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The ubiquitin-proteasome system degrades viral oncoproteins and
other microbial virulence factors; however, the role of endolysoso-
mal degradation pathways in these processes is unclear. Kaposi’s
sarcoma-associated herpesvirus (KSHV) is the causative agent of
Kaposi’s sarcoma, and a constitutively active viral G protein-coupled
receptor (vGPCR) contributes to the pathogenesis of KSHV-induced
tumors. We report that a recently discovered autophagy-related
protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolyso-
somal degradation, and inhibits vGPCR-driven oncogenic signaling.
Furthermore, monoallelic loss of Becn2 in mice accelerates the pro-
gression of vGPCR-induced lesions that resemble human Kaposi’s
sarcoma. Taken together, these findings indicate that Beclin 2 is a
host antiviral molecule that protects against the pathogenic effects
of KSHV GPCR by facilitating its endolysosomal degradation. More
broadly, our data suggest a role for host endolysosomal trafficking
pathways in regulating viral pathogenesis and oncogenic signaling.
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Phagocytosis and autophagy are two processes that deliver
microbes and their constituent proteins to the lysosome for

degradation, thereby contributing to the clearance of pathogens
and to the presentation of peptide antigens to T cells (1, 2).
However, it is not known whether endocytic internalization and
lysosomal targeting of virus-encoded cell-surface receptors con-
tributes to the control of viral infection and disease.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the caus-

ative agent of AIDS-related and other forms of Kaposi’s sarcoma
(KS), primary effusion lymphoma, and multicentric Castleman’s
disease (3–5). KS is a multifocal tumor characterized by prolifer-
ating spindle cells (possibly of endothelial origin), angiogenesis,
vascular slits, erythrocyte extravasation, and inflammatory cells.
Proinflammatory signaling by the dominant KS cell, the spindle
cell, is considered the driving force in KS lesions (6). The risk of
KSHV-associated malignancies increases with increased lytic viral
replication (7–9), suggesting that KSHV-induced oncogenesis may
be related to the levels of expression of viral oncoproteins.
The oncogenic KSHV G protein-coupled receptor (vGPCR),

encoded by the KSHV ORF74 lytic gene, is a constitutively active
chemokine receptor expressed in patients with KSHV-associated
tumors (10). At least in animal studies, there are strong data that
vGPCR substantially contributes to the onset and progression of
KSHV-associated neoplasia in vivo (11–19). Although only a
small proportion of tumor cells express vGPCR (10), they are
both sufficient and necessary for KSHV-induced sarcoma-
genesis. The endothelial-specific expression of vGPCR (but of
neither KSHV latent genes, such as vCyclin, vFlip, and Kaposin,
nor other KSHV lytic genes, such as vBcl-2 or vIRF1) or injection
of murine endothelial cells stably expressing vGPCR (but not
other KSHV genes, such as vCyclin, vFlip, Kaposin, LANA, vIL-6,
vBcl-2, and K1) causes multifocal KS-like tumors in mice (15, 18).

Furthermore, injection of a small number of endothelial cells
expressing vGPCR increases the tumorigenic potential, in a
paracrine fashion, of endothelial cells expressing other KSHV
latent genes (vCyclin and vFlip), whereas eradication of the small
number of vGPCR-expressing cells in established mix-cell tumors
induces tumor regression (15, 18). Moreover, in a nude mouse
model of KS driven by transfection of a KSHV bacterial artificial
chromosome into bone marrow endothelial-lineage cells, siRNA
interference (RNAi)-mediated suppression of vGPCR expression
dramatically reduces angiogenesis and tumor formation (19). In
addition, immunocompetent mice that transgenically express
doxycycline (DOX)-inducible KSHV GPCR in endothelial cells
(hereafter referred to as ikGPCR+) manifest lesions that strongly
resemble human Kaposi’s sarcoma (16, 17). Importantly, the pro-
gression of lesions in ikGPCR+ mice is reversible because DOX
withdrawal leads to significant regression of vGPCR-induced le-
sions (17), suggesting that vGPCR-driven oncogenesis is highly
dependent on sustained vGPCR expression and signaling.
Based on these previous observations in animal models re-

garding KSHV GPCR and oncogenesis, we developed the hy-
pothesis that cell-intrinsic mechanisms that decrease vGPCR
protein levels may function as an important host defense mech-
anism for controlling viral oncogenesis. Recently, we showed that
the autophagy protein, Beclin 2 (but not the related autophagy
protein Beclin 1) is essential for the endolysosomal degradation
of certain cellular GPCRs that are regulated by GASP1 rather
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than by ubiquitination and the endosomal sorting complexes re-
quired for the transport pathway (20). This function of Beclin 2,
but not Beclin 1, regulates mouse brain cannabinoid receptor
levels and metabolism in vivo (20). Therefore, we investigated
whether Beclin 2 may play a role in the endolysosomal degrada-
tion of viral GPCRs and thereby represent an important host
defense mechanism against KSHV GPCR-induced oncogenic
effects. Our results demonstrate a crucial role for Beclin 2 in
KSHV GPCR trafficking, proinflammatory signaling, and in vivo
tumorigenicity, and thus represent a previously undescribed role
for endolysosomal trafficking in innate immunity and the control
of viral GPCR-driven oncogenesis.

Results
Beclin 2 Interacts with KSHV GPCR (vGPCR) and Reduces Its Protein
Levels. We investigated whether Beclin family members (21) in-
teract with vGPCR. In HEK293 cells transfected with HA-tagged
vGPCR and Flag-tagged human Beclin 1 or Beclin 2, both human
Beclin 1 and human Beclin 2 coimmunoprecipitated with vGPCR
(Fig. 1A). We confirmed that endogenous Beclin 1 and Beclin 2
coimmunoprecipitated with HA-vGPCR (Fig. 1B). Because Beclin
2, but not Beclin 1, overexpression appeared to result in a decrease
in HA-vGPCR steady-state levels (Fig. 1A), we examined whether
there was a dose-dependent effect of Beclin 2 on vGPCR protein
levels. Indeed, increasing levels of Beclin 2 expression were asso-
ciated with significant decreases in levels of steady-state vGPCR
expression but not of an irrelevant transfected control protein,
GFP; in contrast, overexpression of Beclin 1 had no effect on
steady-state levels of vGPCR (Fig. 2A). Moreover, siRNA knock-
down of Beclin 2, but not the related autophagy protein Beclin 1 or
another autophagy protein ATG7, resulted in an increase in
steady-state levels of vGPCR (Fig. 2B), although siRNA knock-
down of Beclin 2, Beclin 1, and ATG7 resulted in a comparable
defect in starvation-induced autophagic flux [as measured by p62
degradation reversed by the lysosomal inhibitor bafilomycin A1
(Baf A1)] (Fig. S1). Moreover, siRNA knockdown of Beclin 2 also
increased KHSV GPCR levels in body cavity lymphoma cells with
lytic KSHV replication (Fig. 2C). Taken together, our data show
that Beclin 2, but not other autophagy proteins such as Beclin 1 or
ATG7, regulates cellular levels of vGPCR.
Next, we investigated whether interaction with GASP1 is re-

quired for this function of Beclin 2. Previously, we found that
Beclin 2 mutants lacking amino acids 69–88 (Δ69–88) or with an
I80S substitution mutation are unable to interact with GASP1
and mediate degradation of certain cellular GPCRs (20). In
contrast, these two Beclin 2 mutants coimmunoprecipitated with
vGPCR and decreased vGPCR steady-state levels (Fig. S2 A and
B). Moreover, we rescued the increase in steady-state vGPCR
levels upon Beclin 2 siRNA knockdown by expressing either
wild-type siRNA-resistant Beclin 2 or mutant Δ69–88 or I80S

siRNA-resistant Beclin 2 (Fig. S2 C and D). Thus, the increase in
vGPCR steady-state levels with Beclin 2 knockdown is not a
result of off-target siRNA effects and, unlike Beclin 2-dependent
regulation of cellular GPCRs, Beclin 2-dependent regulation of
vGPCR does not require its GASP1-interacting domain.

Beclin 2 Regulates vGPCR Protein Levels Through a Lysosomal
Degradation Pathway. The Beclin 2-dependent decrease in HA-
vGPCR expression was partially reversed by treatment with the
lysosomal inhibitor, Baf A1 (Fig. 3A), suggesting that Beclin 2
may promote the degradation of KSHV GPCR through a lyso-
somal-dependent (but autophagy-independent) pathway. To con-
firm these findings using an independent approach (Fig. S3A), we
followed the fate of fluorescently labeled surface HA-vGPCR
(at 4 °C) at serial time points after internalization (incubation at
37 °C) in the presence or absence of enforced Beclin 2 expression
and in the presence or absence of Baf A1. By 90 min after in-
ternalization, the percentage of cells expressing vGPCR was sig-
nificantly less when cotransfected with Beclin 2 versus empty
vector control (Fig. 3 B and C); this number dropped to almost
15% in the Beclin 2-transfected cells, but remained at ∼70% in
the vector-transfected cells (Fig. 3B). This decrease in vGPCR+

cells upon cotransfection with Beclin 2 was completely blocked by
treatment with Baf A1 (Fig. 3C), confirming that Beclin 2 pro-
motes the endolyososomal degradation of vGPCR. To confirm
that endogenous Beclin 2 regulates the fate of internalized
vGPCR, we compared the percentage of vGPCR+ cells treated
with noncoding control or beclin 2 siRNA (Fig. S4B) at 45 min
and 180 min after receptor internalization. At 45 min, no differ-
ences were observed and vGPCR was predominantly colocalized
with the endosomal marker, early endosome antigen 1 (EEA1)
(Fig. S3C); in contrast, at 180 min, very few (∼10%) vGPCR+

cells were observed in the nontargeting control siRNAs, whereas
∼70% cells were vGPCR+ in the beclin 2 siRNA-treated group
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(Fig. 3D). We conclude that increased Beclin 2 expression facili-
tates the endolysosomal degradation of vGPCR, whereas Beclin 2
knockdown delays intracellular vGPCR degradation.

Beclin 2 Suppresses vGPCR-Induced Oncogenic Signaling. We next
investigated whether Beclin 2-dependent regulation of KSHV
GPCR levels affects its signaling functions (16, 22–24), including
activation of the NF-κB transcription factor and the NF-κB–
dependent, proinflammatory cytokine IL-6, which is protumori-
genic in KSHV-induced tumors (25–29). Using NF-κB and IL-6
promoter luciferase reporter assays, we found that enforced
Beclin 2, but not Beclin 1, expression inhibits vGPCR-induced
NF-κB and IL-6 activation in a dose-dependent manner (Fig. 4 A
and B). This suppression of vGPCR-induced NF-κB and IL-6
activation was reversed by the lysosomal inhibitor Baf A1 (Fig. 4
C and D). In addition, expression of Beclin 2 mutants (Δ69–88
and I80S) that do not interact with GASP1 (20), suppressed
vGPCR-induced NF-κB and IL-6 activation as effectively as
wild-type Beclin 2 (Fig. S4 A and B). Moreover, Beclin 2
enforced expression did not suppress TNF-α–induced NF-κB
activation (Fig. S4 C and D), suggesting the regulation of vGPCR
signaling by Beclin 2 is not a result of nonspecific global sup-
pression of NF-κB activation.
We also found that knockdown of Beclin 2, but not of Beclin 1

or ATG7, enhanced vGPCR-mediated NF-κB activation (Fig. 4E
and Fig. S4E) and IL-6 activation (Fig. 4F and Fig. S4F), and this
increase was reversed by cotransfection with either wild-type or
GASP1 binding-defective Beclin 2 siRNA-resistant mutants (Fig.

4 G and H and Fig. S4 G and H). Taken together, these data
indicate that Beclin 2 regulates vGPCR-induced NF-κB and IL-6
signaling in a lysosomal-dependent (but autophagy-independent)
manner, which involves facilitating the endolysosomal degrada-
tion of vGPCR. Moreover, this function of Beclin 2 does not
require its interaction with GASP1.

Beclin 2 Suppresses KSHV GPCR-Driven Oncogenesis in Vivo. Given
our observation that Beclin 2 regulates vGPCR-induced onco-
genic signaling in vitro, we investigated whether Beclin 2 plays a
role in regulating vGPCR-induced oncogenesis in vivo. We used
a previously established mouse model (referred to herein as
ikGPCR+ mice) in which DOX-inducible expression of KSHV
GPCR causes lesions in mice that strongly resemble human cu-
taneous KS (16, 17). We crossed ikGPCR+ mice with previously
described Becn2+/− mice that are deficient in autophagy and the
degradation of certain cellular GPCRs (20) and with Becn1+/−mice
that are deficient in autophagy (30), but not in the degradation of
cellular GPCRs (20). Compared with ikGPCR+;Becn2+/+ litter-
mates, ikGPCR+;Becn2+/− littermates had a significantly earlier
onset of detectable skin lesions following the initiation of DOX
administration in the drinking water (Fig. 5A). This result was
not caused by increased water intake (Fig. S5A) or increased
serum DOX levels in the ikGPCR+;Becn2+/− mice (Fig. S5B).
Both ikGPCR+;Becn2+/+ and ikGPCR+;Becn2+/−mice manifested

the typical cutaneous lesions previously described in ikGPCR+ mice
(with vascular and spindle cell proliferation and an admixture of
inflammatory cells), most prominent on the tail, ear, and other
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exposed skin regions. However, at the same time period after DOX
treatment, the lesions in the ikGPCR+;Becn2+/− mice were more
numerous and larger than those observed in ikGPCR+;Becn2+/+

mice at the macroscopic level (see representative photos in Fig. 5B)
and they showed a higher density of lesional cells and more
inflammatory cells upon histopathological examination (Fig. 5C
and Fig. S6). Moreover, staining with an antibody against the

endothelial cell marker, CD34, revealed a significant increase in
CD34+ spindle-shaped cells (Fig. 5C), one of the hallmark fea-
tures of human KS. Immunostaining with an antibody against the
vGPCR transgenic protein also revealed higher levels of vGPCR
immunostaining in lesions of ikGPCR+;Becn2+/− mice compared
with ikGPCR+;Becn2+/+ mice (see representative photomicro-
graph in Fig. 5D).
Consistent with the earlier onset and increased severity of

Kaposi’s sarcoma-like skin lesions in the ikGPCR+;Becn2+/−
mice compared with the ikGPCR+;Becn2+/+ mice, ikGPCR+;
Becn2+/− mice had significantly shorter survival than ikGPCR+;
Becn2+/+ littermates (Fig. 5E). Mice were killed when they be-
came visibly moribund with an inability to ambulate and man-
ifested respiratory distress. Even though all mice were moribund
at the time of autopsy, the ikGPCR+;Becn2+/− group had larger
peritoneal serosanguinous effusions, more extensive diffuse
lymphedema, and more visible pulmonary vascular lesions. Mi-
croscopically, upon random lung sectioning, a higher percentage
of ikGPCR+;Becn2+/− mice had pathological evidence of pulmo-
nary hemorrhagic KS than ikGPCR+;Becn2+/+ (37 of 43 mice vs. 23
of 36 mice; P < 0.05; χ2 test). Similar to human pulmonary KS (31),
pulmonary lesions displayed slit-like vascular spaces and extensive
erythrocyte extravasation, and tended to be more extensive in the
ikGPCR+;Becn2+/− mice (Fig. 5F). ikGPCR+;Becn2+/− mice also
had a marked increase in serum levels of IL-6 at the time of death
(Fig. 6A) and at 2 and 4 wk after DOX treatment (Fig. 6B). The
variability of IL-6 production among mice is likely a result of
individual variation instead of leaky expression from the DOX-
responsive ikGPCR allele, as the serum levels of IL-6 in untreated
ikGPCR+;Becn2+/+ and ikGPCR+;Becn2+/− littermate mice were
undetectable. The levels of serum IL-6 elevation in ikGPCR+;
Becn2+/− mice inversely correlated with duration of survival (Fig.
S7), consistent with data from previous animal models and hu-
man studies, suggesting that IL-6 is an important pathogenic
factor in KS-like disease (25–29, 32).
Thus, allelic loss of beclin 2 significantly exacerbates KSHV

GPCR-induced protumorigenic signaling and KSHV GPCR-
induced neoplastic lesions in vivo. These effects are unlikely to
be related to autophagy, because ikGPCR+;Becn1+/− mice did
not have accelerated onset of lesions, earlier mortality, or in-
creased IL-6 production compared with littermate ikGPCR+;
Becn1+/+ control mice (Fig. S8). Rather, taken together with our
in vitro findings, they most likely reflect a role for Beclin 2 in
promoting the endolysosomal degradation of KSHV GPCR and,
thereby, in blocking its protumorigenic signaling effects.

Discussion
Our findings demonstrate a crucial role for the endolysosomal
degradation of a virally encoded cell-surface receptor in the
suppression of proinflammatory signaling and neoplastic disease
driven by a viral oncogenic protein. Overexpression of Beclin 2
(but not the related autophagy protein Beclin 1) results in
accelerated degradation of vGPCR and decreased proinflammatory
signaling that is blocked by lysosomal inhibition, whereas knock-
down of Beclin 2 (but not the related autophagy protein Beclin 1)
results in delayed degradation of vGPCR and increased proin-
flammatory signaling. Moreover, allelic loss of Becn2, but not of
Becn1, in mice results in accelerated progression and enhanced
severity of vGPCR-driven tumorigenesis, as well as increased IL-6
signaling. Therefore, we propose that this Beclin 2-dependent
endolysosomal trafficking and degradation of a KSHV oncogenic
protein may represent a broader and heretofore unappreciated role
of the endolysosomal trafficking machinery in innate immunity (by
functioning as a defense against microbial virulence factors) and in
tumor suppression (by degrading oncogenic cell surface receptors).
Considerable advances have been made in defining how on-

cogenic viral factors (e.g., vGPCR, vFLIP, vCyclin, and vIL-6)
contribute to KSHV-induced oncogenesis (33, 34), and how
onocogenic herpesviruses evade or manipulate host defense
pathways (including autophagy) (35, 36). However, it is still largely
unclear what mechanisms the host uses to successfully defend
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Fig. 4. Beclin 2 suppresses vGPCR-induced oncogenic signaling. (A and B)
Effects of Beclin 1 and Beclin 2 ectopic expression on NF-κB (A) and IL-6 (B)
promoter activity in HEK293 cells. Three different doses of Beclin plasmids
were used in transfection, and the total amount of plasmids was balanced
with empty vector for all groups. Levels of Flag-Beclin 2 and Flag-Beclin 1 in
whole-cell lysates were determined byWestern blot analysis. (C and D) Beclin
2 ectopic expression regulates NF-κB (C) and IL-6 (D) promoter activity
through a lysosomal-dependent pathway. HEK293 cells were treated with
either DMSO or 100 nM Baf A1 for 10 h. Levels of Flag-Beclin 2 in whole-cell
lysates were determined by Western blot analysis. (E and F) Effects of Beclin
2, Beclin 1, and ATG7 knockdown on NF-κB (E) and IL-6 (F) promoter activity.
HEK293 cells were treated with indicated siRNAs for 48 h, and then trans-
fected with a plasmid expressing HA-vGPCR. See Fig. S4 E and F for Western
blot showing knockdown of endogenous Beclin 2, Beclin 1, and ATG7 in
these cells. (G and H) Rescue of effects of Beclin 2 knockdown on NF-κB
(G) and IL-6 (H) promoter activity with siRNA-resistant Beclin 2 expression
constructs. HEK293 cells were treated with indicated siRNAs for 48 h, and
then transfected with empty vector or plasmids expressing siRNA-resistant
(NTm) wild-type Beclin 2, or siRNA-resistant Beclin 2 mutants (I80S and Δ69–88)
that are unable to interact with GASP1 (20). See Fig. S4 G and H for Western
blot analysis showing knockdown of endogenous Beclin 2 and reconstitution
of Beclin 2 expression in these cells. For A–H, bars represent mean ± SD of
triplicate samples and similar results were observed in three independent ex-
periments. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant; one-way
ANOVA with Dunnett method. See also Fig. S4.
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against oncogenesis driven by γ-herpesviruses. Although immune
status (such as HIV-related or iatrogenic immunosuppression)
and ethnicity (such as in classic KS and endemic KS) are impor-
tant determinants of risk of KSHV-associated malignancies (34,
37), other unexplained factors likely play a role in determining the
incidence and prevalence of KS in at-risk populations. Our find-
ings in mice (i.e., the acceleration of disease in vGPCR transgenic
mice with allelic loss of Becn2) lead us to speculate that genetic
variations in BECN2 (or genes encoding other proteins that may
regulate the trafficking of vGPCR) contribute to individual sus-
ceptibility to KSHV-associated malignancies in humans.
The mechanism by which Beclin 2 protects against KSHV

GPCR-induced oncogenesis likely relates to a role in reducing
vGPCR protein levels in endothelial cells harboring the trans-
gene and subsequent reduction of IL-6 protumorigenic signal-
ing. Our in vitro studies demonstrate a lysosomal-dependent
role for Beclin 2 in reducing vGPCR levels and vGPCR-induction
of IL-6 signaling, and our in vivo studies show enhanced vGPCR
expression and increased IL-6 production in mice with allelic loss
of Becn2. Moreover, the magnitude of IL-6 elevation in Becn2+/−

mice inversely correlates with survival time. Several lines of
evidence suggest that IL-6 is a key pathogenic factor in KSHV-
associated malignancies (25–29, 32). In humans, an IL-6 pro-
moter polymorphism (G-174C), which leads to increased IL-6
expression (38, 39), is strongly associated with different types of
KS, including those that occur in AIDS patients (epidemic KS)
(28), renal transplant recipients (iatrogenic KS) (40), and a fa-
miliar cluster of classic KS (41). In mice, genetic deletion of IL-6
ablates KSHV-associated multicentric Castleman’s disease (26).
Although our studies do not prove a causal relationship between
increased IL-6 production and accelerated tumorigenesis and
mortality in Becn2+/− mice, our observations are consistent with
the paradigm that IL-6 is a key regulator of KSHV pathogenesis
and provide definitive evidence that Beclin 2 regulates KSHV
GPCR-induced IL-6 levels in mice.
In conclusion, our findings indicate that the endolysosomal deg-

radation of viral (and potentially other microbial) virulence factors
may serve as an important host antipathogen defense mechanism.
Previous studies have shown that the canonical autophagy machinery
can function in antibacterial and antiviral host defense by delivering

intracellular pathogens or components of intracellular pathogens to
the lysosome for degradation (2, 36). Moreover, Beclin 1 and the
autophagy pathway has been proposed to function in controlling viral
oncogenesis in at least two contexts: monoallelic deletion of Becn1
accelerates neoplastic lesions in the livers of mice that transgenically
express hepatitis B envelope protein autophagy (30) and decreased
autophagic degradation of a microRNA (miR-224) is postulated to
contribute to hepatitis B virus-associated hepatocellular carcinoma in
mice and in humans (42). Our findings suggest that independently of
the autophagy machinery, the delivery of viral oncoproteins to the
lysosome for degradation (via an endolysosomal trafficking route)
may play a crucial role in innate immunity.

Materials and Methods
See SI Materials and Methods for a detailed description.

Cell Lines and Mouse Strains. HEK293 and HeLa cell lines were obtained from
the American Type Culture Collection and KSHV latently infected body
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Fig. 5. Monoallelic loss of Becn2 in mice accelerates
KSHV GPCR-driven oncogenesis. (A) Lesion incidence
in DOX-treated ikGPCR+;Becn2+/+ and ikGPCR+;
Becn2+/− mice. No lesions were observed in mice of
either genotype in the absence of DOX treatment
(Table S1). Statistical significance assessed by log-
rank test; number of mice per genotype and P value
indicated in graph. (B) Representative photomicro-
graphs of a pair of ikGPCR+;Becn2+/+ and ikGPCR+;
Becn2+/− littermates after 40 d of DOX treatment.
Images of ear, foot, abdominal skin, and tail (Right)
are higher-power magnification of the ikGPCR+;
Becn2+/− mouse shown (Left). (C ) Representative
photomicrographs of H&E and anti-CD34–stained
sections of abdominal skin tumor specimens from
DOX-treated ikGPCR+;Becn2+/+ and ikGPCR+;Becn2+/−

mice. (Scale bars, 200 μm.) (D) Representative images
of anti-vGPCR immunohistochemistry staining of ab-
dominal skin tumor specimens from DOX-treated
ikGPCR+;Becn2+/+ and ikGPCR+;Becn2+/− mice. (Scale
bars, 20 μm.) (E) Kaplan–Meier curves of survival time of
DOX-treated ikGPCR+;Becn2+/+ and ikGPCR+;Becn2+/−

littermates. Statistical significance assessed by log-rank
test; number of mice per genotype indicated in graph.
(F) Representative photomicrographs of H&E-
stained sections of lung specimens from DOX-treated
ikGPCR+;Becn2+/+ and ikGPCR+;Becn2+/− mice. (Scale
bars, 100 μm.) See also Figs. S5, S6, and S8, and
Table S1.
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2998 | www.pnas.org/cgi/doi/10.1073/pnas.1601860113 Dong et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601860113/-/DCSupplemental/pnas.201601860SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601860113/-/DCSupplemental/pnas.201601860SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601860113/-/DCSupplemental/pnas.201601860SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601860113/-/DCSupplemental/pnas.201601860SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601860113/-/DCSupplemental/pnas.201601860SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601860113/-/DCSupplemental/pnas.201601860SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601860113/-/DCSupplemental/pnas.201601860SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1601860113/-/DCSupplemental/pnas.201601860SI.pdf?targetid=nameddest=SF8
www.pnas.org/cgi/doi/10.1073/pnas.1601860113


cavity-based lymphoma (Bcbl-1) cells that carry the tetracycline-inducible viral
replication and transcription activator (Rta) allele (Bcbl-1.TREx-Rta) were a gift
from Jae U. Jung, Keck School of Medicine, University of Southern California,
Los Angeles (43). Mouse strains used in this study have been previously de-
scribed, including Becn1+/− (30), Becn2+/− (20), and the transgenic mouse strain
that expresses tetracycline-inducible KSHV GPCR (ikGPCR+), known as iORF74
mice in previous studies (16, 17). All animal protocols were approved by the
University of Texas Southwestern Medical Center Institutional Animal Care
and Use Committee. Detailed information on cell culture conditions, mouse
breeding and genotyping, animal experiments, and histopathological analyses
of animal tissues is provided in SI Materials and Methods.

Antibodies, Chemical Reagents, Plasmids, and siRNAs. See SI Materials and
Methods for details.

Western Blotting and Coimmunoprecipitation Studies. See SI Materials and
Methods for details.

Luciferase Reporter Assays. NF-κB and IL-6 promoter activity was measured
by performing luciferase reporter assays as described in the SI Materials
and Methods.

Microscopy Studies. For antibody-pulse labeling, HeLa cells expressing HA-vGPCR
were transfected with nontargeting control siRNAs or siRNA targeting beclin 2,
incubated with an anti-HA antibody for 45 min on ice, and then incubated for
45–180 min at 37 °C to allow vGPCR-antibody complex internalization. All
imaging was performed using a Zeiss AxioImager Z2 microscope, and z-stack
images were deconvolved with AutoDeBlur, and analyzed with Imaris v7.4.0
(Bitplane). See SI Materials and Methods for details.
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