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The availability of plants and freshwater shapes the diets and social
behavior of chimpanzees, our closest living relative. However,
limited evidence about the spatial relationships shared between
ancestral human (hominin) remains, edible resources, refuge, and
freshwater leaves the influence of local resources on our species’ evo-
lution open to debate. Exceptionally well-preserved organic geochem-
ical fossils—biomarkers—preserved in a soil horizon resolve different
plant communities at meter scales across a contiguous 25,000 m2 ar-
chaeological land surface at Olduvai Gorge from about 2 Ma. Bio-
markers reveal hominins had access to aquatic plants and protective
woods in a patchwork landscape, which included a spring-fed wet-
land near a woodland that both were surrounded by open grass-
land. Numerous cut-marked animal bones are located within the
wooded area, and within meters of wetland vegetation delineated
by biomarkers for ferns and sedges. Taken together, plant biomarkers,
clustered bone debris, and hominin remains define a clear spatial pat-
tern that places animal butchery amid the refuge of an isolated forest
patch and near freshwater with diverse edible resources.
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Spatial patterns in archaeological remains provide a glimpse
into the lives of our ancestors (1–5). Although many early

hominin environments are interpreted as grassy or open wood-
lands (6–8), fossil bones and plant remains are rarely preserved
together in the same settings. As a result, associated landscape
reconstructions commonly lack coexisting fossil evidence for
hominins and local-scale habitat (microhabitat) that defined the
distribution of plant foods, refuge, and water (7). This problem is
exacerbated by the discontinuous nature and low time resolution
often available across ancient soil (paleosol) horizons, including
hominin archaeological localities. One notable exception is well-
time-correlated 1.8-million-y-old paleosol horizons exposed at
Olduvai Gorge. Associated horizons contain exceptionally pre-
served plant biomarkers along with many artifacts and fossilized
bones. Plant biomarkers, which previously revealed temporal
patterns in vegetation and water (8), are well preserved in the
paleosol horizon and document plant-type spatial distributions
that provide an ecosystem context (9, 10) for resources that likely
affected the diets and behavior of hominin inhabitants.
Plant biomarkers are delivered by litter to soils and can distin-

guish plant functional type differences in standing biomass over
scales of 1–1,000 m2 (11). Trees, grasses, and other terrestrial
plants produce leaf waxes that include long-chain n-alkanes such
as hentriacontane (nC31), whereas aquatic plants and phyto-
plankton produce midchain homologs (e.g., nC23) (12, 13). The
ratio of shorter- versus long-chain n-alkane abundances distin-
guish relative organic matter inputs from aquatic versus terres-
trial plants to sediments (13):

Paq = ðnC23 + nC25Þ
�ðnC23 + nC25 + nC29 + nC31Þ.

Sedges and ferns are prolific in many tropical ecosystems (14).
These plants both have variable and therefore nondiagnostic
n-alkane profiles. However, sedges produce distinctive phenolic

compounds [e.g., 5-n-tricosylresorcinol (nR23)] and ferns produce
distinctive midchain diols [e.g., 1,13-dotriacontanediol (C32-diol)]
(SI Discussion).
Lignin monomers provide evidence for woody and nonwoody

plants. This refractory biopolymer occurs in both leaves and
wood, serves as a structural tissue, and accounts for up to half of
the total organic carbon in modern vegetation (11). Lignin is
composed of three phenolic monomer types that show distinctive
distributions in woody and herbaceous plant tissues. Woody tis-
sues from dicotyledonous trees and shrubs contain syringyl (S)
and vanillyl (V) phenols (12), whereas cinnamyl (C) phenols are
exclusively found in herbaceous tissues (12). The relative abun-
dance of C versus V phenols (C/V) is widely used to distinguish
between woody and herbaceous inputs to sedimentary and soil
organic matter (15).
Plant biomarker 13C/12C ratios (expressed as δ13C values) are

sensitive indicators of community composition, ecosystem struc-
ture, and climate conditions (8). Most woody plants and forbs in
eastern Africa use C3 photosynthesis (6), whereas arid-adapted
grasses use C4 photosynthesis (8, 14). These two pathways dis-
criminate differently against 13C during photosynthesis, resulting
in characteristic δ13C values for leaf waxes derived from C3 (about
–36.0‰) and C4 (–21.0‰) plants (16). Carbon isotopic abun-
dances of phenolic monomers of lignin amplify the C3–C4 differ-
ence and range between ca. –34.0‰ (C3) and –14.0‰ (C4) in
tropical ecosystems (15). Terrestrial C3 plant δ13C values decrease
with increased exposure to water, respired CO2, and shade (8),
with lowest values observed in moist regions with dense canopy
(17). Although concentration and δ13C values of atmospheric CO2
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can affect C3 plant δ13C values (17), this influence is not rele-
vant to our work here, which focuses on a single time window
(SI Discussion). The large differences in leaf-wax δ13C values
between closed C3 forest to open C4 grassland are consistent
with soil organic carbon isotope gradients across canopy-shaded
ground surfaces (6) and serve as a quantitative proxy for woody
cover (fwoody) in savannas (8).
As is observed for nonhuman primates, hominin dietary choices

were likely shaped by ecosystem characteristics over habitat scales
of 1–1,000 m2 (3–5). To evaluate plant distributions at this small
spatial scale (9), we excavated 71 paleosol samples from close-
correlated trenches across a ∼25,000-m2 area that included FLK
Zinjanthropus Level 22 (FLK Zinj) at Olduvai Gorge (Fig. 1).
Recent excavations (18–21) at multiple trenches at four sites
(FLKNN, FLKN, FLK, and FLKS, Fig. 1D) exposed a traceable
thin (5–50 cm), waxy green to olive-brown clay horizon developed
by pedogenic alterations of playa lake margin alluvium (22). Weak
stratification and irregular redox stains suggest initial soil devel-
opment occurred during playa lake regression (18, 22), around
1.848 Ma (ref. 23 and SI Discussion). To date, craniodental remains
from at least three hominin individuals (18–20), including pre-
adolescent early Homo and Paranthropus boisei, were recovered
from FLK Zinj. Fossils and artifacts embedded in the paleosol
horizon often protrude into an overlying airfall tuff (18, 19), which
suggests fossil remains were catastrophically buried in situ under

volcanic ash. Rapid burial likely fostered the exceptional preser-
vation of both macrofossils (10) and plant biomarkers across the
FLK Zinj land surface.
Plant biomarker signatures reveal distinct types of vegeta-

tion juxtaposed across the FLK Zinj land surface (Figs. 2–4
and Fig. S1). In the northwest, FLKNN trenches show high nC23
δ13C values (Fig. 2B) as well as high C/V and Paq values (Figs. 3
and 4A). They indicate floating or submerged aquatic plants
(macrophytes) in standing freshwater (13), a finding that is consistent
with nearby low-temperature freshwater carbonates (tufa), inter-
preted to be deposited from spring waters (22). Adjacent FLKN

trenches have lower Paq values (Fig. 4A) with occurrences of fern-
derived C32-diol and sedge-derived nR23 (Fig. 2 C and D). These
biomarker distributions indicate an abrupt (around 10 m) transition
from aquatic to wetland vegetation. Less than 100 m away (Fig. 1C),
low nC31 δ13C values (Fig. 2A) and low C/V and very low Paq values
(Figs. 3 and 4A) collectively indicate dense woody cover (Fig. 4B). In
the farthest southeastern (FLKS) trenches, high C/V values and high
δ13C values for C lignin phenols (Fig. 3) indicate open C4 grassland.
Biomarkers define a heterogeneous landscape at Olduvai and

suggest an influence of local resources on hominin diets and be-
havior. It is recognized (2, 24–26) that early Homo species and
P. boisei had similar physiological characteristics. These simi-
larities in physical attributes suggest behavioral differences
were what allowed for overlapping ranges and local coexistence
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(sympatry) of both hominins. For instance, differences in sea-
sonal subsistence strategies or different behavior during periods
of drought and limited food could have reduced local hominin
competition and fostered diversification via niche specialization
(27–29).
Physical and isotopic properties of fossil teeth indicate P. boisei

was more water-dependent [low enamel δ18O values (24)] and
consumed larger quantities of abrasive, 13C-enriched foodstuffs
[flat-worn surfaces (25) and high enamel δ13C values (26)] than
coexisting early Homo species. Although 13C-enriched enamel is
commonly attributed to consumption of C4 grasses or meat from
grazers (14), this was not likely, because P. boisei craniodental
features are inconsistent with contemporary gramnivores (24, 25)
or extensive uncooked flesh mastication (26). Numerous scholars
have proposed the nutritious underground storage organs (USOs)
of C4 sedges were a staple of hominin diets (14, 24, 26, 27).
Consistent with this suggestion, occurrences of nR23 attest to the
presence of sedges at FLKNN and FLKN (Fig. 2D). However, the
low δ13C values measured for nR23 at these same sites (Fig. 2D
and Fig. S2) indicate C3 photosynthesis (12, 16), a trait common in
modern sedges that grow in alkaline wetlands and lakes (30) (Fig.
S3). Thus, biomarker signatures support the presence of C3 sedges
in the wetland area of FLK Zinj.
Alternative foodstuffs with abrasive, 13C-enriched biomass

include seedless vascular plants (cryptogams), such as ferns
and lycophytes [e.g., quillworts (27, 30)]. Ferns are widely dis-
tributed throughout eastern Africa in moist and shaded micro-
habitats (31) and are often found near dependable sources of
drinking water (32). Today, ferns serve as a dietary resource for
humans and nonhuman primates alike (27), and fiddlehead
consumption is consistent with the inferred digestive physiology
[salivary proteins (33)] and the microwear on molars (34) of

P. boisei in eastern Africa (25, 26). Ferns were present at FLKN,
based on measurements of C32-diol (Fig. 2D). Further, the high
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δ13C values measured for these compounds are consistent with
significant fern consumption by P. boisei at Olduvai Gorge.
Ferns and grasses were not the only plant foods present

during the time window documented by FLK Zinj. Further, the
exclusive reliance on a couple of dietary resources was improb-
able for P. boisei, because its fossils occur in diverse localities
(24–26). Aquatic plants are an additional candidate substrate, as
evidenced by high Paq values at FLKNN and FLKN (Fig. 4A).
Floating and submerged plants proliferate in wetlands through-
out eastern Africa today (13, 14), and many produce nutritious
leaves and rootstock all year long (27, 28). Although C4 photo-
synthesis is rare among modern macrophytes (30), they can as-
similate bicarbonate under alkaline conditions, which results in
C4-like isotope signatures in their biomass (30). Their leaf waxes,
such as nC23 (13), are both present and carry 13C-enriched signatures
at FLKNN and FLKN (Fig. 2B). It is also likely that aquatic mac-
rophytes sustained invertebrates and fish with comparably 13

C-enriched biomass, as they do in modern systems (14), and we
suggest aquatic animal foods could have been important in
P. boisei diets (27, 28).
Biomarkers across the FLK Zinj soil horizon resolve clear

patterns in the distribution of plants and water and suggest
critical resources that shaped hominin existence at Olduvai
Gorge. The behavioral implications of local conditions require
understanding of regional climate and biogeography (3–5, 7),
because hominin species likely had home ranges much larger
than the extent of excavated sites at FLK Zinj. Lake sediments at
Olduvai Gorge include numerous stacked tuffs with precise ra-
diometric age constraints (23). These tephrostratigraphic corre-
lations (21) tie the FLK Zinj landscape horizon to published
records of plant biomarkers in lake sediments that record climate
cycles and catchment-scale variations in ecology. Correlative
lake sediment data indicate the wet and wooded microhabitats
of FLK Zinj sat within a catchment dominated by arid C4 grassland
(8). Under similarly arid conditions today, only a small fraction of
landscape area (ca. 0.05) occurs within 5 km of either forest or

standing freshwater (35). Given a paucity of shaded refuge and
potable water in the catchment, the concentration of hominin
butchery debris (18–21) exclusively within the forest microhabitat
and adjacent to a freshwater wetland (Fig. 4) is notable. We suggest
the spatial patterns defined by both macro- and molecular fossils
reflect hominins engaged in social transport of resources (1–5),
such as bringing animal carcasses and freshwater-sourced foods
from surrounding grassy or wetland habitats to a wooded patch
that provided both physical protection and access to water.

Materials and Methods
Plant Biomarker Extraction and Isolation. Freeze-dried and powdered paleosol
samples (10–20 g dry weight, n = 71) were extracted by accelerated solvent ex-
traction (DionexASE 200 system)with 90:10 dichloromethane (DCM) tomethanol by
volume. Total lipid extracts were separated into fractions over activated silica gel by
elution with hexane (apolar), DCM, and methanol. Apolar fractions were further
separated over silver-impregnated alumina by elution with hexane (saturated
apolar). Then, n-alkanes were separated from saturated apolar fractions by zeolitic
(5 Å) sieve. Once extracted, residual paleosols were oxidized under alkaline condi-
tions and acidified with hydrochloric acid. Lignin phenols were recovered by liquid
extraction with diethyl ether. Additional details are provided in SI Materials
and Methods.

Molecular and Isotopic Analysis. Molecular signatures were characterized by
GC-MS (SI Materials and Methods). Polar fractions and lignin phenols were
derivatized with N,O-bis(trimethylsilyl)trifluoracetamide (BSTFA) in pyridine.
Isotopic signatures were characterized by gas chromatography-combustion-
isotope-ratio monitoring mass spectrometry and expressed in standard
permil (‰) notation relative to Vienna Pee Dee Belemnite (VPDB):

δ13C= 1,000
�
Rsample

�
Rstandard − 1

�
,R= 13C=12C.
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