Skip to main content
. 2016 Feb 16;16(2):236. doi: 10.3390/s16020236

Table 2.

Detailed accuracy by class of the grapevine varietal classification using support vector machines and a 5-fold cross-validation (n = 159).

Class True Positive Rate False Positive Rate Precision AUC
Cabernet Sauvignon (CS) 1.000 0.007 0.941 0.997
Caladoc (CL) 0.938 0.014 0.882 0.997
Carmenere (CR) 0.938 0.007 0.938 0.998
White Grenache (WG) 0.800 0.007 0.923 0.985
Pedro Ximenez (PX) 0.813 0.021 0.813 0.980
Pinot Noir (PN) 0.875 0.014 0.875 0.976
Tempranillo (TE) 0.938 0.014 0.882 0.997
Treixadura (TR) 0.875 0.000 1.000 0.999
Viognier (VO) 0.750 0.028 0.750 0.992
Viura (VU) 0.938 0.014 0.882 0.992
Weighted average 0.887 0.013 0.888 0.991

AUC: area under the receiver operating characteristic (ROC) curve.