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Abstract

Chronic kidney disease (CKD) is a global healthcare burden affecting billions of individuals 

worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most 

common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney 

failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be 

developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost 

regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD 

patients is imperative. Two cell types have been most commonly applied in regenerative medicine. 

Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine 

angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal 

stem cells also exert paracrine effects, including pro-angiogenic, anti-inflammatory, and anti-

fibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, 

including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and 

uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This 

review highlights current knowledge on stem and progenitor cell function and vitality, aspects of 

the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell 

function for potential transplantation.
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INTRODUCTION

Chronic kidney disease (CKD), affecting 8–16% of the population worldwide, is now 

viewed as part of the rising global non-communicable disease burden1, 2. Given the growing 
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aging population, CKD growth rate is expected to increase exponentially, particularly in the 

United States and other developed countries. Beyond primary prevention measures, the most 

common causes of CKD, including diabetes and hypertension, have no effective intervention 

to stop progression to end-stage kidney failure. The increased morbidity, mortality, and costs 

of healthcare utilization inherent with initiation of renal replacement therapy thereafter serve 

as substantial motivation for pursuit of novel therapeutic interventions to prevent or delay 

progression to end stage renal disease (ESRD)3–8.

Cell-based regenerative therapy is being extensively evaluated as an alternative treatment 

modality for many with no other treatment options9. Targeting the underlying disease 

process and boosting the endogenous reparative capacity may reset the clock at least 

temporarily, allowing structural and functional restoration of the diseased kidney (Figure 1). 

To achieve this, the chief cell types under investigation are stem and progenitor cells. 

Endothelial progenitor cells (EPCs), which are derived from the bone-marrow and circulate 

in the peripheral blood, contribute to neovasculogenesis primarily through the secretion of 

paracrine angiogenic cytokines, and possibly partly by differentiation into mature 

endothelial cells in situ. Mesenchymal stem cells (MSCs), isolated from a variety of tissues, 

are non-embryonic stem cells that possess the ability to differentiate along three main cell 

lineages. Nevertheless, through paracrine activity on other cell types, MSCs maintain anti-

fibrotic, anti-inflammatory, and pro-angiogenic properties, which modulate inflammation, 

immune activation, and neovasculogenesis. Clinical trials using MSCs have been initiated 

for acute kidney injury, polycystic kidney disease, and kidney transplantation, but only one 

trial has been registered for the indication of CKD [Clinicaltrials.gov]10–14. Notably, a 

recent randomized, multicenter, double-blind, placebo-controlled study applying allogenic 

MSC for treatment of acute kidney injury in cardiac surgery patients was terminated early 

due to lack of benefit15, 16.

Preclinical studies provide ample support for use of EPC and MSC in CKD17–23. In a 

systematic review and meta-analysis of 71 articles in animal models, Papazova et al20 found 

that cell-based therapy reduced development and progression of CKD. This was evidenced 

by decreases in urinary protein and urea, which structurally associated with 

glomerulosclerosis and interstitial fibrosis. However, direct evidence from 

glomerulosclerosis and interstitial fibrosis analyses was incomplete. Additionally, Li et al24 

found that human MSCs prevented hyperglycemia-induced podocyte apoptosis and injury, 

and other investigations have shown that in animal models of diabetic nephropathy, MSCs 

reduced glomerulosclerosis and oxidative stress18, 20, 25, 26. We also previously 

demonstrated the beneficial effect of EPC and MSC transplantation in a porcine model of 

renovascular hypertension, wherein intrarenal delivery of cells attenuated renovascular 

hypertension-induced myocardial injury and decreased renal injury19, 27, 28

Adequate cell functionality and vitality is critical for the success of autotransplantation, 

Autotransplantation is preferred over allogeneic transplantation, to decrease the risk of 

allosensitization, particularly in patients that may eventually require kidney transplantation. 

However, while EPCs and MSCs were identified as the most effective cell types for CKD 

therapy20, these cells themselves are not impervious to damage and wear. Cell loss and 

dysfunction may manifest by impaired circulating cell count and pro-angiogenic or anti-
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inflammatory functionality. Reduced vitality is characterized by premature senescence and 

increased apoptosis. Cellular senescence is an age-related decline in response to stress and 

damage originating from exogenous (e.g., disease or oxidative stress) and endogenous (e.g., 

DNA damage) sources, leading to an irreversible proliferation arrest29–32. Senescence is 

characterized by cell cycle arrest, telomere shortening, and altered cellular morphology, and 

is most apparent in disease states and advanced aging, wherein environmental stressors 

reduce cellular vitality and functionality. Affected cells develop a senescence-associated 

secretory phenotype, producing excessive inflammatory cytokines, extracellular matrix-

modifying proteases, and reactive oxygen species, which impair neighboring cell function 

and alter tissue structure that may contribute to chronic injury.31, 33–35 Apoptosis, 

programmed death of damaged cells, aims to minimize necrosis-induced damage, yet 

nonetheless leads to cellular loss. Notably, CKD may increase cellular propensity for 

senescence and death. Characterized by a high prevalence of older age, multiple morbidities 

such as diabetes, hypertension and other cardiovascular diseases, and a uremic milieu, CKD 

encompasses a poor microenvironment for both harvesting and transplantation of cells, 

thereby potentially limiting their overall effectiveness in cell-based therapy for CKD.

This review summarizes the relevant evidence regarding EPC and MSC functionality and 

vitality in the setting of CKD, as well as the associated mechanisms, which may serve as a 

barrier to therapy. We further provide an overview of promising future strategies to optimize 

cell function for autotransplantation in cell-based treatments.

Endothelial progenitor cells

Asahara et al36 first isolated endothelial progenitor cells in 1997, and illustrated that these 

circulating CD34+ cells contributed to angiogenesis. EPCs primarily originate from the bone 

marrow, and upon expansion in an endothelial-permissive milieu, can adopt an endothelial-

like phenotype. They circulate in and patrol the peripheral blood, and home to injured 

tissues, where they release angiogenic factors and extracellular vesicles that stimulate the 

local endothelium, promoting angiogenesis and contributing to vascular repair and 

regeneration37. A small fraction of EPCs may differentiate into mature endothelial cells and 

incorporate into the damaged endothelium to replace or support existing endothelial cells in 

forming new blood vessels.

Although the validity of specific EPC surface markers or means to reliably measure EPC 

levels have been debated, circulating bone marrow-derived cells positive for the surface 

markers CD34, vascular endothelial growth factor receptor-2 (VEGFR2, or kinase insert 

domain receptor), and negative for the inflammatory cell marker CD45, are often considered 

as EPC. Cells with both CD34 and CD133 positivity represent an early (“immature”) 

circulating EPC population with a potential to develop into mature endothelial cells in-

vivo38, 39. The divergent phenotypes of EPC subpopulations applied over the years makes 

comparison of EPC studies somewhat challenging, given the important prognostic 

significance associated with these cells for cardiovascular events among patients with 

cardiovascular disease (CVD)40–42. Nevertheless, low EPC subpopulation numbers or 

impairment of EPC function consistently associates with the presence of CVD and risk 

factors43–47.
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The primary functional feature of EPC consists of angiogenic potency to induce vascular 

repair. Angiogenic functionality is demonstrated through secretion of growth factors, as well 

as their proliferation, migration, and tube formation in in-vitro assays or when injected to 

murine models. In addition, their ability to home to sites of vascular or tissue injury allowing 

for both re-endothelization and neovascularization is an important functional feature that can 

be assessed in-vitro by their migration capacity (in response to VEGF or other chemotactic 

molecules) and cell-cell or cell-matrix adhesion39, 48. Finally, these cells possess anti-

inflammatory capacity, and we have shown their ability to suppress the prevalence of pro-

inflammatory macrophages19, 49.

Over the past decade, exogenous administration of EPC has been successfully used in 

experimental models of CKD. Previous studies have shown that mobilization of EPC 

contributes to endothelial repair in the kidney immediately after ischemia-reperfusion50, 51. 

In agreement, we have found in swine renovascular disease that a single intrarenal delivery 

of autologous EPC improves the renal microvasculature, protecting the stenotic 

kidney17, 19, 52. Furthermore, intrarenal delivery of autologous EPC in conjunction to renal 

revascularization restores the hemodynamics, function, and oxygenation of the stenotic 

swine kidney49, 53, suggesting a therapeutic potential for EPC in preserving the kidney in 

chronic experimental renovascular disease.

Mesenchymal stem cells

First isolated and characterized by Friedenstein and colleagues in 197454, 55, MSCs have 

emerged as ideal candidates for cell-based therapies for preservation of the human kidney. 

Unlike EPCs that are isolated from the bone marrow or peripheral mononuclear cells and 

cultured for several weeks before transplantation, MSCs can be harvested from a variety of 

tissues including adipose tissue, bone marrow, skin, and skeletal muscle, and are easily 

expanded in-vitro within a relatively short period of time56. Minimal criteria for defining 

MSCs include trilineage differentiation potential (adipocytes, chondrocytes, and osteocytes), 

plastic-adherence under standard culture conditions, expression of CD29, CD44, CD73, 

CD90, CD105, and CD166, and no expression of CD45, CD34, CD14 or CD11b, CD79α or 

CD19 and HLA-DR surface molecules 57.

Importantly, MSCs secrete several growth factors and cytokines that modulate adjacent 

parenchymal cells, triggering tissue regeneration. Like EPC, MSCs release extracellular 

vesicles that contain a combination of mRNA and miRNA capable of regulating 

transcription of genetic information and modulating angiogenesis, inflammation, and other 

pathways in recipient cells58, 59. Although slightly less potent than EPC, swine adipose 

tissue-derived MSCs have pro-angiogenic properties, supporting their ability to preserve the 

renal microvasculature19. Moreover, MSCs possess pronounced immunomodulatory 

properties that promote tissue repair and decrease inflammation. We have shown that 

cultured MSCs induce a shift in macrophage phenotype from inflammatory (M1) to 

reparative (M2), underpinning their anti-inflammatory properties60. Likewise, MSCs inhibit 

lymphocyte proliferation via the secretion of interleukin (IL)-10 and Fas ligand61. Finally, 

MSCs lack co-stimulatory molecules such as CD40, CD80, and CD86, which evoke an 

allogeneic T-cell immune response 62. Therefore, the lower risk of rejection of 
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immunoprivileged MSCs promoted development of off-the-shelf products with the hope for 

feasible allogeneic administration, although this application remains limited.

The ability of MSCs to preserve renal structure and function has been demonstrated in 

experimental CKD20, 63, as their administration preserved renal function and attenuated 

renal injury in several rodent models of diabetic nephropathy 64, partial nephrectomy 65, and 

chronic allograft nephropathy66. We have shown that intrarenal delivery of adipose tissue-

derived MSCs attenuated in swine renovascular disease stenotic kidney injury and 

dysfunction despite sustained hypertension19, 60. Intrarenal delivery of MSCs in conjunction 

with renal revascularization also restores renal hemodynamics and function and decreases 

hypoxia, inflammation, apoptosis, oxidative stress, microvascular loss, and fibrosis 28, 67. 

Notably, intrarenal delivery of MSCs during reversal of experimental renovascular 

hypertension subsequently improves cardiac function, uncovering their therapeutic potential 

to preserve the heart68. Finally, MSCs excellent safety record 65, 69, and their unique 

immunomodulatory properties and promising results from experimental studies eventually 

led to their approval by the U.S. Food and Drug Administration for treatment of steroid-

resistant graft-versus-host disease, the only stem cell-based drug approval.

EPC and MSC function and vitality in CKD: Human studies

EPC have been thoroughly evaluated in CKD patients, whereas similar studies assessing 

MSC in this population are lacking (Table). With the exception of one early study70, a large 

body of evidence shows that EPC number is impaired in patients with CKD45, 47, 48, 71–85. 

Although different subpopulations have been studied, primarily in patients receiving 

dialysis, decreased EPC numbers (30–50% lower than in healthy controls) were consistently 

demonstrated in both CKD and dialysis-dependent states of ESRD40, 86. In addition, EPC 

function (tube formation, cellular adhesion, and migratory capacity in-vitro) is generally 

decreased in comparison to healthy controls. Some studies explored the differing effects of 

renal replacement therapy through dialysis modality (conventional hemodialysis, peritoneal 

dialysis, nocturnal dialysis) or kidney transplantation on EPC number and 

function48, 73, 81, 84, 87, 88. Interestingly, augmented efficiency of clearance of uremia 

appears to restore EPC number and functionality. Fewer studies investigated EPC number 

and function in patients with CKD45, 71, 73, 74, 77, 80, 84, 89, and reported that even small 

reductions in glomerular filtration rate (GFR) led to significantly lower EPC numbers 

compared to healthy controls. In the largest cohort of patients with CKD, Chen et al45 

supported earlier findings by Jie et al77, arguing against correlation of the stage of non-

dialysis CKD with EPC number. Interestingly, a sharp fall in EPC number was observed at 

the transition from normal GFR (in healthy controls) to early CKD, providing the impetus to 

intervene with cell-based therapy even at the early stage of CKD.

Alterations in EPC vitality in CKD, such as the frequency of senescent or apoptotic cells 

relative to normal or viable cells, have not been fully established. A pattern of increased 

apoptosis has been identified in dialysis patients, but is yet to be confirmed in subsets of 

non-dialysis CKD patients81, 85. Overall, the vast body of evidence suggests that EPC 

number and function are impaired in CKD patients, whereas cellular senescence and 

apoptosis in this patient population require further studies.
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In comparison to EPC, substantially fewer studies have assessed MSC function in human 

subjects with CKD or ESRD (Table 1). Roemeling-van Rhijn et al90 showed in 16 ESRD 

patients that adipose-derived MSC proliferative rates were similar to healthy controls, but 

their vitality was not fully evaluated. Similarly, Reinders et al91 demonstrated that bone 

marrow-derived MSC from 10 ESRD patients were phenotypically and functionally similar 

to healthy controls, supporting the feasibility of autologous clinical application. Yamanaka 

et al92 determined that long-term uremic conditions in 9 ESRD patients led to persistent and 

systematic downregulation of gene and protein expression of p300/CBP-associated factor, 

which regulates differentiation, angiogenesis, and gluconeogenesis, as well as poor in-vivo 

angiogenic potency of adipose-derived MSCs. Given the paucity of human studies of MSC 

function, much extrapolation on cellular function in CKD is derived from animal models. In 

bone marrow-derived MSCs harvested from CKD rats, Klinkhammer et al93 found increased 

senescence, reduced proliferation capacity, accumulation of actin, and a modulated secretion 

profile. Noh et al94 induced uremia in a CKD mouse model and demonstrated decreased 

expression of VEGFs its receptor-1, and stromal cell-derived factor-1α, as well as increased 

cellular senescence, decreased proliferation, and impaired in-vitro tube formation of bone 

marrow-derived MSC. Taken together, there is conflicting evidence regarding MSC 

functionality and vitality in CKD states. However, there is a clear need for additional 

investigations in human subjects to determine whether MSC function and vitality are altered 

in the noxious milieu that characterizes CKD.

Barriers to therapy: Mechanisms underlying impaired EPC and MSC function and vitality in 
CKD

Mechanisms by which CKD impairs EPC and MSC function could involve factors common 

to many pathogenic mechanisms activated by CVD risk factors. In particular in CKD, 

important roles are ascribed to factors such as inflammation, activation of the renin-

angiotensin-aldosterone system, increased oxidative stress, endothelial dysfunction, 

atherosclerosis, and other CKD-associated conditions (e.g., erythropoietin deficiency, 

metabolic acidemia, hyperhomocysteinemia, uremic toxins) (Figure 2). Levels of EPCs are 

believed to be a surrogate marker for vascular function and cumulative CVD risk. A low 

number of EPCs may reflect a depletion of EPC supply due to either increased demand (e.g., 

persistent, ongoing endothelial damage), kidney sequestration in the setting of vascular 

injury95, or impaired EPC mobilization44, 48, 96. EPC supply/demand disparity and 

endothelial dysfunction, which is common in CKD97, 98, might both contribute to CKD-

induced CVD risk99, and vice versa. In the largest study of dialysis patients to date, low 

circulating EPC was an independent and significant predictor for cardiovascular events and 

all-cause mortality82. Moreover, emerging evidence suggests that cardiovascular risk factors 

may in fact elicit a preponderance of EPC capable of contributing to the complications of 

CVD. For example, EPC bearing osteogenic markers (OCN) have been identified in patients 

with early CVD, and postulated to contribute to vascular calcifications100–102. Whether a 

similar population of calcifying EPC might be involved in the increased propensity for 

calcification observed in patients with CKD is yet to be determined.

Uremic toxins may also contribute to EPC or MSC depletion and malfunction via 

endothelial dysfunction observed in CKD. For example, a decrease in bioavailability of 
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nitric oxide (NO), which participates in release of EPC from the bone marrow103, can 

decrease EPC mobilization in CVD and CKD. Increased reactive oxygen species (ROS) and 

chronic inflammation secondary to CKD104, 105, dialysis106, or comorbidities107–112 also 

impair EPC function. Moreover, uremic toxins and aging may exert epigenetic and 

transcriptional modulation and thereby contribute to pathogenesis in CKD113–117. Finally, 

co-existing diabetes mellitus in patients with CKD may substantially reduce autologous 

treatment efficacy using MSC118, 119.

Toxicity of the uremic milieu—Several uremic toxins have been implicated as 

contributors to endothelial dysfunction, including homocysteine120, advanced glycation end 

products121, p-cresylsulfate, and indoxyl sulfate122, 123, all of which may indirectly 

contribute to depletion of EPCs allotted to repair the abnormal endothelium in CKD104. A 

progressive decline in kidney function leads to progressive accumulation of compounds of 

differing chemical and physical composition, which are normally efficiently excreted by 

healthy kidneys. Prominent among the uremic toxins are urea, guanidines, p-cresol, indoles, 

homocysteine, and advanced glycosylation end (AGE) products. Many of these toxins 

promote oxidative stress and reduced availability of NO, thereby promoting vascular 

damage and excess CVD found in patients with CKD124, 125. Urea, a small water-soluble 

uremic compound, is linked to survival among dialysis-dependent patients 126. Its 

biochemical effect has not been well demonstrated, but may include increased ROS 

production127. Guanidines, p-cresols, and indoxylsulfate are among the most frequently 

studied protein-bound toxins in patients with ESRD. Guanidines are small water-soluble 

compounds, which are metabolites of L-arginine, the substrate for NO synthesis. Guanidine 

compounds include creatinine, creatine, asymmetric dimethylarginine (ADMA) and 

symmetric dimethylarginine (SDMA). Various guanidines are shown to have pro-

inflammatory activities by leukocyte proliferation stimulation128, 129. ADMA, often elevated 

in ESRD, is an inhibitor of NO synthase, marker of endothelial dysfunction, and associated 

with several adverse vascular outcomes130–133. Although previously considered biologically 

inactive, recent studies illustrated a role of SDMA in the inflammatory process of CKD, 

wherein monocytes incubated with SDMA showed increased IL-6 and tumor necrosis 

factor-α expression134, a rise in active nuclear factor-κB, and inhibition of endothelial NO 

synthase135. P-cresols are protein-bound, intestinally-derived end-products of tyrosine and 

phenylalanine catabolism. Their main in-vivo metabolite p-cresylsulfate, exerts pro-

inflammatory activity exhibited by increased proportion of leukocytes displaying oxidative 

burst activity, and has been identified as a predictor of survival in CKD136, 137. Indols, also 

protein-bound compounds, are produced by intestinal flora as metabolites of tryptophan. 

Indoxyl sulfate and p-cresol inhibit endothelial proliferation and wound repair contributing 

to endothelial dysfunction in CKD122. Moreover, indoxyl sulfate induces ROS production 

by endothelial cells123, and microparticle release, and is associated with vascular disease and 

mortality in CKD patients104, 123, 136. The amino acid homocysteine associates with CV 

events in both the CKD and the general population138, with pathogenic mechanisms 

including up-regulation of multiple genes associated with atherogenesis, increased vascular 

smooth muscle cell proliferation, C-reactive protein production, endothelial dysfunction, and 

oxidative damage139. Finally, AGE’s, the products of a non-enzymatic reaction between 

reducing sugars and amino groups of proteins, lipids, and nucleic acids, accelerate aging of 
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macromolecules and also contribute to endothelial dysfunction140. In the setting of 

hyperglycemic (diabetes) or oxidative stress (kidney failure) conditions, production and/or 

accumulation of AGE rise. AGEs stimulate leukocyte activation, inhibit NO synthase, form 

cross-links between molecules in the basement membrane of the extracellular matrix, and 

engage the receptor for AGE, resulting in ROS generation and invoking an inflammatory 

response thereby contributing to the endothelial dysfunction and vascular damage provoked 

by other uremic toxins140–143. Each of these uremic retention substances, individually or 

cumulatively, contribute to ongoing endothelial dysfunction through alteration of NO 

availability and increased ROS production, which may deplete EPC number and impair 

function of both EPC and MSC. Moreover, direct effects of uremic toxins likely play a 

major role in their deleterious effect on EPC and MSC.

Effect of uremic toxins on EPCs and MSCs—In-vitro studies have greatly increased 

our understanding of the effect of uremic toxins on EPC and MSC. de Groot et al74 

demonstrated decreased number of circulating EPC in patients with advanced CKD, and 

their uremic sera inhibited differentiation and migration of healthy EPC. Yet, Jourde-Chiche 

et al78 found that uremic toxic substances (p-cresylsulfate, indoxylsulfate, indole-3 acetic 

acid, β-2 microglobulin, and homocysteine) did not induce apoptosis of myeloid EPC from 

healthy controls, whereas, Wu et al144 determined that indoxyl sulfate inhibited angiogenic 

function and increased senescence and autophagy of EPC collected from patients with acute 

kidney injury. Taken together, these data suggest that EPC from patients with kidney disease 

might be more susceptible to the deleterious effect of uremic toxins. In non-CKD models, 

homocysteine impairs the homing to injured vasculature, proliferative, migratory, adhesive 

and in-vitro vasculogenesis capacity of EPC145, 146, and both p-cresol147 and ADMA148, 149 

attenuate angiogenic function and proliferation of EPC.

Fewer recent studies assessed the in-vitro effect of uremia or uremic toxins in CKD on 

MSCs. Kramann et al150, 151 found that uremic serum induced an osteoblast-like phenotype 

and enhanced MSC proliferation and vascular wall remodeling, but not apoptosis. Lanza et 

al114 also found a propensity towards osteogenic differentiation of human bone marrow-

derived MSC when exposed to either uremic sera or multiple uremic toxins, which likely 

contributes to bone modification in patients with CKD. Izdiak et al152 showed that p-cresol 

and indoxyl sulfate decreased human bone marrow-MSC functionality and vitality in vitro, 

but despite cell membrane damage, apoptosis was not increased. Contrarily, homocysteine-

treated MSC manifest increased apoptosis153. Noh et al154 showed that p-cresol induced 

MSC dysfunction by impairing insulin-induced elevation of hypoxia-inducible factor-1α. 

These studies demonstrated the potential inhibitory effect of uremia on adequate MSC 

function in the setting of uremia, which does not necessarily lead to apoptosis. However, 

more studies are needed to identify specific treatment targets to improve MSC and EPC 

function.

Strategies to improve EPC and MSC function in CKD

Given that EPC become dysfunctional during the course of a number of prevalent diseases, 

means for optimization of EPC number and function have been actively sought155. Among 

the best-documented drugs are 3-hydroxy-3-methylglutaryl-coenzyme-A reductase 
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inhibitors, which increase EPC mobilization and function and reduce apoptosis44, 156–158. 

Vasa et al44 reported a three-fold increase in circulating progenitor cells after patients with 

CAD were treated with statins for four weeks, and several randomized trials159 showed a 

statin-induced increase in EPC number ranging from 25.8% to 223.5%. Similarly, Wu et 

al144, using a NO-releasing statin, reversed the NO-dependent negative effects of indoxyl 

sulfate on EPCs in-vitro. Other drugs commonly used in CVD and CKD, such as 

angiotensin-converting enzyme inhibitors, also lead to mobilization of EPCs, possibly 

through stimulation of NO activity and a reduction in oxidative stress. Similarly, 

angiotensin-2 receptor blockers may directly affect EPCs through peroxisome proliferator-

activated receptor-γ receptor activity. Figure 3 outlines several drugs shown to affect 

EPC155, including erythropoietin stimulating agents71, 89, calcium channel blockers160, 

biguanides (metformin) without or with thiazolidinedione (pioglitazone)161, 162, and 

dipeptidyl peptidase-4 inhibitors (sitagliptin)163. However, some interventions aimed at 

improving EPC function in dialysis patients, like green tea consumption164, exercise165, or 

differing middle molecule removal81, had no discernible effect. Finally, as previously 

mentioned, optimal clearance of uremic toxins through effective renal replacement therapy, 

such as kidney transplantation or nocturnal hemodialysis48, 73, is associated with EPC 

mobilization and improved function, yet is not a uniformly viable option for all ESRD 

patients.

Drugs or interventions that may improve function and reduce senescence or apoptosis in 

MSC include hypoxic and other preconditioning measures166–168, pravastatin169, 

rosiglitazone170, 171 or coenzyme Q10172 therapies, and epigenetic regulation173, 174. Both 

preconditioned MSC and EPC have shown improved cell survival, homing to injured sites, 

and paracrine activities. Finally, given the toxicity of cells acquiring senescence-associated 

secretory phenotype, their removal with senolytic agents could optimize function and 

structure of neighboring cells175. To our knowledge, the potential effect of senolytics on 

MSC or EPC function is yet to be fully explored.

Future directions

Greater investment is needed for better understanding of EPC and MSC function in a diverse 

group of individuals with varying CKD etiology, race/ethnic, gender, or age groups. For 

example, African-American hypertensive patients manifest elevated number of circulating 

pro-inflammatory endothelial cells positive for the inflammatory marker, vascular adhesion-

protein-1176. Studies are needed to determine whether comparable phenotypic changes are 

observed in MSC or EPC of specific population sub-groups. Identification of such harmful 

cells may facilitate development of targeted treatment modalities to eliminate or improve 

their function. Furthermore, EPC or MSC function might hypothetically be differently 

affected in patients with differing CKD etiologies, such as renal-limited IgA nephropathy 

relative to systemic disease like diabetic nephropathy, despite comparable changes in GFR. 

This would imply that therapeutic approach cannot be decided based on GFR alone. 

Additionally, preconditioning protocols may need to be implemented not only on cells in-

vitro, but also in-vivo, as a means to optimize the microenvironment in which they will 

ultimately be implanted.
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Several issues in stem cell dysfunction remain unresolved. A documented fall in MSC 

number and/or function would likely substantiate the motivation to apply their 

replenishment in CKD. While a decrease in EPC number and function has been well 

recognized in CKD (Table), the fate of MSC remains to be defined. In as much as MSC 

derived from different sources (e.g., skin, fat, bone marrow, etc.) are representative of the 

ubiquitous MSC population177, their availability and functionality might reflect on the 

endogenous reparative capacity of kidney resident MSC. However, given that MSC are 

often expanded prior to evaluation, their enumeration is less straightforward than that of 

circulating EPC. Furthermore, while cell-based therapy has been shown to attenuate tubular 

and vascular injury, its ability to reverse established glomerulosclerosis remains to be 

shown. Lastly, some of the paracrine activity of both EPC and MSC is mediated by release 

of membrane microparticles, which carry genetic and protein cargo derived from their parent 

cells. Being non-replicating, microparticles are not subject to apoptosis and senescence, and 

might therefore prove to have a longer lasting impact, as long as local proliferation of 

delivered vectors is not mandatory for tissue repair. Nonetheless, studies are needed to 

determine the required residence time of cellular or non-cellular elements, and whether cells 

derived from subjects with CKD pack harmful (e.g., pro-inflammatory) cargo within the 

microparticles that they release.

The choice between EPC vs. MSC might be considered based on disease etiology. Kidney 

diseases associated with predominant microvascular loss would likely benefit from the 

prominent pro-angiogenic properties of EPC, whereas those characterized by a strong 

inflammatory or immune components might gain from MSC therapy. Hopefully, future 

studies will outline specific recommendations for delivery regimens.

CONCLUSION

Regenerative medicine provides new hope for a means to change the trajectory of CKD. In 

planning for cell-based therapy for CKD, special considerations should be given to patient-

related factors that may limit the efficacy of MSC and EPC. Clearly, more studies in 

humans, particularly of MSC from patients with CKD, are needed to assess the feasibility 

and efficacy of this approach, as well as the window of opportunity to intervene, prevent, or 

reverse kidney damage. Advancement in the field is somewhat burdened by expense and 

expertise of the research laboratories, need for standardization of methodology for cell 

characterization and cell growth medium, and heterogeneity of the CKD patient population. 

Nevertheless, identification of means to optimize cell function and/or the microenvironment 

in which the cells will be transplanted, are of utmost importance as we move into this 

burgeoning era of treatment.
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Figure 1. 
Endothelial progenitor cell (EPC) and mesenchymal stem cell (MSC) reparative functions in 

chronic kidney disease. Both cell types possess the capacity to release a variety of cytokines, 

growth factors, and extracellular vesicles. Cells home to the injured tissue, engraft (although 

incorporation in kidney structures is often modest), and promote neoangiogenesis. 

Cumulative effects of the EPC and MSC result in multiple beneficial effects including 

decreased inflammation, oxidative stress, and apoptosis. Structural effects include 

minimization of tubular injury, tubulointerstitial fibrosis, and potentially glomerulosclerosis.
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Figure 2. 
Causative factors for endothelial progenitor (EPC) and mesenchymal stem cell (MSC) 

dysfunction in chronic kidney disease (CKD). In the setting of CKD, EPC and MSC become 

functionally impaired, and EPC demonstrate a reduction in the number of circulating cells. 

Moreover, the cell vitality might decrease, demonstrated by apoptosis and cellular 

senescence. A variety of factors shown to contribute to these findings are listed above.

IL-6: interleukin-6, CRP: C-reactive protein, RAAS: renin-angiotensin-aldosterone system, 

EPO: erythropoietin, ADMA: asymmetric dimethylarginine.
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Figure 3. 
Preconditioning treatments, pharmacological agents, and other interventions with potential 

to improve endothelial progenitor (EPC, highlighted in tan boxes) and mesenchymal stem 

cell (MSC, highlighted in blue boxes) function for stem cell transplantation in chronic 

kidney disease. Given the EPC and MSC dysfunction in varying disease states, several 

studies have examined the beneficial effects of drugs and interventions that increase their 

function and number.

HMG-CoA: 3-hydroxy-3-methylglutaryl-coenzyme-A, ACEi: angiotensin-converting 

enzyme inhibitors, CCB: calcium channel blockers, ESA: erythropoietin stimulating agent, 

DPP4: dipeptidyl peptidase-4 inhibitors, PPAR: peroxisome proliferator-activated-receptor, 

ARB: angiotensin-2 receptor blockers. RRT: renal replacement therapy
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