

diabetes has recently been elucidated using genetic mouse models (29). Glucagon acts on a 

relatively small number of target cells and orchestrates processes that protect against or aid 

recovery from hypoglycaemia. In the liver, glucagon binds to its Gαs-coupled receptor to 

stimulate cyclic AMP (cAMP) synthesis, which in turn binds to the regulatory subunit of 

protein kinase A (PKA) holoenzyme, thereby releasing and activating the catalytic subunit 

of PKA. Subsequent downstream signalling results in glucose mobilisation from glycogen 

stores and transcriptional upregulation and activation of the gluconeogenesis program (29).

As expected, transgenic hepatocyte-specific overexpression of the catalytic subunit of PKA 

in mice results in the upregulation of the transcriptional gluconeogenesis program and in 

hyperglycaemia. However, insulin secretion remains insufficient to adequately control 

glycaemia. Similarly, selective ablation of the gene encoding PKA regulatory subunit 1a 

(Prkar1a) in hepatocytes also results in increased hepatic glucose production and insulin 

secretion insufficient to control blood glucose levels (29). Mice from the latter study 

harboured a factor in their circulation that inhibited insulin secretion from mouse islets 

cultured in vitro. Gene expression analysis of livers from mice with ablated Prkar1a 

surprisingly revealed the peptide hormone kisspeptin 1 to be upregulated, which in turn 

resulted in elevated circulating kisspeptin 1 levels (30).

The kisspeptin 1 receptor (Kiss1R) is present in abundance on pancreatic beta cells, and 

acute kisspeptin 1 treatment of mice causes impaired glucose tolerance owing to dampened 

GSIS. Kiss1R is related to the galanin and ghrelin receptors, and similar to galanin and 

ghrelin, kisspeptin 1 binds to its cognate receptor and inhibits cAMP production in beta 

cells, thereby dampening GSIS (30). Moreover, mouse models of diabetes mellitus, such as 

the high-fat content diet-fed mouse or the db/db mouse, exhibit elevated liver kisspeptin 1 

production and impaired glucose tolerance. Kisspeptin 1 knockdown in the liver of these 

animal models ameliorates glucose tolerance and increases GSIS. Importantly, humans with 

diabetes also exhibit increased liver kisspeptin 1 production and circulating kisspeptin 1 

levels. Human islets express Kiss1R, and it is likely that, as in the mouse model, kisspeptin 

1 would impair GSIS from human islets (30).

In summary, a tri-hormonal glucoregulatory endocrine circuit exists between the pancreatic 

islet and the hepatocyte. Glucagon stimulates gluconeogenesis in the liver, which raises 

glucose levels and stimulates kisspeptin 1 production, which in turn suppresses insulin 

secretion.

Adipocyte to beta cell communication

Leptin, a hormone produced by adipocytes, suppresses insulin secretion. Pancreatic beta 

cells express the functional long form of the leptin receptor (ObRb), and isolated islets 

incubated in vitro with leptin exhibit reduced GSIS (31–36). Furthermore, in mice, 
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conditional genetic ablation (using the Cre–LoxP system) of ObRb specifically in pancreatic 

beta cells is accompanied by augmented GSIS in vivo. These studies suggest that leptin acts 

directly on pancreatic beta cells to impair insulin secretion. The findings have recently been 

reexamined in light of observations that the transgene carrying Cre recombinase under the 

control of the rat insulin promoter is also expressed ectopically in areas of the brain where 

the leptin receptor is also expressed. More recent studies using a different mouse model of 

beta cell-specific Cre expression while avoiding neuronal Cre expression, suggest that the in 

vivo effects of leptin may not be mediated via its receptor on beta cells (37). Nevertheless, 

as outlined in the section below on the skeletal system, leptin may regulate beta cell function 

indirectly at least in the mouse by controlling bone mass and osteocalcin production.

Adiponectin is another major adipose tissue-derived hormone. In addition to facilitating beta 

cell proliferation and regeneration in mice after in vivo experimental ablation, it has recently 

been shown to modulate beta cell lipid metabolism, thereby protecting beta cells from 

lipotoxicity and preserving beta cell function (38, 39). Further studies related to adiponectin 

receptors are anticipated to elucidate how adiponectin exerts these effects on beta cells.

Other products secreted by adipocytes, such as resistin and fibroblast growth factor 21 

(FGF21), have been proposed to regulate beta cell function (reviewed in (40)). However, 

there are currently insufficient data on these adipocyte-derived products to allow for any 

clear conclusions as to whether these effects occur via direct action on beta cells or 

indirectly via changes in other metabolically relevant tissues (40)

Skeletal system to beta cell communication

Bone

Bone is increasingly being recognised as an endocrine tissue that participates in regulating 

whole body fuel metabolism and glucoregulation. Teleologically, the role of the skeleton as 

a prerequisite for transitioning from marine to terrestrial existence and locomotion would 

posit adaptive processes for metabolic homeostasis (41).

Osteocalcin—In terms of the skeletal compartment, osteocalcin has in recent years 

emerged as an important regulator of beta cell functional mass, insulin sensitivity and 

peripheral tissue fuel combustion, as well as male fertility (42, 43). Osteocalcin, one of the 

most abundant components of bone extracellular matrix is synthesised and secreted by 

osteoblasts. Osteocalcin undergoes post-translational carboxylation on glutamic residues. 

Formation of undercarboxylated osteocalcin (Glu-OCN) or resorption of bone through 

osteoclasts, yielding Glu-OCN, releases undercarboxlated osteocalcin into the circulation, 

allowing it to reach target tissues and act through the osteocalcin receptor (44). Observations 

from osteocalcin knockout mice indicate that osteocalcin plays a role in regulating beta cell 

mass and function (45, 46). Osteocalcin knockout mice exhibit low beta cell mass and 

impaired glucose tolerance owing in part to impaired GSIS and to insulin resistance in 

peripheral tissue. Moreover, osteocalcin treatment in mice increases beta cell mass and 

insulin secretion, improves glucose homoeostasis and prevents the development of type 2 

diabetes (45). Furthermore, mice lacking the presumptive osteocalcin receptor GPRC6A (a 
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Gαs protein-coupled receptor) specifically on beta cells exhibit impaired beta cell 

proliferation, insulin synthesis and GSIS (47).

Remarkably, osteoblasts, which synthesise osteocalcin, express insulin receptors, and insulin 

stimulates osteocalcin production. Mice with an osteoblast-specific lack of insulin receptors 

show reduced bone density, reduced circulating osteocalcin levels and reduced beta cell 

mass, impaired GSIS and glucose tolerance. Conversely, overexpression of insulin receptors 

in osteoblasts improves glucose tolerance in mice on a diabetogenic high-fat diet (HFD). 

These findings suggest a feed-forward interplay between insulin-producing beta cells and 

osteoblasts, osteoclasts and bone turnover (48, 49).

More recently, delta-like 1 (DLK-1) has been proposed to counteract the effects of insulin 

on osteoblasts, providing a counter-regulatory mechanism to the feed-forward loop between 

osteocalcin and insulin. Osteocalcin stimulates DLK-1 production in beta cells, from where 

DLK-1 is co-secreted with insulin. In turn, DLK-1 inhibits insulin receptor signalling in 

osteoblasts (50).

Leptin and adiponectin—Leptin, originating from adipocytes, which are an osteocalcin 

target, acts via the hypothalamus and the sympathetic nervous system to inhibit bone 

formation (51, 52). This, in turn, results in reduced circulating (undercarboxylated) 

osteocalcin, followed by reduced insulin secretion (as outlined above). While these early 

results on the regulation of bone mass by leptin are very convincing, recent studies suggest 

that leptin action in the brain may increase rather than decrease bone mass (53). 

Adiponectin, another adipose tissue product, also participates in the regulation of bone mass 

and osteocalcin production. Adiponectin has opposing effects on bone mass. It directly 

causes osteoblast apoptosis, but via hypothalamic action reduces sympathetic tone and 

counteracts the effects of leptin on bone mass (54).

While these observations on the complex relationship between bone and fuel homeostasis 

were based on mouse model studies, much work remains to be done to evaluate the broader 

significance of these findings in humans in this exciting field. Osteoprotegerin (OPGN), 

recently shown to regulate beta cell proliferation, will be discussed further below (55).

Skeletal muscle

A signalling pathway from the skeletal muscle to the pancreatic islet has been described in 

rodent models. In mice subjected to exercise in spinning wheels, skeletal muscle produces 

IL-6, which reaches pancreatic alpha cells via the circulation and, via its cognate receptor, 

modulates post-translational processing of pro-glucagon to favour the production of GLP-1 

rather than glucagon. In turn, GLP-1 release from alpha cells potentiates GSIS in 

neighbouring beta cells (56). Thus, muscle exercise is reported to modulate beta cell 

function indirectly via IL-6 originating from skeletal muscle, altering pro-glucagon 

processing in alpha cells, and exposing beta cells to higher GLP-1 concentrations (56).

Based on these observations, it is conceivable that exercise not only alters insulin sensitivity 

but also influences beta cell function and insulin secretion. Whether these mechanisms 

described in rodents also apply to humans is at present unclear, but is important to establish 
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as this may further our understanding of the pathogenesis of metabolic disease associated 

with infrequent exercise and have implications for its treatment. Furthermore, recent in vitro 

studies suggest a role for additional myotube-derived factors (‘myokines’) that influence 

beta cell function. These myokines are differentially expressed in normal vs insulin-resistant 

myotubes and appear to act through mitogen-activated protein 4 kinase 4 signalling (57).

Gonads to beta cell communication

The main gonadal sex steroids testosterone (58, 59)and oestrogen (60) have been reported to 

protect pancreatic beta cells from damaging insults such as glucotoxicity or streptozotocin-

induced oxidative stress. In humans, oestrogen replacement in menopausal women reduces 

the incidence of diabetes mellitus. At the molecular level, oestrogen is shown to directly act 

on beta cells to exert prosurvival effects and increase insulin synthesis via oestrogen 

response element (ERE)-independent extranuclear oestrogen receptors ERα, ERβ and 

through the G protein-coupled oestrogen receptor (60–66).’

In male mice with selective ablation of the androgen receptor in beta cells GSIS is impaired, 

leading to reduced glucose tolerance (67). These mice are also less capable of compensating 

for diet-induced insulin resistance compared with controls, and islets isolated from these 

mice exhibit reduced GSIS in vitro, similar to AR antagonist (flutamide)-treated human 

islets (67). Collectively, these observations suggest that the androgen receptor 

physiologically regulates beta cell function in male mice. More detailed work using genetic 

mouse models will be required to elucidate at a molecular level the role for the androgen 

receptor and male sex steroids on beta cell function and survival.

Placenta to beta cell communication

Metabolism changes during pregnancy to meet the maternal and fetal energy requirements. 

Circulating levels of both prolactin and human placental lactogen are elevated to counteract 

pregnancy-related insulin resistance and to regulate functional beta cell mass.

In mice, the tyrosine hydroxylase genes Tph1 and Tph2, encoding isoforms of the rate-

limiting enzyme for serotonin (5-hydroxytryptamine, 5-HT), are upregulated in beta cells 

during pregnancy. Serotonin synthesis is upregulated in the beta cells of pregnant mice and, 

in an autocrine/paracrine fashion, serotonin binds to cognate Gq/11-coupled 5-HT2B 

receptors to stimulate beta cell proliferation (68). Through binding to the 5-HT3 receptor, 

serotonin also reduces the resting membrane potential of beta cells and the threshold for 

GSIS (55, 69). Both prolactin and placental lactogen, acting through the prolactin receptor, 

stimulate tyrosine hydroxylase, establishing this endocrine regulatory communication 

between the placenta and the beta cell. Activated prolactin receptor signalling in beta cells 

also stimulates the production and release of osteoprotegerin (OPGN), a protein that binds to 

and inhibits the receptor activator of NF-κB (RANK) ligand (RANKL). RANKL inhibits 

beta cell proliferation, and its sequestration by OPGN thus releases the brake on beta cell 

proliferation. This mechanism has been confirmed both in mouse and human islets. Thus, 

this second mechanism engaged by the prolactin receptor during pregnancy serves to 

regulate functional beta cell mass (55). It is important to note that the placenta produces 

large amounts of kisspeptin 1 (70), which would be expected to impair beta cell function and 
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insulin secretion. The interplay between kisspeptin 1 and prolactin signalling on beta cells 

has not been experimentally examined.

In summary, beta cells can be viewed as sensors that constantly receive signals from a 

variety of peripheral tissues. These signals, which could have opposing effects, fluctuate 

according to the metabolic state of the source tissues. Upon reaching beta cells, they are 

integrated and modulate insulin secretion in response to the predominant physiological 

stimulus, namely, glucose. How nutrients and metabolites, such as fatty acids and their 

metabolic derivatives, amino acids and metabolic products originating from other tissues 

and from microbiota, interplay with and participate in inter-organ signalling and in 

regulating beta cell function is beyond the scope of this review and deserves a separate 

dedicated review.

Central nervous system regulation of beta cell function

Pancreatic beta cells are innervated by the autonomic nervous system. Studies in humans 

and in rodents following vagotomy have reported reduced GSIS, suggesting that 

parasympathetic innervation supports beta cell function ([71] and references therein). Other 

studies suggest that vagal innervation may also control beta cell proliferation and mass; and 

the ventromedial hypothalamus may negatively regulate vagus-relayed signalling in beta cell 

proliferation (72–75). Recent reports indicate that, in contrast to rodent islets, human islets 

are innervated primarily by cholinergic neurons, suggesting that sympathetic islet 

innervation may be relevant in rodents but not humans (76). Furthermore, in humans, alpha 

cells may also be an additional source of acetylcholine, which acts on beta cells in a 

paracrine fashion (77).

Several neurotransmitters released from peripheral autonomic nerves have been proposed to 

modulate GSIS, including the principal parasympathetic neurotransmitter acetylcholine (71, 

78, 79). The Gq protein-coupled muscarinic M3 acetylcholine receptor (M3R; but not M1R 

or M2R) subtype is expressed at high density on mouse pancreatic beta cells (80), and beta 

cell-specific M3R knockout results in impaired GSIS in mice (81). Furthermore, beta cell-

specific pharmacological activation of this receptor via a M3R–Gq-signalling-coupled 

designer receptor exclusively activated by designer drug (DREADD) potentiates GSIS, and 

after chronic stimulation also stimulates beta cell proliferation (82). Despite these 

observations and the identification of brain nuclei that regulate metabolic controls, such as 

insulin sensitivity and hepatic glucose production (83) and hunger, satiety and food-intake 

(84), distinct brain regions/nuclei, which regulate betacell function through vagal 

innervation and, potentially, via targeting M3R signalling on beta cells have thus far not 

been described. Furthermore, in addition to acetylcholine, parasympathetic neuronal endings 

in the pancreas release a multitude of other neurotransmitters (71). It remains unclear 

whether hypothalamic signals relayed by the vagus that modulate beta cell function act 

directly via beta cell muscarinic receptors or indirectly via cholinergic stimulation of an 

intermediary ganglion, from where secondary efferent neurotransmission is relayed to the 

beta cell.
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The sympathoadrenal and adrenergic innervation of islets modulates insulin secretion in 

rodents, while its role in humans remains unclear. Chemical sympathectomy results in 

decreased basal and glucose-stimulated insulin levels in mice but not in rats (85). 

Adrenalectomy also results in reduced basal insulin levels in mice, suggesting that not only 

sympathetic innervation but also circulating adrenal hormones modulate beta cell function 

(85). More recently, genetic mouse models with defined ablation of adrenergic signalling in 

islets was reported to result in disturbed islet architecture and functional maturation of beta 

cells (86).

Furthermore, galanin, which is abundantly expressed in neuroendocrine in the intestinal tract 

and also in neuronal endings surrounding the islets of Langerhans, suppresses glucose-

stimulated insulin (26, 87) (see above).

Central unresolved questions

From this overview it is clear that many important aspects of how beta cell function is 

regulated remain unanswered. There are likely to be additional signals involved in regulating 

beta cell function that will be revealed. With these anticipated advances the following 

central and enduring questions will need to be revisited as this research field moves forward:

1. How translatable are observations on inter-organ regulation of beta cell function 

made in experimental mouse models to the situation in human (patho-)physiology?

2. What is the hierarchy among the different stimuli that modulate beta cell insulin 

secretion?

3. Can impaired beta cell function in type 2 diabetes mellitus be sub-classified into 

groups of beta cell autonomous and non-beta cell autonomous downregulation of 

glucose-dependent insulin release?
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Abbreviations

DLK-1 Delta-like 1

DPP-IV Dipeptidyl peptidase IV

ERK Extracellular signal-regulated kinase

GIP Glucose-dependent insulinotropic polypeptide

GIPR Glucose-dependent insulinotropic polypeptide receptor

GLP-1 Glucagon-like peptide 1

GOAT Ghrelin O-acyltransferase

GSIS Glucose-stimulated insulin secretion
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M3R M3 acetylcholine receptor

NMUR Neuromedin U receptor

TCF1 T cell-specific transcription factor-1

PYY Peptide YY
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Fig. 1. 
Inter-organ communication pathways influencing beta cell function. The figure depicts the 

current understanding of principal inter-tissue signalling pathways that modulate GSIS from 

pancreatic beta cells. Signals modulate beta cell function in both positive (arrows) and 

negative (double bars) directions. The individual pathways are described in the main text. α, 

alpha cell; β, beta cell; Glu-OCN, Glu-OCN, undercarboxlated osteocalcin
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