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Fitness landscapes of drug resistance constitute powerful tools to
elucidate mutational pathways of antibiotic escape. Here, we de-
veloped a predictive biophysics-based fitness landscape of trimeth-
oprim (TMP) resistance for Escherichia coli dihydrofolate reductase
(DHFR). We investigated the activity, binding, folding stability, and
intracellular abundance for a complete set of combinatorial DHFR
mutants made out of three key resistance mutations and extended
this analysis to DHFR originated from Chlamydia muridarum and
Listeria grayi. We found that the acquisition of TMP resistance via
decreased drug affinity is limited by a trade-off in catalytic efficiency.
Protein stability is concurrently affected by the resistant mutants,
which precludes a precise description of fitness from a single molec-
ular trait. Application of the kinetic flux theory provided an accurate
model to predict resistance phenotypes (IC50) quantitatively from a
unique combination of the in vitro protein molecular properties. Fur-
ther, we found that a controlled modulation of the GroEL/ES chap-
eronins and Lon protease levels affects the intracellular steady-state
concentration of DHFR in a mutation-specific manner, whereas IC50 is
changed proportionally, as indeed predicted by the model. This un-
veils a molecular rationale for the pleiotropic role of the protein
quality control machinery on the evolution of antibiotic resistance,
which, as we illustrate here, may drastically confound the evolution-
ary outcome. These results provide a comprehensive quantitative
genotype–phenotype map for the essential enzyme that serves as
an important target of antibiotic and anticancer therapies.
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Predictive models of antibiotic resistance are key to developing
novel antibacterial treatments (1–6). Besides its practical im-

portance, antibiotic escape presents a tractable general model of
adaptive evolutionary dynamics that can provide insights into fun-
damental questions in evolution, such as the reproducibility and
predictability of evolutionary trajectories (4, 7, 8) as well as the
importance of epistasis and pleiotropy (5, 7, 9, 10).
Experimental evolution studies of evolution of antibiotic re-

sistance showed that in many cases resistance-conferring muta-
tions arose both in target and off-pathway genes (5, 11). However,
mutations conferring resistance against trimethoprim (TMP) were
largely limited to the target gene, namely the ORF and upstream
region of folA, the gene encoding dihydrofolate reductase (DHFR)
(1, 5, 11). DHFR is an essential core metabolic enzyme that converts
dihydrofolate to tetrahydrofolate—a main source of carbon
atoms in several key pathways. The rare occurrence of off-target
adaptive mutations makes DHFR an attractive model to study
the fitness landscape of antibiotic resistance. In a recent study (2)
strains carrying various combinations of TMP resistance-conferring
mutations in folA were incorporated onto the Escherichia coli
chromosome (12, 13) and their fitness (growth rate) was deter-
mined, providing the fitness landscape for the chosen set of variants.
The analysis in ref. 2 demonstrated the complexity of the fitness
landscape of TMP resistance featuring strong epistasis, although
the underlying molecular mechanisms giving rise to the epistatic
interactions between DHFR mutations remained unknown.
Further, the genotype–phenotype link was determined only for

a selected set of genetic variants and only under conditions
(temperature and concentration of antibiotic) at which fitness was
determined. It is an ongoing challenge to predict fitness landscape
for a broad set of conditions and genetic variations that might arise
in the process of evolutionary dynamics of adaptation in vivo and
in the laboratory. To that end we need to close the genotype–
phenotype gap for the target protein by establishing the funda-
mental physical–chemical link between the molecular effects of
mutations and their fitness effects.
Here we address these challenges using DHFR as a model

system. Among mutations identified in the evolutionary experi-
ment under sustained selection toward TMP resistance (1), P21L,
A26T, L28R, and their combinations constitute an interesting set
that recurrently appeared in two out of five independent evolution
experiments, and their order of fixation in both cases was similar.
These mutated residues cluster within a short region of eight
residues in the DHFR protein that comprises a flexible Met-20
loop (residues 9–24) and an α-helix (residues 25–35) that estab-
lishes contacts with bound dihydrofolate substrate (Fig. 1A).
We purified all possible combinations of these three key

DHFR mutations that confer TMP resistance (depicted in
Fig. 1B) and determined their biophysical properties (activity,
stability, and binding affinity to TMP). We transformed E. coli
with pFLAG plasmids expressing WT and mutant E. coli
DHFR gene constructs and measured the intracellular DHFR
abundance and determined fitness (growth rates) of each
transformed variant in a broad range of concentrations of TMP.
We also extended the mutational analysis to DHFR originated
in Chlamydia muridarum and Listeria grayi by creating the
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corresponding set of mutations in the matching positions of the
orthologous sequences.
We found that TMP resistance mutations affect multiple

molecular properties of DHFR so that no single molecular trait
is predictive of fitness. However, flux dynamics theory (14, 15)
predicts, and experiments demonstrate, that fitness and IC50 for
TMP can be accurately predicted when the combined effect of
mutations that simultaneously change the abundance, activity,
and TMP binding affinity of mutant DHFR are taken into ac-
count. Further, using the earlier established relationship (13)
between DHFR abundance (cellular property) and population of
the molten globule state (molecular property of DHFR), we
show that the fitness landscape of DHFR mutations can be de-
rived from the molecular properties of DHFR alone. This mul-
tiscale analysis provides an example of a predictive quantitative
biophysical fitness landscape for an essential enzyme.

Results
Fitness Landscape of TMP Resistance.Growth measurements were done
in the absence of inducer (isopropyl β-D-1-thiogalactopyranoside,
IPTG) because leaky expression from plasmid was sufficient to confer
high levels of TMP resistance (∼100-fold over nontransformed cells),
and yet the resistance was relatively modest, so inhibition of growth
could be observed. To quantify growth at each TMP concentration
we integrated the area under the growth curve (optical density vs.

time) as described in ref. 2 and for each variant determined the level
of TMP resistance by measuring IC50 (SI Methods). Expectedly, all
mutations confer increased resistance to TMP over WT DHFR (Fig.
1C and Dataset S1), consistent with earlier results where the same
mutations were introduced into the E. coli chromosome (2). Among
single mutants, the L28R variant exhibits by far the highest resistance.
Introduction of another mutation on the L28R background, either
P21L or A26T, does not change IC50 significantly. On the contrary,
the resistance of the double mutant P21L/A26T is best interpreted as
arising from an additive effect of the combined contributions of each
mutation. Although the triple mutant P21L/A26T/L28R emerged in
laboratory evolution as the winning allele at highest concentration of
TMP (1), it is the most drug-sensitive among all L28R-containing
variants.
To provide a mechanistic insight into the phenotypic differ-

ences between different DHFR variants, all protein variants
were purified to homogeneity and characterized in vitro for their
stability and catalytic properties.

Stability of DHFR Mutants. All purified DHFR mutants were de-
termined to be monomers by size-exclusion chromatography,
with no evidence for a significant amount of higher oligomeric
states (Fig. S1). Thermal denaturation experiments, which allow
assessing differences in protein stability, were performed for
each protein variant (Fig. S1 and Methods). Mutational changes

Fig. 1. DHFR mutations associated with TMP resistance and mapping of phenotypic and molecular effects in a combinatorially complete set of mutations.
(A) Resistance-conferring mutations in DHFR are found close to binding pocket of dihydrofolate (in yellow). (B) Color-code scheme of all possible combination
made out of the three mutations studied in this work. (C) IC50 values determined for E. coli transformed with pFLAG plasmid harboring different DHFR mutants.
(D) Stability data measured for different DHFR mutants. (Top) ΔTm values were determined from thermal denaturation experiments monitored by the change in
tryptophan fluorescence upon unfolding. (Bottom) bis-ANS fluorescence upon binding to different DHFR mutants measured after incubation at 37 °C for 5 min.
(E) Catalytic parameters determined for all DHFR mutants. (Top) Catalytic efficiency measured at 25 °C from full progress reaction curves. (Bottom) TMP inhibition
constants (Ki) determined at 25 °C. (F) Catalytic efficiency trades-off with increase in Ki. (Inset) A similar trade-off observed for orthologous DHFR mutants from
L. grayi and C. muridarum.
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in protein folding stability characterized by the difference in the
midpoint denaturation transition temperature with respect to
WT (ΔTm) are shown in Fig. 1D, Top. It is clear that P21L and
A26T mutations are destabilizing, in contrast to the stabilizing
mutation L28R, which shows an increase in Tm of 6 °C above WT
DHFR. The significant lower stability observed for the double
mutant P21L/A26T (−14 °C) is probably the result of the addi-
tive contribution of each destabilizing mutation. Interestingly,
the L28R mutation cancels out the destabilization brought by
P21L and A26T, restoring the Tm of the double and triple mu-
tants to WT values. In addition to thermal stability, the pro-
pensity of DHFR mutants to form molten-globule intermediates
was measured using the fluorescent dye bis-ANS as a reporter
(13, 16) (Fig. 1D, Bottom). Increased fluorescence indicates an
increased exposure of protein hydrophobic patches to which the
dye binds, which correlates with molten-globule content (17).
High bis-ANS fluorescence at 37 °C is observed in all DHFR
variants that have the A26T mutation, suggesting a particular
effect of this mutation on the increase of the subpopulation of
molten-globule–like conformations. As with thermal stability, the
single L28R mutant also shows improved compactness, inferred
from its low bis-ANS binding properties; however, in double and
triple mutants, L28R does not compensate the deleterious ef-
fects caused by A26T.

Escaping Drug Inhibition Involves Catalytic Efficiency Trade-Off.
Owing to the proximity of all three mutated residues to the ac-
tive site, it is expected that mutations will significantly affect the
catalytic activity of the protein. The catalytic activity (kcat/Km)
was determined from the analysis of full-progress reaction
curves, as described previously (18); kcat/Km has the physical
meaning of a second-order rate constant for the reaction be-
tween DHFR and dihydrofolate (under nonsaturating concen-
trations of dihydrofolate and saturating concentration of the
cofactor NADPH). Fig. 1E, Top shows a progressive decrease in
kcat/Km as more mutations are successively added to the protein.
This drop in efficiency is caused mainly by the drop in the re-
action turnover (kcat), because Km for dihydrofolate also de-
creases (Fig. S2). To investigate whether binding of TMP to the
active site of DHFR is affected by mutations, we measured the
kinetic inhibition constant (Ki) for each variant. This parameter
was determined by measuring the drop in DHFR catalytic
activity at increasing concentrations of TMP, using fixed
dihydrofolate concentrations (see details in SI Methods). In
contrast to what was observed for catalytic efficiency, there is a
dramatic increase in Ki as mutations accumulate, reaching a
maximum at the triple mutant. In fact, there is a noticeable
anticorrelation between catalytic efficiency and Ki, indicating a
clear trade-off between catalytic efficiency and increased drug
resistance (Fig. 1F).

Fitness Landscapes of Orthologous Transformations. To get a broader
view of the biophysical nature of the fitness landscape of antibiotic
resistance we also transformedE. coliwith pFLAGplasmids expressing
DHFR proteins from two mesophilic bacteria, C. muridarum and
L. grayi, sharing 26% and 36% sequence identity with E. coli
DHFR, respectively, and carrying all combinations of the three
key mutations in the loci corresponding to the three escape
mutations in E. coli DHFR that we study here (see sequence
alignment in Fig. S3). Similarly to E. coli DHFR, we purified
all variants of the mutant orthologs from C. muridarum and
L. grayi, characterized their biophysical properties, and com-
pared them with E. coli DHFR mutants (Figs. S2 and S4). We
observed a similar trade-off between catalytic activity and TMP
binding (Fig. 1F, Inset). The following quantitative analysis of
the biophysical fitness landscape includes all strains, that is,
transformed with E. coli variants and variants of orthologous
DHFR from C. muridarum and L. grayi. Using DHFRs from two

additional sources allowed us to significantly extend the dynamic
range of biophysical parameters to provide a comprehensive bio-
physical mapping of the fitness landscape.

Intracellular Protein Abundances Are Inversely Correlated with bis-
ANS Binding. The effect of mutations on the total amount of in-
tracellular functional protein (13) can have a significant impact
on its evolutionary fate; the benefit of a mutation in conferring
high drug resistance to a protein can be completely negated if
such a mutation dramatically decreases protein abundance in the
cell. Therefore, we developed a fluorescence-based method to
quantify intracellular DHFR levels by measuring the total en-
zymatic activity in cell lysates (see details in SI Methods). This
assay detects only the fraction of protein that is functional and
therefore is biologically more relevant than standard approaches
based on Western blotting. This approach was used to determine
the concentration of chromosomally expressed DHFR from the
parent MG1655 strain, which yielded ∼90 copies per cell in ac-
cord with the earlier estimate (19), whereas the noninduced
overexpression from pFLAG plasmid produced 300-fold greater
number of copies of protein (∼24,000 molecules per cell for WT
DHFR). Fig. 2A shows the intracellular abundances of E. coli
DHFR variants expressed from the plasmid under growth con-
ditions identical to those used in the IC50 measurements. These
values (which were normalized to plasmid-expressed E. coli WT
DHFR abundance) vary from 0.4- (triple mutant) to 2.8-fold
(P21L/L28R double mutant). Similar measurements performed
for the orthologous DHFR from C. muridarum and L. grayi in-
dicate that these variants are expressed at much lower levels
(Fig. S5 and Dataset S2). Indeed, we observe a strong inverse
correlation between abundance and fraction of molten-globule
intermediate state assessed by bis-ANS binding (Fig. 2B); no
significant correlation is observed between abundance and ΔTm
(Fig. S5). In a cellular environment, the DHFR steady-state
concentration is governed by the competing action of chaper-
onins GroEL/ES and protease Lon, which bind molten-globule
intermediates of DHFR. Therefore, mutations that change the
folding equilibrium toward the formation of molten-globule state
shift the protein turnover balance toward degradation, affecting
its total abundance. Specifically, the abundance of a DHFR
mutant variant in an active cellular milieu is inversely pro-
portional to its in vitro ANS fluorescence, which serves as a
readout for fraction of proteins in molten-globule state. This
relation was previously predicted (and experimentally verified) in
the model of active cytoplasm proposed in our laboratory (13).

Establishing a Quantitative Genotype-to-Phenotype Relationship for
DHFR in E. coli. The results presented so far illustrate both the
broad impact of mutations on multiple molecular traits (catalytic
efficiency, Ki, and protein stability). This renders the fitness land-
scape in terms of molecular properties highly multidimensional,
making its description from molecular parameters quite challeng-
ing. To overcome this, we sought to develop a simple model that
allows a quantitative prediction of the impact of a given physical
property at the phenotype level. We have recently studied diverse
orthologous replacements of bacterial DHFR in E. coli and dem-
onstrated that fitness, as assessed by cell growth, depends on the
flux through DHFR (20) and can be described using the following
equation derived in ref. 14:

fitness∼ flux= a
Vdhfr�

B+Vdhfr
�  , [1]

where Vdhfr is the rate at which dihydrofolate is converted to tetra-
hydrofolate, B is a constant related to the effect of all other pro-
teins in the enzymatic chain (14, 15), and a denotes maximal fitness
at highest flux. Taking into account the competitive mechanism of
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inhibition by TMP, and considering that DHFR can be treated as
a one-substrate enzyme [due to saturating concentrations of in-
tracellular NADPH (21)], Vdhfr can be expressed by a general
Michaelis–Menten-like curve:

Vdhfr =
kcat · ½DHFR� · ½FH2�

Km ·
�
1+  

α · ½TMP�medium
Ki

�
+ ½FH2�

, [2]

where [DHFR] and [FH2] are the intracellular concentrations of
DHFR and dihydrofolate, respectively, and [TMP]medium is the
concentration of TMP in the growth medium. The parameter α is
the ratio between the intracellular TMP concentration and that
in the growth medium; below we explain how this parameter is
determined. Our basic assumptions in this model are that (i) the
enzymatic reaction occurs at conditions far from substrate satu-
ration and (ii) the intracellular concentration of dihydrofolate

(FH2) is constant so that the reaction becomes pseudo–first-order
with respect to DHFR intracellular concentration:

Vdhfr ≈ kapp · ½DHFR� · 1�
1+  

α · ½TMP�medium
Ki

�,  

when

    Km

�
1+

α · ½TMP�medium

Ki

�
� ½FH2�,

[3]

where

kapp =
kcat
Km

· ½FH2�fixed.

To simplify the analysis, we define a normalized reaction rate,
Vnorm, by dividing the left side of Eq. 3 by [FH2] and by the
catalytic efficiency (kcat/Km) of WT E. coli DHFR:

Vnorm
dhfr =

kmut
cat

Kmut
m

kEcoliWT
cat

KEcoliWT
m

· ½DHFR�mut ·
1�

1+  
α · ½TMP�medium

Kmut
i

�, [4]

where [kcat/Km]
mut, [DHFR]mut, and Ki

mut are the catalytic effi-
ciency, intracellular concentration, and inhibition constant of a
particular DHFR mutant. Because all variables are known from
in vitro protein characterization and cellular abundance mea-
surements, Vnorm can be directly estimated for every mutant at
any given TMP concentration at which a growth measurement is
performed. This allows us to explore the genotype–phenotype
link between the DHFR normalized reaction rate and fitness.
Such dependence is depicted in Fig. 3A, which shows the data
for a total of 24 DHFR variants (including E. coli, L. grayi, and
C. muridarum) obtained at 12 different TMP concentrations (Data-
set S3). It should be noted that the decrease in DHFR activity due
to TMP inhibition increases the control coefficient of the DHFR-
catalyzed reaction toward 1.0 so that the flux of the entire pathway
becomes largely dependent on that reaction and growth drops
proportionally.
We determined the TMP penetration ratio parameter α by

fitting the present measurements of fitness in the presence of
TMP shown in Fig. 3A to the fitness data from previous studies
obtained by variation of DHFR properties without TMP [down-
regulation of DHFR expression using IPTG-controllable promoter
(13) and chromosomal orthologous replacements of DHFR (20)].
The best superposition of data is achieved at α= 0.1, which is very
close to the earlier direct measurements of fraction of TMP pen-
etrating into bacterial cytoplasm (22) (see Supporting Information
and Fig. S6 for details). There is a remarkable superimposition of
all data, in particular around the steep drop in fitness. Similar,
albeit a bit noisier, results are obtained if fitness is defined as the
maximal growth rate instead of using the integral of the growth
curve (Fig. S7). A set of points obtained for untransformed parent
E. coli strain MG1655, expressing solely its WT chromosomal
DHFR, grown at different TMP concentrations shows a good su-
perimposition as well [with slight deviation at higher fitness prob-
ably due to activation of the DHFR promoter through a feedback
loop (23, 24)]. Also included for comparison are the data points
obtained in previous studies using chromosomal orthologous
DHFR replacements (20) and an IPTG-inducible promoter-con-
trolled chromosomal DHFR expression system (13). Fitting the
data points with Eq. 1 resulted in an excellent quantitative
prediction of fitness, in agreement with recent work (20). The
parameter B resulting from the nonlinear fit of Eq. 1 to all data

Fig. 2. Mutations associated with TMP resistance affect the intracellular
abundance of DHFR. (A) Intracellular abundance of E. coli DHFR mutants
expressed from pFLAG plasmid in the absence of inducer (color scheme as in
Fig. 1B). Abundance was determined from total catalytic activity measure-
ments in cell lysates prepared from cultures of different mutants grown at
37 °C in M9 minimal media. Values are normalized to WT DHFR expressed
from plasmid at the same conditions. (B) Protein abundance is inversely cor-
related with propensity to form molten-globule intermediates, as assessed by
bis-ANS fluorescence. The represented data (mean ± SEM) were obtained from
abundance measurements of E. coli DHFR mutants and orthologous DHFRs
from L. grayi and C. muridarum including the cognate TMP-resistance muta-
tions. The fit that is shown was obtained using the equation y = A/(γ·ANS),
where A = 4.7 × 105 molecules/cell and γ = 1.5.
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points was found to be B = 1.3 ± 0.1, whereas the average of B
values determined from independent fits of the growth data obtained
for each individual mutant DHFR strain at different concentrations
of TMP was 1.7 ± 0.4 (mean ± SE). The flux model therefore allows
quantitative prediction of drug resistance and fitness (expressed as
IC50) from molecular parameters of DHFR. The observed re-
lationship in Fig. 3A holds in a broad range of parameters, espe-
cially with the absolute intracellular DHFR concentration ranging
from ∼90 copies per cell (MG1655 strain, chromosomal expres-
sion) to ∼70,000 copies per cell (E. coli double mutant P21L/L28R,
pFLAG expression), the catalytic efficiency (kcat/Km) values rang-
ing from 0.1 to 37 μM−1·s−1, and the inhibition constant Ki ranging
from 1 to 330 nM (see Table S1 for the full list).

Predicting IC50 from DHFR Biophysics. It is clear from Eq. 1 that fit-
ness is halved when Vnorm is equal to the constant B. Therefore, the
left-hand side of Eq. 4 can be set equal to B when the TMP con-
centration corresponds to IC50. From the resulting equation it is
possible to directly compute TMP IC50 for a given DHFR mutant:

ICmut
50 =

1
αB

·

kmut
cat

Kmut
m

kEcoliWT
cat

KEcoliWT
m

· ½DHFR�mut ·Kmut
i −

1
α
·Kmut

i . [5]

Fig. 3B shows a clear linear relationship between measured
IC50 and the prediction from Eq. 5 (slope = 0.80, r2 = 0.87,
P < 0.001). Such high correlation is achieved when all three
factors—abundance, catalytic activity, and TMP binding affinity—
are taken into account. The predictive power is greatly diminished
if any of the variables in Eq. 5 is dropped (Fig. S8). For example,
binding affinity Ki or catalytic activity kcat/Km alone are poor
predictors of antibiotic resistance IC50 (r2 = 0.13 and 0.08,
respectively). Statistically significant yet weaker predictions of
IC50 can be obtained using solely the product kcat/Km × Ki
(r2 = 0.61, P < 0.001) or protein abundance alone (r2 = 0.625,
P < 0.001), yet only the full combination of all three biophysical
parameters as given by Eq. 5 can provide highly accurate predictions.

This result demonstrates that the model chosen to predict fitness is
quite robust, even though it was based on several simplifying as-
sumptions. One important prediction from Eq. 5 is that the IC50
of any given mutant should vary proportionally to intracellular con-
centration of DHFR when other molecular parameters remain un-
changed. This prediction was tested by increasing the DHFR
expression from the plasmid using different amounts of inducer
IPTG and is highlighted in Fig. 3B for WT L. grayi. Similar exper-
iments were performed with a set of mutants from L. grayi and
C. muridarum (Fig. S8), but not for E. coli DHFR WT and mutants
because overexpression of E. coli DHFR is toxic to E. coli (25).
Our analysis based on Eq. 5 indicates that both molecular

(kcat/Km and Ki) and cellular (protein abundance) properties of
DHFR need to be established for accurate prediction of IC50.
However, the relationship existing between a particular molec-
ular trait of DHFR, namely its in vitro ANS fluorescence and
intracellular abundance, as established in ref. 13 and confirmed
here (Fig. 2B), allows prediction of IC50 solely from the molec-
ular properties of DHFR by replacing the term [DHFR] in Eq. 5
by 1/ANS:

ICmut
50 =

1
αB

·

kmut
cat

Kmut
m

kEcoliWT
cat

KEcoliWT
m

·
A

γANS
·Kmut

i −
1
α
·Kmut

i , [6]

where A and γ are parameters derived from the fit shown in
Fig. 2B. Indeed Fig. 3C shows that this approximation results
in a fairly good prediction of IC50 (slope = 1.0, r2 = 0.86,
P < 0.001). This result shows that fitness in the presence of
antibiotic can be predicted exclusively from biophysical parame-
ters of arising DHFR mutants, given that growth conditions (e.g.,
concentration of the inducer) remain the same.

Epistasis. We can evaluate the degree of epistasis in the effect of
mutations on all measured molecular, cellular, and fitness traits.
We use the definition of epistasis introduced in ref. 10 as

Fig. 3. Prediction of IC50 frommolecular parameters. (A) Normalized rate of DHFR reaction(Vnorm) determines fitness in E. coli. Growth measurements were performed
at 37 °C inM9minimal media and under varying concentrations of TMP. The Vnorm values were computed at any given TMP concentration using Eq. 4, in which αwas set
to 0.1, and with input from experimentally determined molecular quantities (protein abundance and catalytic constants) for each DHFR mutant. The results shown
include data from TMP inhibition determined for all E. coli, L. grayi, and C. muridarum DHFR mutants expressed from pFLAG plasmid (gray) and nontransformed E. coli
MG1655 strain expressing solely its endogenous chromosomal DHFR (blue). The solid line represents the best fit of the data using Eq. 1with a = 1, and fromwhich Bwas
determined from nonlinear regression (1.3 ± 0.1 SE). Also shown for comparison are the fitness data obtained in previous works where orthologous DHFRs have been
incorporated in E. coli chromosome (20) and where chromosomal DHFR was under IPTG-controlled expression (13) (red and orange points, respectively). (B) Comparison
of experimental vs. predicted IC50 for TMP in strains expressing DHFR mutants from pFLAG. Predicted IC50 were calculated from Eq. 5 using estimates of cellular DHFR
abundance and catalytic parameters. Increasing the pFLAG-based expression of a particular mutant DHFR by means of adding IPTG results in corresponding increase in
IC50 as predicted from Eq. 5. Data obtained for parent strain MG1655 E. coli expressing only its chromosomal DHFR are shown. (C) Prediction of fitness from protein
biophysics. IC50 was predicted using Eq. 6, in which the protein abundance term in Eq. 5 was replaced by 1/ANS from the reciprocal relationship shown in Fig. 2. (Inset)
The decrease in the correlation coefficient if the protein abundance term, or its predictor (1/ANS), is omitted in the equation.
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«AB = log
WABW0

WAWB
= log

WAB

W0
− log

WA

W0
− log

WB

W0
, [7]

where W0,WA,WB, and WAB are values of a trait for WT, mutant
A, mutant B, and double mutant AB alleles, respectively. Here
we consider epistasis in the effect of mutation on all molecular
traits, abundance (cellular trait), and fitness represented by IC50
values for each mutant. The results presented in Table 1 for
E. coli mutants show predominantly negative epistasis with some
notable exceptions such as kcat/Km for L28R/A26T and Ki for
L28R/P21L, which probably reflects the fact that L28R is a sta-
bilizing mutation. All mutations show negative epistasis in IC50,
due to the trade-offs that reflect pleiotropic effects of mutations
on molecular traits of DHFR.

Protein Quality Control Affects the Fitness Landscape. In the earlier
work (13) we established the role of protein quality control
(PQC) machinery, in particular GroEL chaperonins and Lon
protease, in rescuing fitness of E. coliDHFR deleterious mutants
and orthologous DHFR replacements from different bacteria.
We asked how PQC would act on TMP-resistant mutants and thus
affect their fitness under antibiotic selection pressure. To that end,
we measured IC50 and protein abundances for all E.coli and
orthologous DHFR mutants on the background of GroEL over-
expression (GroEL+; see details in SI Methods and ref. 13) or Lon
knockout (Δlon). Fig. 4A shows the different effects of GroEL+
and Δlon on IC50 determined for DHFR mutants from E. coli, L.
grayi, and C. muridarum. With some exceptions, GroEL+ and
Δlon have a neutral or even deleterious effect on E. coli DHFR
mutants. Notably, the E. coli DHFR triple mutant benefits most
from GroEL+ background and especially Δlon, the latter resulting
in a doubling of its IC50. Apparently, the fitness landscape on the
Δlon background is different from the one shown in Fig. 1C, be-
cause the triple mutant seems to be most fit at high concentration
of TMP. The effects of GroEL+ and Δlon on DHFR from L. grayi
and C. muridarum are more pronounced, especially for double
and triple mutants, increasing in some cases IC50 by one order of
magnitude. Remarkably, the magnitude of the effects observed for
GroEL+ and Δlon correlate quite well with bis-ANS properties of
the DHFR mutants (Fig. S9), in agreement with previous results
showing that both components of PQC affect DHFR molten-
globule–like intermediates (13).
Fig. 4B shows that changes in IC50 caused by GroEL over-

expression or Lon deletion can be directly attributed to their
impact on protein abundance, as expected from Eq. 5.
Altogether, these results show how the fitness landscape can

drastically change by the action of PQC through its effect on the
steady-state concentration of protein. Again, the importance of
protein biophysical properties is highlighted, in particular ANS
binding, because these properties determine, at least in part, how
specific DHFR mutants may be rescued/degraded by cellular
chaperones and proteases.

Deconvolution of Fitness into Microlandscapes Shows Strong Epistasis.
Analysis of the fitness landscape of a complete combinatorial set
of mutations, as in this work, is particularly helpful in determining
which trajectories are accessible in evolutionary dynamics. This
can be regarded as a macroscopic integrated map, which is built
upon multiple microscopic landscapes, one for each molecular
trait. From this perspective, Eq. 5 is particularly useful because it
allows dissection of fitness into microlandscapes, as shown in
Fig. 5, where the contribution of each property into fitness effect is
mapped for every mutation in a quantitative way. Such analysis
helps to highlight which molecular features mostly affect IC50,
improving our understanding of what molecular factors shape
evolution at different stages of selection. For instance, it becomes
obvious that changes in the ability to escape drug (Ki) are the key
determinants of the drug resistance, especially at later stages of
evolution (double and triple mutants), because variations in pro-
tein abundance are comparably smaller (Fig. 5 B and C). Never-
theless, because the effective catalysis parameter (kcat/Km × Ki) is
not very high in single mutants (except L28R), compared with
double and triple mutants, one can expect that other competing
mutations occurring genomewide that might result in a significant
increase in DHFR abundance could give a selective advantage
over single mutations in the active site of DHFR. Interestingly,
in the evolutionary experiment against TMP, mutations in the
DHFR promoter region were frequently fixed first, resulting in a
>10-fold increase in IC50 (1). In particular, the mutation –35C→T
in the DHFR promoter has been shown to be associated with
increased production of folA gene product (26). However, mutants
with the highest kcat/Km × Ki such as A26T/L28R and the triple
mutant should benefit more than P21L/L28R or P21L/A26T from
any increase in protein abundance that may be caused by a
pleiotropic effect of mutations occurring outside of folA locus.
Inactivation or down-regulation of Lon protease, which effect is
shown in Fig. 4, may constitute one such mechanism, and, in fact,
has been observed recently during the evolution of strains with
orthologous replacements of DHFR (20) and in the evolution of
antibiotic resistance (5, 27).

Discussion
The metaphor of fitness landscape is widely used to highlight
certain aspects of the genotype–phenotype relationship. It is ei-
ther postulated a priori (28) or presents a mapping of known
genetic variants to fitness (2, 4). However, the most detailed
form of a fitness landscape, where each possible genetic variant
is mapped to fitness, would be prohibitively complex. An alter-
native way to provide a tractable and predictive fitness landscape
would be to use an intermediate phenotype to map fitness onto
molecular properties of the target enzyme (13, 20, 29, 30). This
approach runs the risk that important biology could be lost upon
projection of fitness onto a limited set of molecular properties.
In this work we showed that mapping fitness to molecular prop-
erties of DHFR provides an accurate and predictive fitness
landscape that establishes the quantitative genotype–phenotype

Table 1. Prevalence of negative epistasis in the effect of mutations on molecular and fitness traits of E. coli DHFR

*The threshold of neutrality is defined as 0.1.
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relationship for DHFR. We showed that a unique combination of
molecular parameters can serve as an accurate predictor of fitness
from the biophysical properties of the enzyme alone. The resulting
biophysical fitness landscape makes it possible to predict fitness
across a broad range of concentrations of TMP.
We found that no single molecular trait determines the IC50

value of antibiotic resistance. Rather, mutations simultaneously
affect several properties of DHFR and there is a trade-off be-
tween beneficial effects of mutations that weaken the binding to
TMP at the expense of partial loss of catalytic activity, resulting
in extensive, predominantly negative, epistasis (Table 1). Fur-
thermore, the analysis presented in Fig. 5 suggests that the rel-
ative importance of fitness contributions of different molecular
traits varies with conditions such as concentration of antibiotic;
strong effect of a drug concentration on the relative fitness of
alleles of Plasmodium vivax DHFR is a clear example (6). Im-
portantly, relevant molecular properties of target proteins (sta-
bility, catalysis, and drug binding) can be determined in a broad
range of conditions such as temperature and pH, allowing one to
extend the trait-specific landscape predictions into a broader
range of environments. The analysis for properties that are gov-
erned by biological processes, such as protein abundance, is more
challenging because this requires a deeper understanding of
complex cellular mechanisms. Activation of DHFR promoter is
particularly important because it directly affects the intracellular
abundance. The emergence of mutations in the promoter region
during TMP adaptation clearly highlights its role in evolution (1);
however, many aspects of transcription feedback for DHFR are
still poorly understood. Such complexities do not affect the results
of our work, because the expression of DHFR here is plasmid-
based.
We also found that PQC plays an important role in sculpting

the fitness landscape of antibiotic resistance, in some cases de-
termining the genomic outcome of adaptation. For example,
both our analysis and ref. 2 indicate that the triple mutant of
E. coli DHFR has lower IC50 than several other mutants, yet it
gets fixed at higher concentration of TMP in dynamic mor-
bidostat experiments in ref. 1. The triple mutant becomes a clear
winner on the Δlon background. It is, therefore, possible that
Lon inactivation or, alternatively, a significant down-regulation
of the intracellular Lon levels, may have preceded the fixation of
the triple mutant. Indeed, inactivation of Lon via insertion of the
mobile element IS186 was observed previously in adaptation to
other antibiotics (5, 27) and in adaptation after orthologous re-
placement of DHFR (20). Furthermore, a dramatic drop in Lon
abundance in response to chromosomal integration of destabi-
lized DHFR mutants has been observed (24). Similarly, up-reg-
ulation of GroEL can serve as an adaptive mechanism to buffer
the deleterious effects of mutations (31, 32), in our case by res-
cuing molten-globule intermediates. Conversely, we found that
GroEL+ can also be deleterious for the mutants with increased
stability (L28R in E. coli). The mechanism of such deleterious
effect remains to be established. Again, a detailed characterization
of how Lon, GroEL, and possibly other elements of PQC respond
to different factors (e.g., TMP-induced stress) is fundamental to
improve the accuracy of fitness landscapes prediction at conditions
more similar to those found in several evolutionary experiments.
The Monod-type dependence of fitness on protein activity as

presented in Eq. 1 was predicted by Kacser and Burns (14) and
found experimentally in the analysis of fitness for the mutant
forms of lac operon proteins β-permease and β-galactosidase
(15). More recently we found that same relation holds for fitness
in strains with orthologous DHFR replacements (20). Bolon and
coworkers (33) found that a similar Monod “elasticity curve”
well describes fitness effects of variation of Hsp90 expression in
yeast. It is, therefore, likely that the Monod dependence in Eq. 1
is generally applicable to a broad range of fitness effects, and our
analysis could be extended either to different organisms or to the

Fig. 4. Resistance to TMP is influenced by components of the PQC system.
(A) Impact of GroEL overexpression and Lon protease deletion on IC50 (mean ±
SEM) determined for E. coli and orthologous DHFR mutants from L. grayi and
C. muridarum. *P < 0.05, **P < 0.005. (B) Effect of GroEL overexpression and
Lon deletion affect IC50 mostly through their effect on protein abundance.
Protein abundances were determined for various E. coli, L. grayi, and
C. muridarum DHFR mutants under GroEL overexpression or Lon deletion.
The dotted line shows a theoretical linear dependence with slope = 1.
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adaptation against antibiotics that target other enzymes. In any
case, it might be expected that under different experimental
conditions a Monod-type fit of the curve shown in Fig. 3A would
result in a different value of the fitted parameter B. This variable
is a property of the system and pathway-specific and thus should
be measured whenever the conditions are different.
The major advantage of biophysical mapping of a fitness land-

scape is that it can predict fitness not only across a broad range of
conditions but also potentially can be used for predicting the fitness
effects of de novo mutations. Recent advances in computational
methods for predicting the effects of mutations on DHFR stability
are definitively valuable (34); however, computational prediction of
mutational changes in catalytic properties is still an important
bottleneck in this direction. A multiscale approach that merges
molecular analysis with biophysical fitness landscapes and pop-
ulation-level evolutionary dynamics would then provide a path to
predict in silico and in vitro the outcomes of key adaptation events
such as bacterial and viral escape from antibodies and antibiotics.

Methods
DHFR Gene Constructs. All seven possible combinations of mutations at three
sites (P21L, A26T, and L28R) of E.coli folA gene were introduced by Quick-
Change Site-Directed Mutagenesis Kit (Stratagene) and cloned into the expres-
sion vector pFLAG (Sigma-Aldrich). Each mutagenized plasmid was sequenced to
confirm the presence of expected mutations, and the absence of any other
mutations. Similarly, we constructed all possible combinations of mutations in
the genes coding for DHFR proteins from C. muridarum and L. grayi in the loci
corresponding to the three resistant mutations in E. coli DHFR. These sites are
P23L, E28T, and L30L for L. grayi and P21L, A26T, and L28R for C. muridarum.

Growth Measurements and IC50 Determination. Cultures grown overnight at
37 °C in M9 minimal medium were normalized to an OD of 0.1 with fresh
medium. When appropriate, GroEL overexpression and/or increase in DHFR
concentrations were induced by adding arabinose and IPTG immediately after
normalization. After additional growth during 5–6 h a new normalization to
an OD = 0.1 was performed before inoculation of 96-well plates (1/5 di-
lution) containing M9 medium and 12 different concentrations of TMP (0–
2,500 μg/mL). The plates were incubated at 37 °C with orbital shacking and
absorbance measurements at 600 nm were taken every 30 min during 15 h.
Growth was quantified by integration of the area under the growth curve

(OD vs. time) between 0 and 15 h, as described in ref. 2. Growth integrals
determined for a given mutant were normalized in respect to the corre-
sponding growth of that mutant measured in the absence of TMP. IC50

values were determined from the fit of a logistic equation to plots of
growth vs. TMP concentrations. Reported IC50 are averaged from at least
three replicates and SEs are indicated.

Measurements of Intracellular Protein Abundance. Cells from cultures grown at
37 °C were lysed with 1× Pop Culture reagent (Merck Millipore) in the
presence of 1× complete protease inhibitor mixture (Roche). The lysate was
cleared by centrifugation and the soluble fraction was transferred to 96-well
white plates for total activity measurements. The lysate was preincubated
with 100 μMNADPH and the reaction was started with the addition of 50 μM
dihydrofolate. The decrease in fluorescence (excitation at 300 nm and emission
at 400 nm) was measured over 20 min at 25 °C. Protein abundance was de-
termined by dividing the total activity by kcat.

Protein Overexpression and Purification. E. coli BL21 cells transformed with
pFLAG + C-terminal His-tagged DHFR were grown in Terrific broth medium
and protein overexpression was induced when OD = 1 with 100 μM IPTG
during ∼18 h at 300 rpm and 20 °C. The recombinant proteins were purified
from clarified cell lysates on Ni-NTA columns (Qiagen) followed by size-
exclusion chromatography separation (Superdex 75 10/300 GL).

Steady-State Kinetic Measurements. DHFR kinetic parameters were measured
by progress-curve kinetics, essentially as described before (13). The reaction
was carried out in MTEN buffer [50 mM 2-(N-morpholino)ethanesulfonic
acid, 25 mM Tris(hydroxymethyl)aminomethane, 25 mM ethanolamine, and
100 mM sodium chloride, pH 7] at 25 °C and was monitored spectrophoto-
metrically to follow the decrease in absorbance at 340 nm due to NADPH
oxidation. The kinetics parameters (kcat and Km) were derived from progress-
curves analysis using Global Kinetic Explorer (35) by simultaneous fitting of data
obtained at two different dihydrofolate concentrations (2.5 and 10 μM).

Determination of Inhibition Constants (Ki) for TMP. Inhibition constants were
determined from kinetic competition experiments performed at fixed sub-
strate concentration 100 μM NADPH and 30 μM dihydrofolate and varying
inhibitor concentrations. Activity measurements were performed at 25 °C by
following NADPH oxidation at 340 nm. Inhibition constants were calculated
from plots of activity vs. inhibitor concentration by fitting a competitive-
type inhibition equation (36).

Fig. 5. Quantitative dissection of fitness into multiple microscopic landscapes of different molecular traits. (A) Relative resistance to TMP computed by the product
[DHFR] × kcat/Km × Ki. (B) Relative contribution of protein abundance and catalysis to overall fitness. (C) Catalysis term is decomposed into catalytic efficiency and Ki.
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Thermal Denaturation. DHFR solutions (5 μM) were prepared in 50 mM
phosphate buffer and 1 mM DTT at pH 7.0 in the presence of 100 μM
NADPH. A temperature ramp of 1 °C/min was set between 25 and 90 °C, and
the fluorescence intensity at 370 and 320 nm was recorded upon excitation
at 280 nm. Thermal melting curves were analyzed by plotting the ratio of
intensities 370/320 nm.

bis-ANS Fluorescence Measurements. DHFR protein solutions (2 μM) in the
presence of 12 μM of bis-ANS were prepared in 50 mM phosphate and 1 mM

DTT at pH 7.0 and placed in a 1-cm path-length quartz cuvette. The samples were
equilibrated for 5 min at 37 °C and the fluorescence emission spectra between
460 and 600 nm were recorded upon excitation at 395 nm. The emission band
was integrated and the background of bis-ANS fluorescence in the absence of
protein was subtracted. Intensity integrals were normalized to WT E. coli. DHFR.

ACKNOWLEDGMENTS. We thank Roy Kishony for very helpful comments.
This work was funded by National Institute of General Medical Sciences
Grant GM068670 (to E.I.S.) and NIH Grant AI106734 (to D.L.H.).

1. Toprak E, et al. (2012) Evolutionary paths to antibiotic resistance under dynamically
sustained drug selection. Nat Genet 44(1):101–105.

2. Palmer AC, et al. (2015) Delayed commitment to evolutionary fate in antibiotic
resistance fitness landscapes. Nat Commun 6:7385.

3. Lozovsky ER, et al. (2009) Stepwise acquisition of pyrimethamine resistance in the
malaria parasite. Proc Natl Acad Sci USA 106(29):12025–12030.

4. Weinreich DM, Delaney NF, Depristo MA, Hartl DL (2006) Darwinian evolution can
follow only very few mutational paths to fitter proteins. Science 312(5770):111–114.

5. Oz T, et al. (2014) Strength of selection pressure is an important parameter contrib-
uting to the complexity of antibiotic resistance evolution. Mol Biol Evol 31(9):
2387–2401.

6. Jiang PP, Corbett-Detig RB, Hartl DL, Lozovsky ER (2013) Accessible mutational tra-
jectories for the evolution of pyrimethamine resistance in the malaria parasite Plas-
modium vivax. J Mol Evol 77(3):81–91.

7. Neher RA, Russell CA, Shraiman BI (2014) Predicting evolution from the shape of
genealogical trees. eLife 3:3.

8. Lobkovsky AE, Wolf YI, Koonin EV (2011) Predictability of evolutionary trajectories in
fitness landscapes. PLOS Comput Biol 7(12):e1002302.

9. Costanzo M, et al. (2010) The genetic landscape of a cell. Science 327(5964):425–431.
10. Ostman B, Hintze A, Adami C (2012) Impact of epistasis and pleiotropy on evolu-

tionary adaptation. Proc Biol Sci 279(1727):247–256.
11. Lázár V, et al. (2014) Genome-wide analysis captures the determinants of the anti-

biotic cross-resistance interaction network. Nat Commun 5:4352.
12. Bershtein S, Mu W, Shakhnovich EI (2012) Soluble oligomerization provides a bene-

ficial fitness effect on destabilizing mutations. Proc Natl Acad Sci USA 109(13):
4857–4862.

13. Bershtein S, Mu W, Serohijos AW, Zhou J, Shakhnovich EI (2013) Protein quality
control acts on folding intermediates to shape the effects of mutations on organismal
fitness. Mol Cell 49(1):133–144.

14. Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97(3-4):
639–666.

15. Dykhuizen DE, Dean AM, Hartl DL (1987) Metabolic flux and fitness. Genetics 115(1):
25–31.

16. Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229.
17. Goldberg ME, et al. (1990) An early immunoreactive folding intermediate of the

tryptophan synthease beta 2 subunit is a ‘molten globule’. FEBS Lett 263(1):51–56.
18. Fierke CA, Johnson KA, Benkovic SJ (1987) Construction and evaluation of the kinetic

scheme associated with dihydrofolate reductase from Escherichia coli. Biochemistry
26(13):4085–4092.

19. Taniguchi Y, et al. (2010) Quantifying E. coli proteome and transcriptome with single-
molecule sensitivity in single cells. Science 329(5991):533–538.

20. Bershtein S, et al. (2015) Protein homeostasis imposes a barrier on functional in-

tegration of horizontally transferred genes in bacteria. PLoS Genet 11(10):e1005612.
21. Bennett BD, et al. (2009) Absolute metabolite concentrations and implied enzyme

active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599.
22. Werner RG, Goeth H (1984) Trimethoprim, failure to penetrate into Pseudomonas-

aeruginosa cells. FEMS Microbiol Lett 23(2-3):201–204.
23. Bollenbach T, Quan S, Chait R, Kishony R (2009) Nonoptimal microbial response to

antibiotics underlies suppressive drug interactions. Cell 139(4):707–718.
24. Bershtein S, Choi JM, Bhattacharyya S, Budnik B, Shakhnovich E (2015) Systems-level

response to point mutations in a core metabolic enzyme modulates genotype-phe-

notype relationship. Cell Reports 11(4):645–656.
25. Kitagawa M, et al. (2005) Complete set of ORF clones of Escherichia coli ASKA library

(a complete set of E. coli K-12 ORF archive): Unique resources for biological research.

DNA Res 12(5):291–299.
26. Flensburg J, Sköld O (1987) Massive overproduction of dihydrofolate reductase in

bacteria as a response to the use of trimethoprim. Eur J Biochem 162(3):473–476.
27. Nicoloff H, Andersson DI (2013) Lon protease inactivation, or translocation of the lon

gene, potentiate bacterial evolution to antibiotic resistance. Mol Microbiol 90(6):

1233–1248.
28. de Visser JA, Krug J (2014) Empirical fitness landscapes and the predictability of

evolution. Nat Rev Genet 15(7):480–490.
29. Chou HH, Delaney NF, Draghi JA, Marx CJ (2014) Mapping the fitness landscape of

gene expression uncovers the cause of antagonism and sign epistasis between

adaptive mutations. PLoS Genet 10(2):e1004149.
30. Jacquier H, et al. (2013) Capturing the mutational landscape of the beta-lactamase

TEM-1. Proc Natl Acad Sci USA 110(32):13067–13072.
31. Tokuriki N, Tawfik DS (2009) Chaperonin overexpression promotes genetic variation

and enzyme evolution. Nature 459(7247):668–673.
32. Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic vari-

ation. Nature 417(6889):618–624.
33. Jiang L, Mishra P, Hietpas RT, Zeldovich KB, Bolon DN (2013) Latent effects of Hsp90

mutants revealed at reduced expression levels. PLoS Genet 9(6):e1003600.
34. Tian J, Woodard JC, Whitney A, Shakhnovich EI (2015) Thermal stabilization of di-

hydrofolate reductase using monte carlo unfolding simulations and its functional

consequences. PLOS Comput Biol 11(4):e1004207.
35. Johnson KA, Simpson ZB, Blom T (2009) FitSpace explorer: An algorithm to evaluate

multidimensional parameter space in fitting kinetic data. Anal Biochem 387(1):30–41.
36. Krohn KA, Link JM (2003) Interpreting enzyme and receptor kinetics: Keeping it

simple, but not too simple. Nucl Med Biol 30(8):819–826.

E1478 | www.pnas.org/cgi/doi/10.1073/pnas.1601441113 Rodrigues et al.

www.pnas.org/cgi/doi/10.1073/pnas.1601441113

