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Proton-coupled electron transfer (PCET), a ubiquitous phenome-
non in biological systems, plays an essential role in copper nitrite
reductase (CuNiR), the key metalloenzyme in microbial denitrifica-
tion of the global nitrogen cycle. Analyses of the nitrite reduction
mechanism in CuNiR with conventional synchrotron radiation
crystallography (SRX) have been faced with difficulties, because
X-ray photoreduction changes the native structures of metal centers
and the enzyme–substrate complex. Using serial femtosecond crys-
tallography (SFX), we determined the intact structures of CuNiR in
the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å
resolution, respectively. Furthermore, the SRX NC structure repre-
senting a transient state in the catalytic cycle was determined at
1.30-Å resolution. Comparison between SRX and SFX structures
revealed that photoreduction changes the coordination manner of
the substrate and that catalytically important His255 can switch
hydrogen bond partners between the backbone carbonyl oxygen
of nearby Glu279 and the side-chain hydroxyl group of Thr280.
These findings, which SRX has failed to uncover, propose a redox-
coupled proton switch for PCET. This concept can explain how pro-
ton transfer to the substrate is involved in intramolecular electron
transfer and why substrate binding accelerates PCET. Our study
demonstrates the potential of SFX as a powerful tool to study redox
processes in metalloenzymes.
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Since the invention of the Haber–Bosch process, the amount
of fixed nitrogen in soils and waters has been increasing, and

this trend has significant impact on the global environment (1, 2).
Fixed nitrogen is oxidized to nitrite (NO2

−) or nitrate (NO3
−) by

nitrification and then converted to gaseous dinitrogen (N2) by
microbial denitrification, which closes the nitrogen cycle. Micro-
organisms involved in denitrification couple their respiratory systems to
stepwise reduction of nitrogen oxides to N2 (NO3

−→ NO2
−→ NO→

N2O → N2) (3, 4). The reduction of NO2
− to toxic nitric oxide

(NO2
− + 2H+ + e− → NO +H2O) is referred to as the key step in

denitrification and catalyzed by either cd1-heme nitrite reductase
(cd1NiR) or copper nitrite reductase (CuNiR) (3, 4). Although
the catalytic mechanism of cd1NiR is well understood (5, 6), that
of CuNiR is controversial (7). CuNiR is a homotrimeric protein
containing two distinct Cu sites per monomer (SI Appendix, Fig.
S1). Type 1 Cu (T1Cu) with a Cys–Met–His2 ligand set is an
electron acceptor incorporated near the molecular surface, whereas
type 2 Cu (T2Cu) with a His3 ligand set is a catalytic center, which is
∼12 Å distant from the molecular surface and located between two

adjacent monomers (7, 8). Spaced ∼12.5 Å apart, the two Cu sites
are linked by a Cys–His bridge and a sensor loop. Whereas the Cys–
His bridge is an electron pathway, the sensor loop is thought to
control electron distribution between T1Cu and T2Cu (9).
Two conserved residues, Asp98 and His255 (Alcaligenes faecalis

numbering), are located above the T2Cu site and bridged by a
water molecule called bridging water (SI Appendix, Fig. S1). They
are essential to the CuNiR activity because they assist proton
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transfer (PT) to the substrate (10–12). Although intramolecular
electron transfer (ET) from T1Cu to T2Cu can occur in the resting
state (RS) (13, 14), the differences in the redox potentials of T2Cu
minus T1Cu are small and sometimes negative in the absence of
NO2

−, meaning that intramolecular ET before NO2
− binding is not

energetically favorable (15, 16). By contrast, intramolecular ET is
dramatically accelerated in the presence of NO2

− (15, 17). An ex-
planation for this gating-like phenomenon is that substrate binding
raises the redox potential of T2Cu and shifts the equilibrium of the
ET reaction (16). However, pH dependence of intramolecular ET
in the presence of NO2

− cannot be explained by such a change of
redox potentials (15). Instead, Kobayashi et al. (15) proposed that
reduction-induced structural change of His255 is responsible for the
gating-like mechanism. Because it has been recently proven that
intramolecular ET in CuNiR is accompanied by PT and hence
proton-coupled ET (PCET) (17, 18), one can readily speculate that
intramolecular ET contributes PT to NO2

− and that the structural
change of His255 is involved in PCET. Crystal structures of CuNiR
from Rhodobacter sphaeroides (RhsNiR) implies this possibility be-
cause His287 in RhsNiR, which corresponds to His255, seems to
show pH- and redox-dependent conformational changes (19, 20).
However, presumably because of X-ray radiation damages implied
by rerefinement of RhsNiR structures (21), electron density around
His287 was so unusual that interpretation of it is difficult (SI Ap-
pendix, Fig. S2).
Crystal structures determined by synchrotron radiation crystal-

lography (SRX) have provided insights into the enzymatic mecha-
nism of CuNiR (22–25), and these studies are summarized elsewhere
(7). High-resolution nitrite complex (NC) structures revealed an
O-coordination of NO2

− showing a near face-on bindingmode (22, 23),
whereas Cu(II)-NO2

− model complexes show a vertical binding
mode (7, 26–29). The near face-on coordination manner is thought
to facilitate its conversion to side-on NO, which was observed in the
crystal structures of CuNiR exposed to NO (22, 23, 25). Skeptical
eyes have, however, been cast on these CuNiR structures because
SRX data might be affected by some problems connected to the
high radiation dose delivered on the crystals. First, strong synchro-
tron X-rays cause not only radiation damages to amino acid residues
but also photoreduction of metalloproteins (30, 31). Although a
comparison between oxidized and reduced states is necessary to
closely investigate redox reactions, completely oxidized structures are
almost impossible to determine by SRX. Indeed, the Cu centers
in CuNiR are rapidly reduced by exposure to synchrotron X-rays
(21, 32). Second, following the photoreduction of T2Cu, NO2

− is
easily reduced and produces NO and water in SRX (21). Conse-
quently, electron density at the catalytic site of an NC structure is
derived from the mixture of both substrate and product, making
interpretation of data complicated and unreliable. Third, cryogenic
manipulations for reducing radiation damages in SRX have also
been focused as a factor that changes the population of amino acid
residues (33, 34) and enzyme–substrate complexes (35). Crystallo-
graphic (36), computational (37), and spectroscopic (38–40) studies
actually show that binding modes of NO2

− and NO in CuNiR crystal
structures can differ from those in physiological environments.
We here ventured to use photoreduction in SRX to initiate a

chemical reaction and to trap an enzymatically produced in-
termediary state (30, 31). Furthermore, to visualize intact CuNiR
structures in the resting and NC states, we applied serial femtosec-
ond crystallography (SFX) with X-ray free electron lasers (XFELs)
(41), which enables damage-free structural determination of metal-
loproteins (42, 43) and evaluation of the native conformational
population at room temperature (RT) (44). By comparing SRX and
SFX data, we discuss PCET and nitrite reduction in CuNiR.

Results and Discussion
RS Structures Determined by SFX and SRX. The SFX and cryogenic
SRX structures of CuNiR from A. faecalis (AfNiR) (45, 46) in RS
were refined to 2.03- and 1.20-Å resolution, respectively (SFX
RS and SRX RS, SI Appendix, Tables S1 and S2). We also col-
lected SRX data at 293 K, which is the temperature in the SFX
experiment, and the structure was determined at 1.56-Å resolution

(SRX RSRT, SI Appendix, Table S2). Although the T1Cu site is
rapidly reduced by synchrotron X-rays (21, 32), there is no sig-
nificant difference in the geometry between the SRX and SFX
structures (SI Appendix, Table S3). Because the typical differences
of the T1Cu geometries between the reduced and oxidized states
are <0.1 Å (47), higher-resolution data are necessary for closer
evaluation. The apical positions of the T2Cu site in the cryogenic
and RT SRX structures were occupied by water (SI Appendix, Fig.
S3 A and B), whereas that in the SFX structure was occupied by a
chloride ion (SI Appendix, Fig. S3C) because of the difference of
the purification method (SI Appendix). Except for the T2Cu–
His135 bond, the distances between His residues and T2Cu did
not show significant differences (SI Appendix, Table S3). The
T2Cu–His135 bonds in the SRX RS structures (cryogenic: 2.00 ±
0.02 Å, RT: 2.03 ± 0.02 Å) were shorter than that in the SFX RS
structure (2.12 ± 0.06 Å). Although this difference was subtle and
the resolution of the SFX RS structure was too low for further
judgment, it is noteworthy that His135 constitutes the Cys–His
bridge for intramolecular ET.

SRX NC Structure. The cryogenic SRX NC structure was refined to
1.30-Å resolution (SI Appendix, Table S4), which is higher res-
olution than those of previous AfNiR NC structures (22, 46).
T2Cu in the SRX NC structure showed ligand NO2

− with 95%
(molecule A) or 50% (molecules B and C) occupancy (SI Ap-
pendix, Fig. 1A, and SI Appendix, Fig. S4A). In molecules B and
C, water with 50% occupancy was modeled near the O1 atom of
NO2

− (SI Appendix, Fig. S4A). The low NO2
− occupancy and the

presence of water indicates reduction of NO2
− (21). The binding

direction of NO2
− was different from that observed in the high-

resolution AfNiR NC structure (22) but similar to those in other
CuNiR NC structures (SI Appendix, Fig. S4B). Ambiguity in as-
signment of nitrite binding modes in SRX structures may come
from photoreduction of NO2

−. The distances from the O1 and O2
atom to T2Cu were 2.07 ± 0.05 and 2.18 ± 0.03 Å, respectively,
and the N atom was 2.16 ± 0.06 Å from T2Cu. The angle formed
by the O1–N–O2 plane and the O1–T2Cu–O2 plane was 69 ± 2°
(SI Appendix, Table S5). These values were similar to previously
reported ones (7, 22, 23) (SI Appendix, Table S6) and showed the
near face-on mode of NO2

−. The Cu site geometries in the SRX
NC structures are summarized in SI Appendix, Table S5.

SFX NC Structure. To visualize the nondamaged NC structure, we
performed SFX (SI Appendix, Fig. S5). Phase determination was
performed with the single-wavelength anomalous diffraction
(SAD) method using Cu as a phasing element (SI Appendix, Fig.
S6). The protocol was the same as recent sulfur SAD phasing with
SFX data (48) (SI Appendix). The SFX NC structure was refined
to 1.60-Å resolution (SI Appendix, Table S7). The T1Cu site
showed no significant difference between the SFX NC and SRX
NC structures (SI Appendix, Table S5). Furthermore, both the
SFX and SRX data showed that the T1Cu geometry was not
dependent on NO2

− binding (SI Appendix, Tables S3 and S5).
Right above all T2Cu atoms in the SFX NC structure were
asymmetric triangle-shaped electron densities, which could ac-
commodate a bent triatomic molecule (SI Appendix, Fig. 1B, and
SI Appendix, Fig. S7). We assigned NO2

− with full occupancy
because this model showed the best agreement with electron
density (SI Appendix, Fig. S8). The distances from the O1 and O2
atom to T2Cu were 2.14 ± 0.05 and 2.00 ± 0.07 Å, respectively,
and the N atom is 2.28 ± 0.02 Å from T2Cu. The angles between
the O1–N–O2 plane and the O1–T2Cu–O2 plane in the SFX NC
structure were 9° (molecule A), 39° (molecule B), and 23° (mol-
ecule C), showing a more vertical binding mode than the SRX
NC structure (Fig. 1C and SI Appendix, Table S5).

Binding Mode of NO2
−. The vertical binding mode is found in many

biomimetic model complexes of Cu(II)–NO2
− (7, 26–29) and

supported by computational chemistry (29, 49). However, syn-
chrotron CuNiR structures have shown the near face-on modes
(7, 22, 23). We then determined an SRX NC structure at 293 K
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(SRX NCRT, SI Appendix, Table S4 and Fig. S9A) to see whether
experimental temperature will have an effect on NO2

− binding
modes. The angles between the O1–N–O2 plane and the O1–
T2Cu–O2 plane in the SRX NCRT structure were 55° (molecule
A), 33° (molecule B), and 50° (molecule C) (SI Appendix, Table
S5); that is, the NO2

− binding mode in the SFX NC structure was
more vertical than in the SRX NCRT structure (SI Appendix, Fig.
S9B and 1. Supplementary Discussion). This result is consistent
with a previous study in which an SRX NC structure of CuNiR
from Geobacillus thermodenitrificans (GtNiR) determined at
320 K showed NO2

− assuming a near face-on mode (SI Appendix,
Fig. S4B) (36). Therefore, it is most probable that the confor-
mational change of NO2

− from vertical to near face-on is induced

by photoreduction. AfNiR NC structure determined at cryogenic
temperature with an in-house X-ray source (46) is noteworthy
because it shows relatively vertical binding modes of NO2

− (SI
Appendix, Table S6). Because the dose rate delivered by the in-
house source is significantly lower than that of the synchrotron,
the in-house cryogenic structure also implies that the near face-on
mode corresponds to the binding mode when T2Cu is photo-
reduced. The difference of the NO2

− coordination modes between
Cu(I) and Cu(II) is not surprising, because model complexes of
Cu(I)–NO2

− generally show an N-coordination (7, 28, 50–52), not
the O-coordination observed in Cu(II)–NO2

−. Our present data,
however, did not show a rearrangement from the O-coordination
to the N-coordination, which was expected by model complexes
and computational chemistry (28, 50–53).

Rotation of the Imidazole Ring of His255. The Nδ1 atom of enzy-
matically important His255 can form a hydrogen bond (H-bond)
with the carbonyl O atom of Glu279 and/or the hydroxyl O atom
of Thr280, and this Glu–Thr pair is conserved in CuNiRs (SI
Appendix, Fig. S10). Compared with the imidazole ring of His255
in the SFX RS structure, the imidazole ring in the SRX RS
structure rotated about 20° and hence the H-bond partners of
His255 were switched (Fig. 2 A and B and SI Appendix, Fig. S11).
Similar rotation was observed in the SRX RSRT structure (SI Ap-
pendix, Fig. S12), although it was less obvious. This is presumably
because the activation energy for the reverse rotation is not so high
compared with the thermal energy at RT. The imidazole ring of
His255 in the SRX NC structure significantly rotated as was ob-
served in the SRX RS structure (Fig. 2C). Conversely, the imid-
azole ring in the SFX NC structure only showed slight rotation
(Fig. 2C), indicating that NO2

− binding was not the main cause for
His255 rotation. The degree of His255 rotation in molecule A of
the SRX NCRT structure was slightly larger than that in the SFX
NC structure, although the difference was not significant in other
monomers (SI Appendix, Fig. S13). Because NO2

− binding itself
causes slight rotation of His255, it was difficult to distinguish the
effect of NO2

− binding from other effects on His255 at RT, where
the rotation is less obvious than at cryogenic temperature. We also
solved an SRX structure in the chloride-bound form (SRX RSCL,

Fig. 1. NO2
− binding in NC structures. (A) T2Cu site in the SRX NC structure

(molecule A). The sigma-A–weighted 2Fo–Fc (1.5 σ) and omit Fo–Fc (6.5 σ)
maps are shown as gray and red meshes, respectively. H-bonds (yellow) and
coordination bonds (black) are represented by dashed lines. C, N, O, and Cu
atoms are colored cyan, blue, red, and brown, respectively. (B) T2Cu site in
the SFX NC structure (molecule A). The sigma-A–weighted 2Fo–Fc (1.0 σ) and
omit Fo–Fc (4.5 σ) maps are shown as gray and red meshes, respectively.
H-bonds and coordination bonds are represented as in A. C, N, O, and Cu
atoms are colored magenta, blue, red and brown, respectively. (C) Com-
parison between the SFX NC (magenta) and SRX NC (cyan) structures.

Fig. 2. Conformational change of His255 (molecule A). (A) The sigma-A–
weighted 2Fo–Fc maps (3.0 σ, gray) around His255 in the SFX RS structure
(Left) and the SRX RS structure (Right). (B) Switching of H-bond partners. The
SFX RS and SRX RS structures are shown in pink and yellow, respectively.
Dashed lines represent H-bonds. (C) Comparison of the His255 conformation.
The SRX RS, SFX NC, and SRX NC structures are shown in yellow, magenta,
and cyan, respectively. The SFX RS structure is shown in light pink.
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SI Appendix, Table S8 and Fig. S14A). His255 in this structure was
in the rotated form (SI Appendix, Fig. S14B), indicating that the
differences of ligands are not the main reason of the rotation.
Besides, the chloride ion in the SRX RSCL structure was shifted
∼1.0 Å toward the center of the catalytic site, probably because
rotated His255 provided a wider space above T2Cu (SI Appendix,
Fig. S14C). Because pH of a buffer at cryogenic temperature is
significantly higher than at RT (54), deprotonation of His255 may
be promoted at cryogenic temperature and may cause the struc-
tural change. However, the imidazole ring of His255 in the SRX
RSRT structure was more rotated than that in the SFX RS struc-
ture (SI Appendix, Fig. S12). Moreover, we recently showed that
the imidazole ring of His244 in GtNiR, which corresponds to
His255 in AfNiR, rotates as a result of photoreduction, but not the
difference of temperatures (55). Therefore, cryogenic temperature
would not be the only factor for the rotation and the reduction of
Cu may also cause it, as was predicted previously (15).

Using mutated AfNiR, we further proved that the rotated state
of His255 is a transient conformation important for the CuNiR
activity. The activity of the T280V and T280S mutants was, re-
spectively, 20% and 29% of the WT activity. Because the T280V
mutant lacks the hydroxyl O atom that can form an H-bond with
His255, the rotation of His255 is inhibited in this mutant. Al-
though the T280S mutant maintains a hydroxyl group in the side
chain, it rotates more flexibly than that of Thr, which means that
His255 is not always able to make an H-bond with Ser280.
Therefore, the T280S mutant showed activity lower than that of
WT but higher than that of T280V. Indeed, some natural CuNiRs
containing Ser instead of Thr show lower activities than AfNiR
(56, 57), and crystal structures of such Ser-containing CuNiRs
demonstrate that Ser does not always form an H-bond with cat-
alytic His under certain conditions (56, 57).

PCET and Nitrite Reduction Mechanisms. Apparently, His255 is not
linked to either the T1Cu site or the T2Cu site. However, the
side chain of Glu279 of the Glu–Thr pair is connected to His100
via an H-bond (SI Appendix, Fig. S15). His100 is not only a T2Cu
ligand but also a terminal residue of a sensor loop, through which
intramolecular ET between T1Cu and T2Cu is adjusted (9).
Besides, His100 has a van der Waals and/or a π–π interaction
with His255 (SI Appendix, Fig. S16). These observations suggest
that structural change of His255 is involved in a redox-coupled
reaction, although the precise mechanism by which His255 per-
ceives electronic states of the Cu centers is unknown. Crystallo-
graphic (11, 12) and computational (53) studies support indirect
PT from His255 to NO2

− via bridging water after T2Cu reduction.
The switching of the H-bond partners of His255 may facilitate this
PT reaction. Because the hydroxyl O atom of Thr280 is less neg-
atively charged than the carbonyl O atom of Gln279, the Nδ1 atom
of His255 forms a longer and weaker H-bond with Thr280 (Fig.

Fig. 3. Proposed mechanism of efficient PT driven by the rotation of His255.
Dashed lines represent H-bonds. Strong and weak H-bonds involved in PCET
are colored as in Fig. 2B. Thin black arrows illustrate the directions to which
H atoms are attracted.

Fig. 4. Updated reaction mechanism of nitrite re-
duction. Dashed lines represent H-bonds. Strong and
weak H-bonds involved in PCET are colored as in Fig.
2B. Chain lines mean steric hindrance between the
near face-on substrate and His255.
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2B). As a result, the H atom is more attracted to the Nδ1 atom and
a proton on the Ne2 atom moves to bridging water (Fig. 3).
Furthermore, the N atom of NO2

− becomes closer to His255
when NO2

− changes its conformation from vertical to near face-
on (Fig. 1C), meaning that due to steric hindrance (<3.5 Å) near
face-on NO2

− might inhibit the reverse rotation of His255
and hence reverse PT. The catalytic activity of CuNiR dramati-
cally drops below pH 5.0 (10, 13). This phenomenon has been
explained by decreased intramolecular ET rate at low pH (15).
Our model may provide another explanation: the imidazole
ring rotation of His255 is difficult at low pH. Because the pH
of our crystallization condition was ∼4.0, the unrotated state of
His255 observed in the SFX structures should be the natural
structure in the crystal. However, cryogenic temperature with
increasing pH could assist the rotation of His255, which can
explain why the observed rotation at cryogenic temperature was
larger than that at RT.
Fig. 4 describes the updated nitrite reduction mechanism.

FTIR analysis with carbon monoxide (58) showed that Asp98 is
deprotonated in the RS and just after binding of an external
ligand (I and II). Because Asp98 is located at the end of the
proton channel leading to bulk solvent (SI Appendix, Fig. S1)
(17, 23), a proton may be provided through this residue (III).
Intramolecular ET causes the structural changes described above
(III → IV). The conformational change of NO2

− makes the angle
of N–O2–H to be about 120°, which may facilitate protonation of
NO2

−. Also, PT from His255 to bridging water occurs (IV → V).
Atomic-resolution NC structures (23) revealed two conformations
of Asp98, namely the gatekeeper (G) and proximal (P) con-
formations, indicating the catalytic importance of the move-
ment of Asp98 (53); however, the G conformation is prohibited
by steric hindrance in some CuNiRs (59). In our NC struc-
tures, Asp98 showed only a P conformation despite NO2

− binding
(Fig. 5), which has been thought to increase the population of
the G state (23). Because the SFX data reflect the intact
conformational population at RT (44), the G state reported
previously may be generated by radiation damages and/or cryo-
genic manipulations. It is, however, noteworthy that our SRX RS
structure showed a dual conformation of Asp98 due to slight
movement (SI Appendix, Fig. S17). This movement may make the
H-bond between the Oδ2 atom of Asp98 and HNO2 strong, which
may accelerate the second PT from bridging water to the substrate
(V). As was demonstrated by a density functional theory calcula-
tion (49), there is another possible reaction course, where NO2

− is
protonated only once by Asp98 before NO release. His255 can also
function in this case as a switch to initiate a PT relay (SI Appendix,
Fig. S18). A conundrum remained: Which Cu–NO species is
produced in the enzymatic cycle (VI)? Whereas side-on NO is
stabilized in crystal structures (22, 23, 25), spectroscopic and
computational studies indicate that end-on NO is a physiolog-
ical intermediate (37–40). Although visualization of an end-on
NO species with short lifetime has been difficult, time-resolved
SFX may enable it (60, 61). PCET is a fundamental phenome-
non in living systems and expected to be applied to biomimetic
electronic devices and enzyme-based green catalysts. Our study
shows that SFX may contribute to studies toward the designing
of such molecules.

Materials and Methods
Complete materials and methods used in this study are described in
SI Appendix.

Sample Preparation and Activity Assay. AfNiR with a C-terminal 6×His-tag was
expressed in Escherichia coli BL21 (DE3) and purified by a Ni affinity column.
After removing the His tag by thrombin, the sample was passed through an
Ni affinity column to remove undigested proteins. Further purification was
performed with an anion exchange column. Macrocrystals for SRX were
prepared by the hanging-drop vapor-diffusion method. Crystals were grown
at 20 °C in a solution composed of 100 mM sodium acetate (pH 4.1) and 7%
PEG 4000. Nanoseed solution for micocrystals was prepared by sonicating
the macrocrystals with a UD-211 ultrasonicator (Tomy Seiko Co.). The
resulting solution was slightly centrifuged and the upper solution was col-
lected and used as seeds. Microcrystals for SFX were prepared in a 15-mL
centrifuge tube containing 500 μL of the protein solution (50 mg/mL) and
precipitant solution [100 mM sodium acetate (pH 4.0), 12% PEG 4000, and
20 μL of the nanoseed solution]. The centrifuge tube was placed on the RT-50
rotator (Titec) at a speed of 30 rpm for 4 d at 20 °C to obtain microcrystals.
The microcrystal solution was filtered through a 30-μm CellTrics filter
(Chiyoda Science Co.) before the SFX experiments. The mutant proteins
(T280V and T280S) were purified with the same protocol as the WT enzyme.
The activity assay was performed at 25 °C as described elsewhere (57) with
several modifications.

SRX Structure Determination. For the SRX NC structure, a crystal was soaked in
the reservoir solution containing 30% (vol/vol) glycerol and 60mMNaNO2 for
15 min. For the SRX NCRT structure, a crystal was soaked in the reservoir
solution containing 60 mM NaNO2 for 15 min. For the RS and RSCL structures,
crystals were soaked in the reservoir solution containing 30% (vol/vol)
glycerol. Diffraction data were collected at beamlines BL26B1, BL26B2,
and BL44XU at SPring-8. The datasets were processed using HKL2000
(62). The phases were determined by molecular replacement (MR) using
Phaser (63) with an AfNiR trimer (PDB ID code 1SJM) (22) as a search
model. Manual model building was performed using Coot (64). The
program Refmac5 (65) from the CCP4 suite (66) was used for structural
refinement. The final models were checked for stereochemical quality
using MolProbity (67).

SFX Structure Determination. To prepare the NC, 1.2 M NaNO2 in the pre-
cipitant solution was added to the microcrystal sample in a 1.5-mL tube to
give a final concentration of 60 mM. After incubation for 5 min, the sample
was mixed with the grease matrix and packed in an injector syringe before
data collection as described previously (68). To avoid the self-dismutation of
NO2

−, the totaled 18 samples of NC microcrystals were prepared at time of
use, and data collection for each sample was completed within 50 min after
addition of sodium nitrite. For the RS structure, microcrystals were mixed
with the grease matrix and packed in an injector syringe before data col-
lection. The diffraction patterns were collected with XFEL radiation at BL3
(EH4) of the SPring-8 Angstrom Compact Free-Electron Laser (69). The data
were processed with CrystFEL (70). Indexing was performed by DirAx (71).
The indexed diffraction images were merged using CrystFEL. The phase for
the SFX RS data were determined by MR using Phaser with AfNiR (PDB ID
code 1SJM) as a search model. The phase of the SFX NC data was determined
by SAD with SHELX (72). Manual model building was performed using Coot.
The program Refmac5 was used for structural refinement. The final modes
were checked using MolProbity.
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Fig. 5. Conformations of Asp98. The sigma-A–weighted 2Fo–Fc maps (0.2 σ)
are shown as blue meshes. The SRX NC and SFX NC structure are shown in
cyan and magenta, respectively. The structure showing G and P conforma-
tions of Asp98 (PDB ID code 2BWI) (21) is colored white.

2932 | www.pnas.org/cgi/doi/10.1073/pnas.1517770113 Fukuda et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517770113/-/DCSupplemental/pnas.1517770113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517770113/-/DCSupplemental/pnas.1517770113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517770113/-/DCSupplemental/pnas.1517770113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517770113/-/DCSupplemental/pnas.1517770113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1517770113/-/DCSupplemental/pnas.1517770113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1517770113


1. Galloway JN, et al. (2008) Transformation of the nitrogen cycle: Recent trends,
questions, and potential solutions. Science 320(5878):889–892.

2. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen
cycle. Nature 451(7176):293–296.

3. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol
Biol Rev 61(4):533–616.

4. Tavares P, Pereira AS, Moura JJ, Moura I (2006) Metalloenzymes of the denitrification
pathway. J Inorg Biochem 100(12):2087–2100.

5. Fülöp V, Moir JWB, Ferguson SJ, Hajdu J (1995) The anatomy of a bifunctional en-
zyme: Structural basis for reduction of oxygen to water and synthesis of nitric oxide
by cytochrome cd1. Cell 81(3):369–377.

6. Williams PA, et al. (1997) Haem-ligand switching during catalysis in crystals of a
nitrogen-cycle enzyme. Nature 389(6649):406–412.

7. Merkle AC, Lehnert N (2012) Binding and activation of nitrite and nitric oxide by copper
nitrite reductase and corresponding model complexes. Dalton Trans 41(12):3355–3368.

8. Godden JW, et al. (1991) The 2.3 angstrom X-ray structure of nitrite reductase from
Achromobacter cycloclastes. Science 253(5018):438–442.

9. Strange RW, et al. (1999) Structural and kinetic evidence for an ordered mechanism of
copper nitrite reductase. J Mol Biol 287(5):1001–1009.

10. Kataoka K, Furusawa H, Takagi K, Yamaguchi K, Suzuki S (2000) Functional analysis of
conserved aspartate and histidine residues located around the type 2 copper site of
copper-containing nitrite reductase. J Biochem 127(2):345–350.

11. Boulanger MJ, Kukimoto M, Nishiyama M, Horinouchi S, Murphy ME (2000) Catalytic
roles for two water bridged residues (Asp-98 and His-255) in the active site of copper-
containing nitrite reductase. J Biol Chem 275(31):23957–23964.

12. Boulanger MJ, Murphy MEP (2001) Alternate substrate binding modes to two mutant
(D98N and H255N) forms of nitrite reductase from Alcaligenes faecalis S-6: Structural
model of a transient catalytic intermediate. Biochemistry 40(31):9132–9141.

13. Wijma HJ, Jeuken LJ, Verbeet MP, Armstrong FA, Canters GW (2006) A random-
sequential mechanism for nitrite binding and active site reduction in copper-containing
nitrite reductase. J Biol Chem 281(24):16340–16346.

14. Wijma HJ, Jeuken LJC, Verbeet MP, Armstrong FA, Canters GW (2007) Protein film
voltammetry of copper-containing nitrite reductase reveals reversible inactivation.
J Am Chem Soc 129(27):8557–8565.

15. Kobayashi K, Tagawa S, Deligeer, Suzuki S (1999) The pH-dependent changes of in-
tramolecular electron transfer on copper-containing nitrite reductase. J Biochem
126(2):408–412.

16. Olesen K, et al. (1998) Spectroscopic, kinetic, and electrochemical characterization of
heterologously expressed wild-type and mutant forms of copper-containing nitrite
reductase from Rhodobacter sphaeroides 2.4.3. Biochemistry 37(17):6086–6094.

17. Leferink NG, et al. (2011) Proton-coupled electron transfer in the catalytic cycle of Alcali-
genes xylosoxidans copper-dependent nitrite reductase. Biochemistry 50(19):4121–4131.

18. Brenner S, et al. (2009) Demonstration of proton-coupled electron transfer in the
copper-containing nitrite reductases. J Biol Chem 284(38):25973–25983.

19. Jacobson F, et al. (2005) Structures of the oxidized and reduced forms of nitrite re-
ductase from Rhodobacter sphaeroides 2.4.3 at high pH: Changes in the interactions
of the type 2 copper. Acta Crystallogr D Biol Crystallogr 61(Pt 9):1190–1198.

20. Jacobson F, et al. (2007) pH dependence of copper geometry, reduction potential,
and nitrite affinity in nitrite reductase. J Biol Chem 282(9):6347–6355.

21. Hough MA, Antonyuk SV, Strange RW, Eady RR, Hasnain SS (2008) Crystallography
with online optical and X-ray absorption spectroscopies demonstrates an ordered
mechanism in copper nitrite reductase. J Mol Biol 378(2):353–361.

22. Tocheva EI, Rosell FI, Mauk AG, Murphy ME (2004) Side-on copper-nitrosyl co-
ordination by nitrite reductase. Science 304(5672):867–870.

23. Antonyuk SV, Strange RW, Sawers G, Eady RR, Hasnain SS (2005) Atomic reso-
lution structures of resting-state, substrate- and product-complexed Cu-nitrite reductase
provide insight into catalytic mechanism. Proc Natl Acad Sci USA 102(34):12041–12046.

24. Tocheva EI, Eltis LD, Murphy MEP (2008) Conserved active site residues limit inhibition of a
copper-containing nitrite reductase by small molecules. Biochemistry 47(15):4452–4460.

25. Tocheva EI, Rosell FI, Mauk AG, Murphy MEP (2007) Stable copper-nitrosyl formation
by nitrite reductase in either oxidation state. Biochemistry 46(43):12366–12374.

26. Ruggiero CE, Carrier SM, Tolman WB (1994) Reductive disproportionation of NO
mediated by copper complexes: Modeling N,O generation by copper proteins and
heterogeneous catalyst. Angew Chem Int Ed Engl 33(8):895–897.

27. Casella L, CarugoO, Gullotti M, Doldi S, Frassoni M (1996) Synthesis, structure, and reactivity
of model complexes of copper nitrite reductase. Inorg Chem 35(5):1101–1113.

28. Yokoyama H, Yamaguchi K, Sugimoto M, Suzuki S (2005) CuI and CuII complexes
containing nitrite and tridentate aromatic amine ligand as models for the substrate-
binding type-2 Cu site of nitrite reductase. Eur J Inorg Chem 8:1435–1441.

29. Lehnert N, et al. (2007) Synthesis and spectroscopic characterization of copper(II)-
nitrito complexes with hydrotris(pyrazolyl)borate and related coligands. Inorg
Chem 46(10):3916–3933.

30. Schlichting I, et al. (2000) The catalytic pathway of cytochrome p450cam at atomic
resolution. Science 287(5458):1615–1622.

31. Berglund GI, et al. (2002) The catalytic pathway of horseradish peroxidase at high
resolution. Nature 417(6887):463–468.

32. Antonyuk SV, Hough MA (2011) Monitoring and validating active site redox states in
protein crystals. Biochim Biophys Acta 1814(6):778–784.

33. Fraser JS, et al. (2009) Hidden alternative structures of proline isomerase essential for
catalysis. Nature 462(7273):669–673.

34. Fraser JS, et al. (2011) Accessing protein conformational ensembles using room-
temperature X-ray crystallography. Proc Natl Acad Sci USA 108(39):16247–16252.

35. Keedy DA, et al. (2014) Crystal cryocooling distorts conformational heterogeneity in a
model Michaelis complex of DHFR. Structure 22(6):899–910.

36. Fukuda Y, Inoue T (2015) High-temperature and high-resolution crystallography of
thermostable copper nitrite reductase. Chem Commun (Camb) 51(30):6532–6535.

37. Merkle AC, Lehnert N (2009) The side-on copper(I) nitrosyl geometry in copper nitrite re-
ductase is due to steric interactions with isoleucine-257. Inorg Chem 48(24):11504–11506.

38. Usov OM, Sun Y, Grigoryants VM, Shapleigh JP, Scholes CP (2006) EPR-ENDOR of the
Cu(I)NO complex of nitrite reductase. J Am Chem Soc 128(40):13102–13111.

39. Ghosh S, et al. (2007) Resolution of the spectroscopy versus crystallography issue for
NO intermediates of nitrite reductase from Rhodobacter sphaeroides. J Am Chem Soc
129(34):10310–10311.

40. Fujisawa K, et al. (2008) Structural and spectroscopic characterization of mononuclear
copper(I) nitrosyl complexes: end-on versus side-on coordination of NO to copper(I).
J Am Chem Soc 130(4):1205–1213.

41. Chapman HN, et al. (2011) Femtosecond X-ray protein nanocrystallography. Nature
470(7332):73–77.

42. Kern J, et al. (2012) Room temperature femtosecond X-ray diffraction of photosystem
II microcrystals. Proc Natl Acad Sci USA 109(25):9721–9726.

43. Johansson LC, et al. (2013) Structure of a photosynthetic reaction centre determined
by serial femtosecond crystallography. Nat Commun 4:2911.

44. Liu W, et al. (2013) Serial femtosecond crystallography of G protein-coupled recep-
tors. Science 342(6165):1521–1524.

45. Kakutani T, Watanabe H, Arima K, Beppu T (1981) Purification and properties of a
copper-containing nitrite reductase from a denitrifying bacterium, Alcaligenes fae-
calis strain S-6. J Biochem 89(2):453–461.

46. Murphy MEP, Turley S, Adman ET (1997) Structure of nitrite bound to copper-con-
taining nitrite reductase from Alcaligenes faecalis. Mechanistic implications. J Biol
Chem 272(45):28455–28460.

47. Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L (2004) Electronic structures
of metal sites in proteins and models: Contributions to function in blue copper pro-
teins. Chem Rev 104(2):419–458.

48. Nakane T, et al. (2015) Native sulfur/chlorine SAD phasing for serial femtosecond
crystallography. Acta Crystallogr D Biol Crystallogr 71(Pt 12):2519–2525.

49. Ghosh S, Dey A, Sun Y, Scholes CP, Solomon EI (2009) Spectroscopic and computa-
tional studies of nitrite reductase: Proton induced electron transfer and backbonding
contributions to reactivity. J Am Chem Soc 131(1):277–288.

50. Halfen JA, Tolman WB (1994) Synthetic model of the substrate adduct to the reduced
active site of copper nitrite reductase. J Am Chem Soc 116:5475–5476.

51. Halfen JA, et al. (1996) Synthetic modeling of nitrite binding and activation by re-
duced copper proteins. Characterization of copper(I)-nitrite complexes that evolve
nitric oxide. J Am Chem Soc 118:763–776.

52. Kujime M, Izumi C, Tomura M, Hada M, Fujii H (2008) Effect of a tridentate ligand on
the structure, electronic structure, and reactivity of the copper(I) nitrite complex: Role
of the conserved three-histidine ligand environment of the type-2 copper site in
copper-containing nitrite reductases. J Am Chem Soc 130(19):6088–6098.

53. Li Y, Hodak M, Bernholc J (2015) Enzymatic mechanism of copper-containing nitrite
reductase. Biochemistry 54(5):1233–1242.

54. Douzou P, Hoa GHB, Petsko GA (1975) Protein crystallography at sub-zero temperatures:
Lysozyme-substrate complexes in cooled mixed solvents. J Mol Biol 96(3):367–380.

55. Fukuda Y, et al. (2016) Redox-coupled structural changes in nitrite reductase revealed
by serial femtosecond and microfocus crystallography. J Biochemmvv133.

56. Boulanger MJ, Murphy MEP (2002) Crystal structure of the soluble domain of the major
anaerobically induced outer membrane protein (AniA) from pathogenic Neisseria: A new
class of copper-containing nitrite reductases. J Mol Biol 315(5):1111–1127.

57. Lawton TJ, Bowen KE, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC (2013) Characterization
of a nitrite reductase involved in nitrifier denitrification. J Biol Chem 288(35):25575–25583.

58. Zhang H, Boulanger MJ, Mauk AG, Murphy MEP (2000) Carbon monoxide binding to
copper-containing nitrite reductase from Alcaligenes faecalis. J Phys Chem B 104:
10738–10742.

59. Fukuda Y, et al. (2014) Structural insights into the function of a thermostable copper-
containing nitrite reductase. J Biochem 155(2):123–135.

60. Tenboer J, et al. (2014) Time-resolved serial crystallography captures high-resolution
intermediates of photoactive yellow protein. Science 346(6214):1242–1246.

61. Kupitz C, et al. (2014) Serial time-resolved crystallography of photosystem II using a
femtosecond X-ray laser. Nature 513(7517):261–265.

62. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in os-
cillation mode. Methods Enzymol 276:307–326.

63. McCoy AJ, et al. (2007) Phaser crystallographic software. J Appl Cryst 40(Pt 4):658–674.
64. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot.

Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501.
65. Murshudov GN, et al. (2011) REFMAC5 for the refinement of macromolecular crystal

structures. Acta Crystallogr D Biol Crystallogr 67(Pt 4):355–367.
66. Winn MD, et al. (2011) Overview of the CCP4 suite and current developments. Acta

Crystallogr D Biol Crystallogr 67(Pt 4):235–242.
67. Chen VB, et al. (2010) MolProbity: All-atom structure validation for macromolecular

crystallography. Acta Crystallogr D Biol Crystallogr 66(Pt 1):12–21.
68. Sugahara M, et al. (2015) Grease matrix as a versatile carrier of proteins for serial

crystallography. Nat Methods 12(1):61–63.
69. Tono K, et al. (2013) Beamline, experimental stations and photon beam diagnostics

for the hard x-ray free electron laser of SACLA. New J Phys 15(8):083035.
70. White TA, et al. (2012) CrystFEL: A software suite for snapshot serial crystallography.

J Appl Cryst 45(2):335–341.
71. Duisenberg AJM (1992) Indexing in single-crystal diffractometry with an obstinate list

of reflections. J Appl Cryst 25:92–96.
72. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: Combining chain tracing

with density modification. Acta Crystallogr D Biol Crystallogr 66(Pt 4):479–485.

Fukuda et al. PNAS | March 15, 2016 | vol. 113 | no. 11 | 2933

BI
O
CH

EM
IS
TR

Y


