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The outer membrane of gram-negative bacteria is composed of
phospholipids in the inner leaflet and lipopolysaccharides (LPS) in
the outer leaflet. LPS is an endotoxin that elicits a strong immune
response from humans, and its biosynthesis is in part regulated via
degradation of LpxC (EC 3.5.1.108) and WaaA (EC 2.4.99.12/13)
enzymes by the protease FtsH (EC 3.4.24.-). Because the synthetic
pathways for both molecules are complex, in addition to being pro-
duced in strict ratios, we developed a computational model to in-
terrogate the regulatory mechanisms involved. Our model findings
indicate that the catalytic activity of LpxK (EC 2.7.1.130) appears to
be dependent on the concentration of unsaturated fatty acids. This
is biologically important because it assists in maintaining LPS/phos-
pholipids homeostasis. Further crosstalk between the phospho-
lipid and LPS biosynthetic pathways was revealed by experimental
observations that LpxC is additionally regulated by an unidentified
protease whose activity is independent of lipid A disaccharide con-
centration (the feedback source for FtsH-mediated LpxC regulation)
but could be induced in vitro by palmitic acid. Further experimental
analysis provided evidence on the rationale for WaaA regulation.
Overexpression of waaA resulted in increased levels of 3-deoxy-p-
manno-oct-2-ulosonic acid (Kdo) sugar in membrane extracts,
whereas Kdo and heptose levels were not elevated in LPS. This im-
plies that uncontrolled production of WaaA does not increase the LPS
production rate but rather reglycosylates lipid A precursors. Overall,
the findings of this work provide previously unidentified insights
into the complex biogenesis of the Escherichia coli outer membrane.

lipopolysaccharide | fatty acids | computational model | bacterial
membrane regulation

he outer membrane of gram-negative bacteria is decorated

with a potent endotoxin (called lipid A), which plays a sig-
nificant role in bacterial pathogenicity and immune evasion (1).
It also acts as a physical barrier protecting the cell from chemical
attack and represents a significant obstacle for the effective delivery
of numerous antimicrobial agents (2, 3). The outer membrane is
composed of phospholipids in the inner leaflet and lipopolysac-
charides (LPS) in the outer leaflet (4). Phospholipids consist of a
glycerol molecule, a phosphate group, and two fatty acid moieties
(except for cardiolipins) (5) (see reviews (5, 6) and SI Appendix for
the biosynthesis and regulation of phospholipids). LPS, on the other
hand, contains three distinct components: lipid A, core oligosac-
charides, and O-antigen (7, 8). Lipid A is the sole essential com-
ponent of LPS, and its biosynthesis involves nine enzyme-catalyzed
reactions (8). The lipid A pathway has been widely investigated, and
we recently produced a pathway model that incorporates all of the
known regulatory mechanisms (9). Briefly, the first reaction step
catalyzed by LpxA is highly unfavorable, which makes the proceeding
enzyme, LpxC, the first committed enzyme (10). LpxC is regulated
by the protease FtsH (11, 12), and we recently postulated that the
negative feedback signal arises from lipid A disaccharide, the
substrate for LpxK (9). Furthermore, FtsH regulates WaaA
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(formerly called KdtA), an enzyme downstream of LpxC (13).
The exact rationale for WaaA regulation remains unknown.

A wealth of research exists for either LPS or phospholipids
biosynthesis; however, our current understanding on the cross-
talk between both pathways is limited at the moment. Because
both pathways are synchronized to ensure a proper balance of
membrane components (11, 14), studies underpinning the un-
derlying mechanisms would appear valuable. There are a number
of experimental findings that indicate the existence of strong
links between both biosynthetic pathways (11, 15, 16). Thus, in
the context of outer membrane biogenesis, the role involving
phospholipids cannot be ignored in the study of LPS regulation.
Furthermore, during membrane synthesis, ~20 million molecules
of fatty acids are synthesized in Escherichia coli (8). Yu et al. (17)
reconstituted an in vitro steady-state kinetic system of fatty acid
biosynthesis using purified enzymes and observed that the max-
imum fatty acid production rate obtainable was 100 pM/min.
This production rate falls far below the amount of fatty acids
required by a cell in vivo [if one assumes a cell volume of 6.7 X
107! L (18) and a generation time of 30 min (19)]. Therefore, to
test the consistency of reported in vitro parameters and in-
vestigate the role of the biosynthetic enzymes on fatty acids
turnover rate, a “systems” approach is necessary. Similarly, ever
since the regulation of WaaA by FtsH was first reported (13), no
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study has investigated the underlying regulatory mechanism to
date. This would also appear important because under wild-type
conditions, WaaA catalyzes a step that is required for the endo-
toxic activity of lipid A (20).

In this work, we present a detailed picture of the crosstalk be-
tween the LPS and phospholipids biosynthetic machinery. Our work
involves a computational kinetic model spanning 81 chemical re-
actions and involving 90 chemical species. Additionally, we used a
series of E. coli fatty acid biosynthesis mutants to investigate the
effect of substrate flux into the saturated and unsaturated fatty acid
pathway on LpxC stability. Our complete model agrees qualitatively
with published datasets and with our own experiments. Our results
imply that the catalytic activation of LpxK is dependent on un-
saturated fatty acids. Furthermore, our experimental investigations
have implicated a secondary protease involved in LpxC regulation.
Finally, we have provided experimental evidence to explain the
rationale for WaaA regulation.

Results

LPS/Phospholipids Model Construction. We developed a computa-
tional metabolic model that incorporates genetic regulation and
several feedback sources (Fig. 1). The required parameters were
mostly derived from experimental literature, whereas others were
estimated from published data. We modeled the interactions be-
tween substrates and enzymes under steady-state conditions using
Michaelis-Menten and mass action kinetics. Our initial set of pa-
rameters were unable to reproduce experimentally-observed path-
way regulatory behavior. This was solely due to a limitation in the
kinetic parameters of LpxK, as described below. In addition, we
made minor modifications to FabZ, FabB, and Fabl parameters for
fitting purposes. A full description of the model architecture, model
construction, and parameters’ estimation is presented in SI Appendix.

Model Findings Indicate the Catalytic Activity of LpxK is Dependent
on Unsaturated Fatty Acids. It was previously reported in Ray and
Raetz (16) that the catalytic activity of LpxK is dependent on
phospholipids. Phospholipids in E. coli contain a combination of
saturated and unsaturated fatty acids; however, our model indi-
cates that the LpxK catalytic activation is driven solely by un-
saturated fatty acids. When we initially assumed in our model that
all fatty acids (i.e., both saturated and unsaturated fatty acids)
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Fig. 1. Model of the E. coli LPS and phospholipids biosynthesis pathway.
Green arrows represent pathway interactions that were derived from our
current and previous work (9). A detailed model schematic is presented in S/
Appendiix.
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Fig. 2. Role of fatty acid biosynthesis on LpxC regulation. Growth condi-
tions are described in S/ Appendix. (A) Effect of fatty acid biosynthetic en-
zyme inhibition on LpxC stability. Blue bars on the right represent our
computational simulations under steady-state conditions. Here, model en-
zyme concentrations were reduced arbitrarily to mimic the nonpermissive
temperature because there was no available information in the literature on
residual enzyme activity in these mutants. We reduced the model concen-
trations of FabF and FabB by 10- and 20-fold, respectively, to simulate mu-
tant strain CY288. Fabl and FabA concentrations were reduced by 100- and
500-fold to simulate strains JP1111 and CY53, respectively. (B) Fatty acid
composition in strains JP1111, CY288, and CY53. Black and red bars repre-
sent growth conditions at 30 °C and 42 °C, respectively. Error bars represent
SE of mean. Fatty acids notation are C14, myristic acid; C15, pentadecanoic
acid; C16:1, palmitoleic acid; C16, palmitic acid; C18:1, cis-vaccenic acid; and
C18, stearic acid. (C) LPS quantification. LPS was quantified by measuring the
amount of Kdo in the bacterial membrane. Black bars represent experi-
mental results, whereas blue bars are simulation results using model con-
ditions as in A. Error bars represent SE of mean.

present in phospholipids could catalytically activate LpxK, the
model findings deviated substantially from experimental results.
For instance, inhibiting either FabA or FabZ in our model had no
effect on LpxC stability, whereas LpxC is rapidly degraded under
both conditions in vivo (Fig. 24 and ref. 15, respectively). From
our observations, there were sufficient levels of saturated fatty
acids to catalytically activate LpxK, which prevented an accumu-
lation of lipid A disaccharide, the feedback source for LpxC
degradation. However, when the LpxK activation signal arose
solely from unsaturated fatty acids, our model agreed qualita-
tively with all our experimental results.

Indeed, it was reported by Ray and Raetz (16) that of all
phospholipids species tested, cardiolipins had the most effect at
activating LpxK. Although the authors did not provide a rationale
for their observation, we suspect their use of bovine heart car-
diolipins, which are known to contain at least 94% unsaturated
fatty acids of the total fatty acids, were implicated (21). Similarly,
cardiolipins of E. coli are characterized with more unsaturated
fatty acids relative to other phospholipids moieties (22). In this
regard, we propose that the activity of LpxK is dependent on the
presence of unsaturated fatty acids. This major model adjustment
subsequently provided a framework to interpret the experimental
results presented below.

Excess Substrate Flux into the Saturated Fatty Acid and LPS Pathway
Stimulates LpxC Degradation. We recently reported that lipid A
disaccharide is a feedback source for FtsH-mediated LpxC deg-
radation (9); however, other evidence suggests that there may be
additional FtsH feedback signals. In particular, it was observed in
Ogura et al. (11) that LpxC was highly stabilized in a fabl (ts)
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mutant, implying a link between fatty acid and LPS biosynthesis.
To understand the role of fatty acids synthesis on LpxC regulation,
we analyzed a number of fatty acid biosynthesis mutants.

When E. coli strains JP1111 [fabl (ts)] and CY288 [fabF, fabB
(ts)] were grown at the nonpermissive temperature, LpxC was
highly stabilized by ~threefold, whereas LpxC was rapidly de-
graded in strain CY58 [fabA (ts)] mutant (Fig. 24). We next
analyzed the saturated and unsaturated fatty acid distribution in
these mutants to determine if the regulatory signal arose from
lipid A disaccharide or from sources outside of the LPS pathway.
In other words, an increment of substrate flux into the saturated
fatty acid pathway is an indirect indication of increased flux into
the LPS pathway. This is because LPS substrates are derived
from the saturated fatty acid pathway arm (Fig. 1).

When strain JP1111 was grown at the nonpermissive tempera-
ture, the total proportion of unsaturated fatty acids was sub-
stantially increased (Fig. 2B). Clearly, inhibition of Fabl, which
catalyzes the first committed step in saturated fatty acid synthesis
(23), enabled the isomerase activity of FabA to divert substrates
toward unsaturated fatty acid synthesis. The observed increment
in unsaturated fatty acid is indicative of a sufficient reduction of
substrate influx into the LPS pathway. This was further confirmed
from LPS quantification assay described below. Therefore, LpxC
stability in strain JP1111 is as a result of decreased levels of lipid A
disaccharide. It should be noted that C16:1 levels were the same in
both wild-type and fabl mutant, which suggests that the rate of
elongation of C16:1 to C18:1 by FabF is dependent on substrate
availability (Fig. 2B).

Similarly, we analyzed fatty acid distribution in strain CY288.
This strain had a lesion in the fabF gene in addition to having a
temperature-sensitive FabB protein (24). When grown at 30 °C,
the fatty acid profile of the cells were characterized with significant
levels of medium-chain fatty acids (Fig. 2B). This partial inhibition
of fatty acid elongation is a result of the lesion in FabF (24), al-
though cells remain viable due to a functional FabB. However,
when grown at 42 °C, we observed a further increment in medium-
chain fatty acids (especially pentadecanoic acid, an odd-chain fatty
acid) and reduction in long-chain fatty acid moieties (Fig. 2B).
Although increased levels of saturated fatty acids were generally
observed at 42 °C, these were mainly odd-chain fatty acids. Odd-
chain fatty acyl-ACPs can be used for phospholipids production
(25) but are unsuitable substrates for LPS synthesis due to a strict
requirement of LpxA for p-hydroxymyristoyl-kACP (26). There-
fore, these metabolites would not be expected to be shunted down
the LPS pathway. Consequently, LpxC stability in this strain can

be attributed to low levels of the lipid A disaccharide. Again, this
was confirmed by LPS quantification, as described below.

Furthermore, we observed a concomitant decrease in both long-
chain saturated and unsaturated fatty acids (stearic and cis-vac-
cenic acids) in strain CY53 when grown at the nonpermissive
temperature (Fig. 2B). The only reasonable explanation from the
pathway schematic in Fig. 1 is that the rate of synthesis of trans2-
decenoyl-ACP was reduced, given FabA is the major dehydratase
involved in this step (23). As a result, limited substrates would be
diverted into both saturated and unsaturated arms of the pathway,
resulting in reduced palmitoyl-ACP and palmitoleoyl-ACP con-
centrations. Increased competition for low levels of palmitoyl-
ACP and palmitoleoyl-ACP by phospholipid acyltransferases (PlsB
and PIsC) (27, 28) would further ensure that only a small proportion
of these acyl pools are elongated to stearic and cis-vaccenic acids by
FabB and FabF, respectively (29). Although substrate flux into the
saturated fatty acid pathway was generally reduced, inhibition of
FabA resulted in increased LpxC degradation due to an accumu-
lation of lipid A disaccharide. Accumulation of lipid A disaccharide
would occur under this condition because FabA plays a major role
in the dehydration of B-hydroxymyristoyl-ACP due to a higher
protein copy number (30) and similar catalytic activities with FabZ
(23). In other words, a loss of FabA activity would increase the
concentration of B-hydroxymyristoyl-ACP, which is then shunted
into the LPS pathway.

As a confirmation that strain CY53 grown at 42 °C was char-
acterized with sufficient substrate flux into the LPS pathway, the
concentration of LPS was only slightly decreased in comparison
with those grown at 30 °C (Fig. 2C). In contrast, we observed a
reduction in LPS levels of ~50% in both strains JP1111 and
CY288 when grown at the nonpermissive temperature, which
supports the idea that LPS synthesis is impeded as a consequence
of low substrate availability.

Together, our findings indicate that the FtsH-mediated LpxC
degradation signal arises solely from lipid A disaccharide under
fatty acid inhibition conditions.

Proteolytic Regulation of LpxC in an ftsH Knockout Mutant. Having
established from above that excess flux of metabolites into the
saturated fatty acid pathway enhances LpxC proteolysis, we ex-
amined the likelihood of saturated fatty acids commonly found
in membrane phospholipids to directly impact LpxC instability.
We observed that in vitro, the addition of 10 and 20 mM of
palmitic acid to wild-type (W3110) E. coli cell lysates for 10 min
resulted in decreased LpxC levels by ~30% and 57%, respectively
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(B) Effect of palmitic acid on LpxC stability in ftsH
knockout cells in vitro. (C) Palmitic acid-induced LpxC
degradation occurs via a metalloprotease in vitro.
Some samples contained EDTA and PMSF to inhibit
metalloproteases and serine proteases, respectively.
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presence of antibiotics that affect membrane synthe-
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(Fig. 34). This dose-dependent phenomenon was not observed
when myristic acid, a shorter-chain fatty acid, was used. Next, we
treated cell lysates of an ftsH knockout mutant with palmitic acid
and observed similar results (Fig. 3B). This therefore indicates
that under our in vitro conditions, an unidentified protease con-
tributed toward LpxC degradation. Furthermore, proteolysis was
inhibited in the presence of EDTA, which indicates the protease
belonged to the class of metalloprotease, similar to FtsH (Fig. 3C).

However, under normal physiological conditions, LpxC and
palmitic acid are localized in different cellular compartments
(cytoplasm and bacterial membrane, respectively) and may not
be in direct contact with one another, as it was in our in vitro
assays. Because palmitic acid exists in the cytoplasm in the forms
of palmitoyl-CoA and palmitoyl-ACP (6), we investigated the
effect of both forms of palmitic acid on LpxC stability. Palmitic
acid is known to be actively transported across the membrane by
FadL (31) and immediately converted to palmitoyl-CoA by
FadD (32). Interestingly, when we added palmitic acid to the
growth medium of wild-type E. coli (W3110), the levels of LpxC
were elevated by 1.7-fold (Fig. 3D). This observation is readily
explainable from prior results and our results presented in Fig. 2.
Palmitoyl-CoA induces a strong inhibitory effect on Fabl with a
K; value of about 3 pM (33). Due to the inhibition of FabI, LpxC
would be stabilized (Fig. 24). Thus, elevated cellular palmitoyl-
CoA concentrations have an opposite effect on LpxC stability
than the free-form of palmitic acid. On the other hand, under
in vivo conditions, inhibiting substrate flux into the LPS pathway
will increase the cellular concentration of palmitoyl-ACP (34).
This is because when LPS substrate influx is inhibited, it leads to
elevated levels of B-hydroxymyristoyl-ACP, which is subsequently
dehydrated by FabZ and shunted toward the production of pal-
mitoyl-ACP. We treated cells with sublethal concentrations of an
LpxC inhibitor (CHIR-090) to reduce substrate flux into the LPS
pathway. Under this condition, we observed LpxC elevation of 7.6-
fold in wild-type cells (Fig. 3D). This stability is best explained by
reduced level of lipid A disaccharide production. Therefore, in-
crement in cellular palmitoyl-ACP concentration has an opposite
effect on LpxC stability than the free-form of palmitic acid.
However, the presence of palmitic acid or sublethal concentration
of CHIR-090 in the culture medium had no effect on LpxC sta-
bility in ftsH knockout mutant cells (Fig. 3D). Together, these
findings suggest that the direct interaction of LpxC with long-chain
free-fatty acids (i.e., fatty acids not bound to ACP or CoA) facil-
itated FtsH-independent LpxC proteolysis, as observed in our in
vitro assays.

Interestingly, when we monitored the in vivo LpxC degradation
rate in fisH knockout cells that were treated with a higher concen-
tration of CHIR-090 or other antibiotics that affected the bacterial
membrane, we observed an increase in LpxC concentration ranging
from 1.3- to 1.9-fold (Fig. 3E). This indicates that in untreated cells,
residual LpxC proteolysis occurred, and thus, confirms the presence
of an additional regulatory protease. Additionally, these results also
indicate that LpxC regulation is crucial to the bacterial cells, which
must maintain the desired protein levels irrespective of an accu-
mulation of lipid A disaccharide, or presence/absence of a functional
FtsH protease.

WaaA Regulation. In addition to LpxC, WaaA regulation is also
crucial to cellular viability (SI Appendix, Fig. S5). Using compu-
tational simulations, we recently postulated that the regulation of
WaaA may help prevent reglycosylation of lipid precursors rather
than regulating the rate of LPS synthesis (9). In other words, the
regulatory role is “qualitative” rather than “quantitative.” To
clarify these assumptions, we overexpressed waaA and quantified
LPS using two approaches: first, by quantifying the amount of Kdo
in crude membrane extracts, and second, by quantifying the levels
of Kdo and heptose from extracted LPS. Under waaAd over-
expression conditions, the levels of Kdo in crude membrane
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error bars represent SE of mean. (A) Kdo concentration under waaA over-
expression in membrane extracts. (B) Kdo and heptose quantification from
extracted LPS under waaA overexpression.

extracts were elevated by ~20% (Fig. 44). However, an increment
in Kdo may not indicate increased LPS level under waaA over-
expression. This is because the role of WaaA is to add two Kdo
residues to its LPS lipid precursor (lipid IV 4) (35); therefore, the
possibility still exists that overproduction of WaaA may result in
multiple additions of Kdo to lipid IV (i.e., reglycosylation) or,
alternatively, Kdo may be added to other lipid acceptors (other
than lipid IV4) in the membrane (35, 36). This also indicates that
quantification of LPS using the Kdo assay may be inappropriate
under waaA overexpression conditions. To further clarify these
possibilities, we reduced substrate flux into the LPS pathway using
1/2 MIC of CHIR-090. The rationale for this was that by reducing
the influx of substrates, the LPS synthesis rate would be dependent
on substrate availability and not WaaA concentration. Similarly,
overexpression of waaA under this condition led to a 20% increase
in Kdo levels in comparison with cells that were solely treated with
CHIR-090 (Fig. 44). These findings indicate that the rate of gly-
cosylation by WaaA is independent of lipid IV availability.

Furthermore, it was essential to investigate if the reglycosylated
lipid IV or other alternate lipids (i.e., lipids other than lipid IV )
that could be glycosylated by WaaA are being consumed for LPS
synthesis. Consequently, we quantified the concentration of both
Kdo and heptose sugars present in extracted LPS. Heptose sugar is
primarily used in the synthesis of core oligosaccharides and is usu-
ally present in a 2:1 ratio with Kdo in wild-type cells (20). Under
waaA overexpression, Kdo and heptose levels from extracted LPS
were both decreased by ~12% and 34%, respectively (Fig. 4B).
Together, these results suggest that unregulated WaaA production
results in multiple glycosylation of lipid precursors that mostly ac-
cumulate within the membrane and are poor substrates for LPS
synthesis. However, it does appear that a small proportion of these
reglycosylated products are consumed for LPS production, given
the observed ratio of Kdo and heptose from extracted LPS
(Fig. 4B).

To further elucidate the effect of waaA overexpression on the
structural stability of the bacterial membrane, we determined the
MICs of different antibiotics for cells that had overexpressed
waaA. Under these conditions, the cells were more susceptible to
antimicrobial agents, which implies that the bacterial membrane
becomes more permeable under unregulated WaaA conditions
(ST Appendix, Table S3).

Discussion

In this work, we developed an integrated computational model
for the biosynthesis of phospholipids and LPS pathways. One
crucial model finding enabled us to pinpoint a key role of un-
saturated fatty acids at stimulating LpxK catalysis, whereas on the
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other hand, excessive saturated fatty acids represses its catalytic
activity. There are a number of published datasets that supports
this notion. First, as mentioned previously, the phospholipids used
in Ray and Raetz (16) were bovine heart cardiolipins, which are
known to consist almost entirely of unsaturated fatty acids (21).
Furthermore, Roy and Coleman (37) observed that when LpxD
was inhibited, the specific activity of LpxK was decreased, whereas
the protein half-lives of LpxK were the same under normal and
LpxD inhibition conditions. Further analysis by the authors in-
dicated that overexpression of LpxD does not increase the specific
activity of LpxK. This means that the decrease in LpxK activity is a
secondary effect of the altered LpxD. These observations can
readily be interpreted from our model. Because f-hydroxymyr-
istoyl-ACP is a substrate used by LpxD, reduced LpxD activity
would result in an accumulation of this substrate, which is shunted
toward saturated fatty acid production. In return, excess saturated
fatty acid would repress the catalytic activation of LpxK.

Because the ratio of unsaturated and saturated fatty acids in-
fluences the activation of LpxK, this suggests that LPS synthesis rate
is correlated with membrane fluidity. This is due to the fact that
unsaturated fatty acids in the membrane increase fluidity, whereas
saturated fatty acids decrease fluidity (38). It is probable that under
conditions of low membrane fluidity, a reduced LpxK activity may
be essential to reduce the amount of LPS produced, which poten-
tially would add an extra permeability barrier and subsequently
reduce the influx of metabolites from the external environment. The
opposite effect seems to occur under conditions of high membrane
fluidity. It was reported previously (39) that E. coli grown in envi-
ronments that had increased membrane fluidity through degrada-
tion of LPS led to an induction of PIsB transcription, which would
ultimately enhance the production of phospholipids.

There has been some uncertainty as to the role of acyl-ACPs in
the regulation of LpxC. In the first scenario, due to the fact that
LPS and phospholipids biosynthetic pathways both derive their
precursor molecules from B-hydroxymyristoyl-ACP, it was accepted
that competition for this common substrate influences the regula-
tion of LpxC (11). In other words, LpxC degradation would help
conserve substrates for phospholipids synthesis. This initially
seemed reasonable and is supported by findings that FabZ in-
hibition enhances LpxC degradation (15), and FabZ overexpression
results in LpxC stability (11). However, our model and experimental
results disagree with this “competition model” regarding p-hydroxy-
myristoyl-ACP availability. As an example, LpxC would have been
expected to be stabilized under conditions of FabA overexpression,
which invariably increases substrate flux into the saturated fatty acid
pathway (40), and subsequently elevate the pool of p-hydroxymyr-
istoyl-ACP. This should lead to a reduced competition between
LpxC and FabZ for substrates. On the contrary, we observed an
increased rate of LpxC degradation under this condition (SI Ap-
pendix, Fig. S44). In support of our model’s disagreement with the
“competition model,” Ogura et al. (11) also observed that LpxC
levels were elevated in fabl (ts) mutants. Although the authors had
initially suggested that increased concentration of frans2-tetradece-
noyl-ACP may enhance LpxC stability due to the observation that
LpxC levels are also being elevated when FabZ is overexpressed,
Ogura et al. also admitted the unlikelihood of frans2-tetradecenoyl-
ACP accumulation under fab! (ts) conditions (41). Thus, they were
unable to explain the rationale for LpxC stability under Fabl in-
hibition conditions. Our results presented in Fig. 2 indicate that the
increased levels of LpxC in fab! (ts) mutant occurred due to decreased
flux of substrates into the saturated fatty acids and LPS pathways,
which ultimately depreciated the lipid A disaccharide concentration.

The regulation of LpxC becomes more complicated by our
observations that an unidentified protease degrades LpxC. Al-
though our in vitro results provided evidence that palmitic acid
enhances LpxC proteolysis via another metalloprotease, this
mechanism appears not to reflect the normal in vivo physiolog-
ical setting (Fig. 3). In fact, an increase in the isoforms of palmitic
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acid usually found in the cytoplasm (i.e., palmitoyl-ACP and pal-
mitoyl-CoA) stabilized LpxC levels (Fig. 3D). Therefore, the ob-
served in vitro results were probably due to a direct interaction of
the free-form of palmitic acid with LpxC. A possible implication is
that during the synthesis of fatty acids, dissociation of the palmitic
acid prosthetic group from its carrier protein (perhaps through the
action of thioesterases) triggers LpxC proteolysis. This mechanism
may be linked to cellular toxicity, as it is well documented that
long-chain free-fatty acids (i.e., fatty acids not bound to ACP or
CoA) such as palmitic acid are toxic to cells (42). An alternative
explanation to the in vitro results could be due to palmitic acid
binding to LpxC. Palmitic acid has also been reported to bind
directly to the active site of LpxC in vitro (43). Therefore, the
actual LpxC substrate and excess palmitic acid possibly competes
for the enzyme active site, in which case, palmitic acid may act as
an inhibitor. Proteolysis under this condition could be directed at
aberrant LpxC proteins. In support of this, Fuhrer et al. (12) had
initially suggested a possible involvement of other classes of pro-
teases in the degradation of nonfunctional LpxC. Irrespective of
the in vitro results, residual degradation of LpxC still occurs under
FtsH inactivation conditions in vivo. Interestingly, treatment of
bacterial cultures with compounds that are expected to reduce the
levels of lipid A disaccharide and stabilize LpxC in wild-type cells
also led to LpxC stability in ftsH knockout mutants, although much
higher concentrations of those compounds were required (Fig.
3E). However, this does not indicate that lipid A disaccharide is
the feedback source under those FtsH inactivation conditions
because other antibiotics that directly targeted the membrane
structure also resulted in LpxC stability (Fig. 3E). Therefore, the
regulatory signal for FtsH-independent LpxC proteolysis arises from
an unidentified metabolite or pathway. Due to LpxC being localized
in the cytoplasm, this unidentified protease would most likely be
localized in the cytoplasm or inner membrane. Thus, under condi-
tions of direct LPS attack from the environment (i.e., outer mem-
brane), it is highly plausible that this protease functions in parallel
with a separate adapter protein that senses the vulnerability of the
outer membrane and translates such information to the protease.
Indeed, in a similar pattern, FtsH-mediated LpxC degradation has
been reported to be dependent on an adapter protein YciM (44). As
a result of LpxC being the first committed step in LPS synthesis, it is
intuitively reasonable that under conditions that directly alter the
membrane structure, cells must attain the desired level of LPS
through LpxC regulation irrespective of the concentration of lipid A
disaccharide or presence of an active FtsH protein.

Furthermore, our experimental findings imply that an un-
controlled production of WaaA does not increase LPS level but
rather reglycosylates lipid IV 4. In support of our claim, a pre-
vious in vitro study (36) observed that under excess concentra-
tion of WaaA, there were several unidentified products obtained
from lipid IV 4 that were higher in molecular weight than Kdo,- lipid
IV . Because wild-type E. coli usually possesses two Kdo residues,
this indicates the glycosylation pattern of lipid IV, is crucial and
tightly regulated. In addition, Reynolds and Raetz (45) had reported
previously that the importance of WaaA is mainly to provide the
right substrates for LpxL, making its role more of a qualitative one.

In conclusion, we present a model for the biosynthesis of the
outer membrane in E. coli, which we have used to explain prior
published findings and our own experimental results. Our model
agrees qualitatively with the presented experimental findings and, to
some degree, quantitatively. Our experimental data indicate a strong
correlation between membrane fluidity and LpxC degradation.
Furthermore, all our results indicate lipid A disaccharide is the sole
feedback source for FtsH-mediated LpxC degradation, and WaaA
regulation helps to prevent reglycosylation of LPS precursors. Al-
together, the findings of this work provide previously unidentified
insights into the complex biogenesis of the E. coli outer membrane.
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Methods

Computational Model Construction and Simulation. We simulated our LPS and
phospholipids synthesis model using deterministic methods. Our primary tool
was the COPASI software (46), and we assumed a 6.7 x 10~® liter cell volume
(18). Our simulations represented an E. coli cell generation under optimal
growth conditions, which is 1800 s (19). We have identified previously (9) that
using stochastic simulations and accounting for stochasticity would have a
negligible effect on the results due to the high copy numbers of all model
components, which justified the use of deterministic simulations. A detailed
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description of our parameters’ estimation and model construction is presented
in SI Appendlix.

Experimental Procedures. The procedures used in the preparation of cell extracts,
Western blotting, fatty acids, and LPS analyses are described in S/ Appendlix.
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