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Abstract

Background—Rodent hippocampal population codes represent important spatial information 

about the environment during navigation. Computational methods have been developed to uncover 

the neural representation of spatial topology embedded in rodent hippocampal ensemble spike 

activity.

New method—We extend our previous work and propose a novel nonparametric Bayesian 

approach to infer rat hippocampal population codes during spatial navigation. To tackle the model 

selection problem, we leverage a nonparametric Bayesian model. Specifically, we apply a 

hierarchical Dirichlet process-hidden Markov model (HDP-HMM) using two Bayesian inference 

methods, one based on Markov chain Monte Carlo (MCMC) and the other based on variational 

Bayes (VB).

Results—The effectiveness of our Bayesian approaches is demonstrated on recordings from a 

freely-behaving rat navigating in an open field environment.

Comparison with existing methods—The HDP-HMM outperforms the finite-state HMM in 

both simulated and experimental data. For HPD-HMM, the MCMC-based inference with 

Hamiltonian Monte Carlo (HMC) hyperparameter sampling is flexible and efficient, and 

outperforms VB and MCMC approaches with hyperparameters set by empirical Bayes.
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Conclusion—The nonparametric Bayesian HDP-HMM method can efficiently perform model 

selection and identify model parameters, which can used for modeling latent-state neuronal 

population dynamics.
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Bayesian inference; Variational Bayes; Markov chain Monte Carlo; Gibbs sampler; Hamiltonian 
Monte Carlo; Population codes

1. Introduction

A fundamental goal in neuroscience is to understand how populations of neurons represent 

and transmit information about the external world. The hippocampus is known to encode 

information relevant to spatial navigation and episodic memory. Spatial representation of the 

environment is pivotal for navigation in rodents (O'Keefe and Nadel, 1978). One type of 

spatial representation is a topological map, which contains only relative ordering or 

connectivity information between spatial locations and is invariant to orientation or 

deformation. A relevant question of interest is: how can neurons downstream of the 

hippocampus infer representations of space from hippocampal spike activity without a priori 

place field information (namely, without the measurement of spatial correlates)? Several 

reports have been dedicated to the mathematical analysis of this problem (Curto and Itskov, 

2008; Dabaghian et al., 2012, 2014); however, a data-driven approach for analyzing 

ensemble hippocampal spike data remains missing. This paper employs probabilistic 

modeling and inference methods to uncover the spatial representation (or topological map) 

based on the ensemble spike activity.

Bayesian statistical modeling is a consistent and principled framework for dealing with 

uncertainties about the observed data (Scott, 2002). The goal of Bayesian inference is to 

incorporate prior knowledge and constraints of the problem and to infer the posterior 

distribution of unobserved variables of interest (Gelman et al., 2013). In recent years, 

cutting-edge Bayesian methods have become increasingly popular for data analyses in 

neuroscience, medicine and biology (Mishchenko et al., 2011; Chen et al., 2011; Chen, 

2013; Davidson et al., 2009; Kloosterman et al., 2014; Yau et al., 2011). Specifically, thanks 

to ever-growing computing power, Markov chain Monte Carlo (MCMC) methods have been 

widely used in Bayesian inference.

In our previous work (Chen et al., 2012a, 2014), we have developed a parametric Bayesian 

approach to uncover the neural representation of spatial topology embedded in rodent 

hippocampal population codes during spatial navigation. Here we extend the preceding work 

and consider a nonparametric Bayesian approach. The nonparametric Bayesian method 

brings additional flexibility to the probabilistic model, which allows us to model the 

complex structure of neural data (Teh and Jordan, 2010; Wood and Black, 2008; Shalchyan 

and Farina, 2014). Specifically, we leverage the so-called a hierarchical Dirichlet process-

HMM (HDP-HMM) (Teh et al., 2006), which extends the finite-state hidden Markov model 

(HMM) with a nonparametric, HDP prior and derive corresponding Bayesian inference 

algorithms. We consider both deterministic and stochastic approaches for fully Bayesian 
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inference. Based on deterministic approximation, we extend the work of (Chen et al., 2012a; 

Johnson and Willsky, 2014) and use a variational Bayes (VB) method for approximate 

Bayesian inference. For MCMC, we adapt the Gibbs sampling approach of (Teh et al., 

2006), and integrate it with a Hamiltonian Monte Carlo (HMC) method (Neal, 2010) for 

hyperparameter inference. To the best of our knowledge, the application of the HDP-HMM 

to hippocampal ensemble neuronal spike trains and the HMC hyperparameter inference 

algorithm is novel.

We test the statistical model and inference methods with both simulation data and 

experimental data. The latter consists of a recording of rat dorsal hippocampal ensemble 

spike activity during open field navigation. Using a decoding analysis and predictive 

likelihood, we verify and compare the performance of the proposed Bayesian inference 

algorithms. We also discuss the results of model selection related to the sample size and the 

choice of concentration parameter or hyperparameters. Our methods provide an extended 

tool to analyze rodent hippocampal population codes, which may further empower us to 

explore important neuroscience questions about neural representation, learning and memory.

2. Methods: modeling and inference

2.1. Basic probabilistic model

In our previous work (Chen et al., 2012a), we used a finite m-state HMM to characterize the 

population spiking activity from a population of C hippocampal place cells. It was assumed 

that first, the animal's spatial location during locomotion, modeled as a latent state process, 

followed a first-order discrete-state Markov chain  = S1:T ≡ {St} ∈ {1, …, m}, and second, 

the spike counts of individual place cells at time t, conditional on the hidden state St, 

followed a Poisson probability with their respective tuning curve functions Λ = {λc} = 

{{λc,i}}. Essentially, we employed a Markov-driven population Poisson firing model with 

the following probabilistic models

(1)

where P = {Pij} denotes an m-by-m state transition probability matrix, with Pij representing 

the transition probability from state i to j (since , each row of matrix P specifies 

a multinomial likelihood); yc,t denotes the number of spike counts from cell c within the t-th 

temporal bin (here we assume that the rate is defined in the unit bin size of 250 ms) and y1:T 

= {yc,t}C×T denotes time series of C-dimensional population response vector; and 

Poisson(yc,t|λc,i) defines a Poisson distribution with the rate parameter λc,i when St = i. 

Finally, log p(y1:T| , θ) defines the observed data log likelihood given the hidden state 

sequence  and all parameters θ = {π, P, Λ} (where π = {πi} denotes a probability vector 

for the initial state S1).
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The hidden variables  = {S1:T} are treated as the missing data, y1:T as the observed 

(incomplete) data, and their combination {S1:T, y1:T} as the complete data.

A Bayesian version of this model introduces prior distributions over the parameters. We use 

the following prior distributions,

(2)

where Dir denotes the Dirichlet prior distribution, and Gamma  denotes the gamma 

prior distribution with shape parameter  and scale parameter .

2.2. HDP-HMM

Model selection is an important issue for statistical modeling and data analysis. We have 

previously proposed a Bayesian deviance information criterion to select the model size m of 

HMM (Chen et al., 2012a, 2014). Here we extend the finite-state HMM to an HDP-HMM, a 

nonparametric Bayesian extension of the HMM that allows for a potentially infinite number 

of hidden states (Teh et al., 2006; Beal et al., 2002). Namely, the HDP-HMM treats the 

priors via a stochastic process. Instead of imposing a Dirichlet prior distribution on the rows 

of the finite state transition matrix P, we use a HDP that allows for a countably infinite 

number of states.

Specifically, we sample a distribution over latent states, G0, from a Dirichlet process (DP) 

(Ferguson, 1973) prior, G0 ∼ DP(γ, H), where γ is the concentration parameter and H is the 

base measure. Moreover, we place a prior distribution over the concentration parameter, γ ∼ 

Gamma(aγ, 1). Given the concentration, one may sample from the DP via the “stick-

breaking construction” (Sethuraman, 1994). First, sample the stick-breaking weights, β,

(3)

where β1 = β̃
1, , and Beta(a, b) defines a beta distribution with two positive shape 

parameters a and b.

The stick-breaking construction of (3) is sometimes denoted as β ∼ GEM(γ), after Griffiths, 

Engen, and McCloskey (Ewens, 1990). The name “stick-breaking” comes from the 

interpretation of βi as the length of the piece of a unit-length stick assigned to the i-th value. 

After the first i – 1 values having their portions assigned, the length of the remainder of the 

stick is broken according to a sample π̃i from a beta distribution, and β̃
i indicates the portion 

of the remainder to be assigned to the i-th value. Therefore, the stick-breaking process 

GEM(γ) also defines a DP—the smaller γ, the less (in a statistical sense) of the stick will be 

left for subsequent values.
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After sampling β, we next sample the latent state variables, in this case λc, from the base 

measure H. Our draw from the DP(γ, H) prior is then given by

(4)

Thus, the stick breaking construction makes clear that draws from a Dirichlet process 

distribution are discrete with probability one.

Given a countably infinite set of shared states, we may then sample the rows of the transition 

matrix, Pi,: ∼ DP(α0, β). We place the same prior over π. The base measure in this case is β, 

a countably infinite vector of stick-breaking weights, that serves as the mean of the DP prior 

over the rows of P. The concentration parameter, α0, governs how concentrated the rows are 

about the mean. Since the base measure β is discrete, each row of P will be able to “see” the 

same set of states. By contrast, if we remove the HDP prior and treat each row of P as an 

independent draw from a DP with base measure H, each row would see a disjoint set of 

states with probability one. In other words, the hierarchical prior is required to provide a 

discrete (but countably infinite) set of latent states for the HMM.

2.3. Overdispersed Poisson model

An interesting consequence of this Bayesian model is that it naturally leads to a distribution 

of spike counts that is overdispersed relative to simple Poisson model, a feature that has 

been observed in neural recordings (Goris et al., 2014). Recent work has explored the 

negative binomial (NB) distribution as an alternative to Poisson model, since its two 

parameters allow for Fano factors greater than one. The NB distribution can also be seen as 

a continuous mixture of Poisson distributions (i.e., a compound probability distribution) 

where the mixing distribution of the Poisson rate is a gamma distribution (Gelman et al., 

2013). In other words, the NB distribution is viewed as a gamma-Poisson (mixture 

distribution): a Poisson(λ) distribution whose rate λ is itself a gamma random variable. In 

our case, the gamma prior over firing rates leads to a negative binomial marginal distribution 

over yc,t.

Though the marginal spike count at a particular time t may be marginally distributed 

according to a negative binomial distribution, it is not necessarily true that a sequence of 

time bins, y1:T, will be i.i.d. negative binomials. This arises from the correlations induced by 

the state transition matrix. Instead, y1:T will follow a finite mixture of Poisson distributions, 

with one component for each latent state. The mixture will be weighted by the marginal 

probability of the corresponding latent state. However, as the number of visited states grows, 

and the marginal probability of latent states becomes more uniform, the resulting marginal 

distribution over the spike count sequences inherits the over dispersed nature of the NB 

distribution. This is particularly true of an HDP-HMM with a high concentration.

2.4. Markov chain Monte Carlo (MCMC) inference

Several MCMC-based inference methods have been developed for the HDP-HMM (Beal et 

al., 2002; Teh et al., 2006; Van Gael et al., 2008). Some of these previous works use a 
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collapsed Gibbs sampler in which the transition matrix P and the observation parameters Λ 

are integrated out (Teh et al., 2006; Van Gael et al., 2008). In this work, however, we use a 

“weak limit” approximation in which the DP prior is approximated with a symmetric 

Dirichlet prior. Specifically, we let

(5)

where M denotes a truncation level for approximating the infinity (which is different from m 

in the finite-state setting). It can be shown that this prior will weakly converge to the DP 

prior as the dimensionality of the Dirichlet distribution approaches infinity (Johnson and 

Willsky, 2014; Ishwaran and Zarepour, 2002). With this approximation we can capitalize on 

forward-backward sampling algorithms to jointly update the latent states .

Previous work has typically been presented with Gaussian or multinomial likelihood 

models, with the acknowledgement that the same methods work with any exponential family 

likelihood when the base measure H is a conjugate prior. Here we present the Gibbs 

sampling algorithm of (Teh et al., 2006) for the HDP-HMM applied to the special case of 

independent Poisson observations, and we derive Hamiltonian Monte Carlo (HMC) 

transitions to sample the cell-specific hyperparameters of the firing rate priors.

We begin by defining Gibbs updates for the neuronal firing rates Λ. Since we are using 

gamma priors with independent Poisson observations, the model is fully conjugate and 

simple Gibbs updates suffice. Therefore, we have

(6)

Under the weak limit approximation, the priors on Pi,: and π reduce to Dirichlet 

distributions, which are also conjugate with the finite HMM. Hence we can derive conjugate 

Gibbs updates for these parameters as well. They take the form:

(7)

where 1j is a unit vector with a one in the j-th entry.

Conditioned upon the firing rates, the initial state distribution, and the transition matrix, we 

can jointly update the latent states of the HDP-HMM using a forward filtering, backward 

sampling algorithm. Details of this well-known algorithm can be found in (Johnson, 2014); 

the intuition is that in the backward pass of the algorithm, we have a conditional distribution 
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over St given St+1:T. We can iteratively sample from these distributions as we go backward 

in time to generate a full sample from p( |P, π, Λ). Jointly sampling these latent states 

allows us to avoid issues with mixing when individually sampling states that are highly 

correlated with one another.

Finally, the Dirichlet parameters β and the concentration parameters α0 and γ can be updated 

as in (Teh et al., 2006). A single iteration of the final algorithm consists of an update for 

each parameter of the model. The aforementioned updates are based upon previous work; 

one novel direction that we explore in this work is the sampling of the hyperparameters of 

the gamma firing rate priors.

2.4.1. Setting firing rate hyperparameters—We consider three approaches to setting 

the hyperparameters of the gamma priors for Poisson firing rates, namely,  for cell 

c. Note that these parameters are distinct from the parameters of the DP prior.

• In the first approach, we estimate these parameters using an empirical Bayesian 

(EB) procedure, that is, by maximizing the marginal likelihood of the spike counts. 

For each cell, this may be easily done using standard maximum likelihood 

estimation for the negative binomial model. In practice, we found that without 

regularization this approach leads to extreme values of the hyperparameters.

• Our second approach samples these hyperparameters using Hamiltonian Monte 

Carlo (HMC) (Neal, 2010). We note that for fixed values of the “shape” parameter 

, the conditional distribution of the “scale” parameter,  is conjugate with a 

gamma prior distribution. However, setting the shape parameter a priori is 

challenging because it can have a strong influence on the firing rate distribution. 

HMC allows us to jointly sample both the shape and the scale parameters 

simultaneously. To implement HMC, we must have access to both the log 

probability of the parameters as well as its gradient. Since both parameters are 

restricted to be positive, we instead reparameterize the problem in terms of their 

logs. For cell c, the conditional log probability equal to,

(8)

Taking gradients with respect to both parameters yields,

(9)

The HMC algorithm uses these gradients to inform a stochastic walk over the 

posterior distribution. With knowledge of the gradients, HMC can sometimes make 

large updates to parameters, especially in cases where the parameters are highly 

correlated under the posterior.
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• In the final approach, we fix the shape hyperparameter, , and infer the scale 

hyperparameter, . We place a gamma prior on the scale, . 

Given , the conditional distribution of the scale hyperparameter is

(10)

In the following experiments, we set the shape parameter to , and we set the 

scale prior parameters to μ = 1 and ν = 1. This is equivalent to an exponential prior 

on rates, , and an exponential prior on the scale . One 

could perform cross validation over the shape parameter, but the exponential prior 

is a rather weak assumption that enables fully-Bayesian inference.

2.4.2. Predictive log likelihood—Upon completing the parameter and hyperparameter 

inference, we evaluate the performance of our algorithm in terms of its predictive log 

likelihood on held out test data. We approximate the predictive log likelihood with samples 

from the posterior distribution generated by our MCMC algorithm. That is,

(11)

where θ = (Λ, P, π) and . The summation over latent state sequences for 

the test data is performed with the message-passing algorithm for HMMs.

2.5. Variational Bayes (VB) inference

We build upon our previous work (Chen et al., 2012a, 2014; Johnson and Willsky, 2014) to 

develop a variational inference algorithm for fitting the HDP-HMM to hippocampal spike 

trains. Our objective is to approximate the posterior distribution of the HDP-HMM with a 

distribution from a more tractable family. As usual, we choose a factorized approximation 

that allows for tractable optimization of the parameters of the variational model. 

Specifically, we let,

(12)

Since the independent Poisson observations are conjugate with the gamma firing rate prior 

distributions, choosing a set of independent gamma distributions for q(Λ) allows for simple 

variational updates.
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(13)

Following (Johnson and Willsky, 2014), we use a “direct assignment” truncation for the 

HDP (Bryant and Sudderth, 2012; Liang et al., 2007). In this scheme, a truncation level M is 

chosen a priori and q( ) is limited to support only states St ∈ {1,…, M}. The advantage of 

this approximation is that conjugacy is retained with Λ, P, and π, and the variational 

approximation q( ) reduces to

(14)

Expectations q[St = i] can then be computed using standard the message-passing algorithm 

for the HMM.

With the direct assignment truncation, the variational factors for Pi,: and π take on Dirichlet 

priors. Unlike in the finite-state HMM, however, these Dirichlet priors are now over M + 1 

dimensions since the final dimension accounts for all states i > M. Under the HDP prior we 

had Pi,: ∼ DP(α0 · β), and under the truncation the DP parameter becomes α0 · β1:M+1. 

Again, leveraging the conjugacy of the model, we arrive at the following variational 

updates:

(15)

We use an analogous update for π.

The principal drawback of the direct assignment truncation is that the prior for β is no longer 

conjugate. This could be avoided with the fully conjugate approach of (Hoffman et al., 

2013), however, this results in extra bookkeeping and the duplication of states. Instead, 

following (Johnson and Willsky, 2014; Bryant and Sudderth, 2012; Liang et al., 2007), we 

use a point estimate for this parameter by setting q(β) = δβ* and use gradient ascent with 

backtracking line search to update this parameter during inference.

There are a number of hyperparameters to set for the VB approach. The hyperparameters 

and  of gamma prior on firing rates can be set with empirical Bayes, as above. We resort 

to cross validation to set the Dirichlet parameter α0 and the GEM parameter γ.
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Finally, in order to compute the predictive log likelihood on held out test data, we draw 

multiple samples  from the variational posterior and approximate the 

predictive log likelihood as

(16)

3. Results

The inference algorithms were implemented based upon the PyHSMM framework of 

(Johnson, 2014). The codebase was written in Python with C offloads for the message 

passing algorithms. We have extended the codebase to perform hyperparameter inference 

using the methods described above, and expanded it to tailor to neural spike train analysis. 

Our source code is publicly available (https://github.com/slinderman/pyhsmm_spiketrains).

3.1. Simulation data

Setup—First, we simulate synthetic spike count data using an HDP-HMM with C = 50 

neurons, T = 2000 time bins, and Dirichlet concentration parameters α0 = 12.0 and γ = 12.0. 

These configuration yield state sequences that tend to visit 30-45 states. All of neuronal 

firing rate parameters are drawn from a gamma distribution:  (with 

mean 1.0 and standard deviation 1.0).

An example of one such synthetic dataset is shown in Fig. 1. The states have been ordered 

according to their occupancy (i.e., how many times they are visited during the simulation), 

such that the columns of the transition matrix exhibit a decrease in probability as the 

incoming state number, St+1, increases. This is a characteristic of the HDP-HMM, indicating 

the tendency of the model to reuse states with high occupancy.

We compare six combinations of model, inference algorithm, and hyper-parameter selection 

approaches: (i) HMM with the correct number of states, fit by Gibbs sampling with fixed 

; (ii) HMM with the correct number of states, fit by VB with hyperparameters set by 

empirical Bayes; (iii) HDP-HMM fit by Gibbs sampling with fixed ; (iv) HDP-HMM 

fit by Gibbs sampling and HMC for hyperparameter updates; (v) HDP-HMM fit by MCMC 

with hyperparameters set by empirical Bayes; and (vi) HDP-HMM fit by VB with 

hyperparameters set by empirical Bayes. For the MCMC methods, we set gamma priors over 

the concentration parameters (α0 and γ); for the VB methods, we set α0 and γ to their true 

values. Alternatively, they can be selected by cross validation. We set both the weak limit 

approximation for MCMC and the direct assignment truncation level for VB to M = 100.

We collect 5000 samples from the MCMC algorithms and use the last 2000 samples for 

computing predictive log likelihoods. For visualization, we use the final sample to extract 

the transition matrix and the firing rates. The number of samples and the amount of burn-in 

iterations were chosen by examining the log probability and parameter traces for 

convergence. It is found that the MCMC algorithm converges within hundreds of iterations. 
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For further convergence diagnosis of a single Gibbs chain, one may use the autocorrelation 

tools suggested in (Raftery and Lewis, 1992; Cowles and Carlin, 1996).

We run the VB algorithm for 200 steps to guarantee convergence of the variational lower 

bound. Again, this is assessed by examining the variational lower bound and is found to 

converge to a local maxima within tens of iterations.

Assessment—We use two criteria for result assessment with simulation data. The first 

criterion is based on the Hamming error between the true and inferred state sequences. To 

compute this, we first relabel the inferred states in order to maximize overlap with the true 

states. Let  be the true state sequence and ′ be the inferred state sequence. We define the 

overlap matrix O ∈ ℕM×M whose entries Oi,j is the number of times the true state is i and the 

inferred state is j:

(17)

We use the Hungarian method (Kuhn, 1955) to find a relabeling of the inferred states that 

maximizes overlap, and then we measure the Hamming error between the true state 

sequence , and the relabeled sequence of inferred states, 𝒮 ̃′:

(18)

Table 1 summarizes the Hamming error for all six models on five synthetic datasets. We see 

that the HDP-HMM fit via Gibbs sampling with firing rate hyperparameters set via 

empirical Bayes outperforms the other models and inference algorithms on three of five 

datasets, but the HDP-HMM with hyper-parameter HMC sampling are very comparable. By 

contrast, when the models are fit with VB inference, the inferred state sequences tend to use 

more than the true number of states, which results in very poor Hamming error. Similarly, 

the HMM fit via Gibbs sampling does not factor in the penalty on additional states and 

instead tends to use all states equally, resulting in large Hamming error.

The second criterion is the model's predictive log likelihood (unit: bits/spike) on a held out 

sequence of Ttest = 1000 time steps. We compare the predictive log likelihood to that of a set 

of independent Poisson processes. Their rates and the corresponding predictive log 

likelihood are given by,

(19)
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(20)

The improvement obtained by a model is measured in bits, and is normalized by the number 

of spikes in the test dataset in order to obtain comparable units for each of the test datasets.

Table 2 summarizes the predictive log likelihood comparison. For all five datasets, the HDP-

HMM fit via Gibbs sampling with fixed  performs best, though in general the increase 

over fitting the HDP-HMM when using HMC or EB for hyperparameter selection is small. 

By contrast, the improvement compared to fitting with VB inference or using a parametric 

HMM is quite significant.

Though computation cost is often a major factor with Bayesian inference, with the 

optimized PyHSMM package, the models can be fit to the synthetic data within less minutes 

on an Apple MacBook Air. The runtime necessarily grows the number of neurons and the 

truncation limit on the number of latent states. As the model complexity grows, we must 

also run our MCMC algorithm for more iterations, which often motivates the use of 

variational inference algorithms instead. Given our optimized implementation and the 

performance improvements yielded by MCMC, we opted for a fully-Bayesian approach 

using MCMC with HMC for hyperparameter sampling in our subsequent experiments.

Figure 2 shows example traces from the MCMC combined with HMC algorithm for the 

HDP-HMM running on synthetic dataset 1. This is the same data from which Fig. 1 is 

generated. The first 5 Markov chain iterations have been omitted to highlight the variation in 

the latter samples (the first few iterations rapidly move away from the initial conditions). We 

see that the log likelihood of the data rapidly converges to nearly that of the true model 

(horizontal dotted line), and the number of states quickly converges to around m = 35. Note 

that the nuisance parameters α0 and γ do not converge to the true values — this is due to the 

fact that the solution is insensitive to these parameters or the presence of local optima. 

However, even the concentration parameters are different from the true values, they are still 

consistent with the inferred state transition matrix.

Sensitivity of the number of latent states—To test the sensitivity of the number of 

inferred states to changes in the data, we vary a number of parameters and plotted the 

number of inferred states in Fig. 3. In all cases, we use synthetic dataset 1, shown in Fig. 1, 

and HDP-HMMs fit via Gibbs sampling with fixed . First, we vary the number of neurons 

C, and find that the number of inferred states was relatively stable around the true number of 

states (m = 35). By contrast, as we increase the recording length T, the number of inferred 

states increases as well. This is because the true underlying data actually does visit more 

states as we simulate it for longer time. In general, we expect the number of inferred states 

to grow with the complexity of the data. Next, we vary the scale of the firing rate by 

multiplying the true model's firing rate by a factor of 0.1, 0.5, 1.0, 2.0, or 10.0, and sampling 

a new spike count. When the firing rates are very low, most bins do not contain any spikes, 

and hence it is not possible to resolve as many states. By contrast, when the rate is increased, 

the number of inferred states is slightly lower than the true number, which is likely the result 
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of a slight mismatch with the prior on the firing rate scale (parameters μ and ν in Section 

2.4.1). Finally, we considerate the effect of time bin size by scaling up the bin sizes by 

factors of 2 through 10. For example, when scaling by a factor of 2, we add the spike counts 

in each pair of adjacent bins. This has a similar effect to decreasing the recording length by a 

factor of 2, and hence we see the number of inferred states decrease with bin size.

3.2. Rat hippocampal neuronal ensemble data

Next, we apply the proposed methods to experimental data of the rat hippocampus. 

Experiments were conducted under the supervision of the Massachusetts Institute of 

Technology (MIT) Committee on Animal Care and followed the NIH guidelines. The micro-

drive arrays containing multiple tetrodes were implanted above the right dorsal hippocampus 

of male Long-Evans rats. The tetrodes were slowly lowered into the brain reaching the cell 

layer of CA1 two to four weeks following the date of surgery. Recorded spikes were 

manually clustered and sorted to obtain single units using a custom software (XClust, 

M.A.W.).

For demonstration purpose, an ensemble spike train recording of C = 47 putative pyramidal 

neurons was collected from a single rat for a duration of 9.8 minutes. Once stable 

hippocampal units were obtained, the rat was allowed to freely forage in an approximately 

circular open field environment (radius: ∼60 cm). We bin the ensemble spike activity with a 

bin size of 250 ms and obtain the population vector yt in time. To identify the period of 

rodent locomotion during spatial navigation, we use a velocity threshold (>10 cm/s) to select 

the RUN epochs and merge them together. One animal's RUN trajectory and spatial 

occupancy are shown in Fig. 4A and Fig. 4B, respectively. The empirical probability of a 

location, p(ℓ), is determined by dividing the arena into 220 bins of equal area (11 angular 

bins and 20 radial bins) and counting the fraction of time points in which the rat is in the 

corresponding bin.

In experimental data analysis, we focus on nonparametric Bayesian inference for HDP-

HMM. For all methods, we increase the truncation level to a large value of M = 100. To 

discover the model order of the variational solutions, we use the number of states visited by 

the most likely state sequence under the variational posterior. The MCMC algorithms yield 

samples of state sequences from which the model order can be directly counted.

We perform a quantitative comparison between HMMs, HDP-HMMs, inference algorithms, 

and hyperparameter setting algorithms, where performance is measured in terms of both 

predictive log likelihood and decoding error. For both metrics, we train the models on the 

first 7.8 minutes of data and test on the final two minutes of data for prediction. The results 

are summarized in Table 3. We find that the HDP-HMM fit by Gibbs sampling with fixed 

firing rate scale ( ) again outperforms the competing models in both measures.

For the purpose of result assessment, we plot the state-space or state-location map (Fig. 5A), 

which shows the mean value of the spatial position that each state represented. The size of 

the black dot is proportional to the occupancy of the state. To compute an “empirical” 

distribution over locations for a given state, we first compute the posterior distribution over 

latent states with our inference algorithms. This gives us a set of probabilities Pr(St = i) for 
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all time bins t and states i. Then we compute the average location for each state i by 

weighting the animal's location (xt,yt) by the probability that the animal was in state i at time 

t. Summing over time yields a weighted set of locations, which we then bin into equal-area 

arcs and normalize to get an empirical distribution over locations for each state i.

The empirical location distributions for the top three states as measured by occupancy are 

shown in Fig. 5B). In Fig. 5C, we show the estimated animal's spatial trajectories in black, 

along with the reconstructed location in from the HDP-HMM with Gibbs sampling in blue. 

To reconstruct the position, we use the mean of each latent state's location distribution 

weighted by the marginal probability of that state under the HDP-HMM. That is,

(21)

where x̄i and ȳi denote the average location of the rat while in inferred state i (corresponding 

to the black dots in Fig. 5A). Note that the animal's position is not used in model inference, 

only during result assessment. In the illustrated example (HDP-HMM with MCMC+HMC), 

the mean reconstruction error in Euclidean distance is 9.07 cm.

As the parameter sample traces in Fig. 6 show, the Markov chain converges in around 2500 

iterations. After this point, the total number of states stabilizes to around 65. The 

concentration parameters α0 and γ converge within a similar number of iterations. Finally, 

we show the transition matrix P and firing rate matrix Λ obtained from the final Markov 

chain sample.

We again evaluate the sensitivity of these model fits to the choice of hyperparameters. For 

the HDP-HMM fit via Gibbs sampling with fixed , the primary hyperparameters of 

interest are the concentration hyperparameters, aα0 and aγ in Eq. 5, where we have assumed 

α0 ∼ Gamma(aα0, 1) and γ ∼ Gamma(aγ, 1). Figure 7 shows the inferred number of states 

as we vary these two hyperparameters over orders of magnitude. We find that the number of 

inferred states is stable around 65, indicating the performance robustness to the choice of 

these hyperparameters.

Looking into the inferred states, we can reconstruct the “place fields” or “state fields” of 

hippocampal neurons. To do so, we combine the state-location maps (Fig. 5B) with the 

firing rate of the individual neuron in those states (Fig. 6F) and weight by the marginal 

probability of the latent state. Together, these give rise to the inferred neuron's place field. 

Note that, again, the position data was only used in reconstruction but not in the inference 

procedure. Four pairs of inferred and true place fields are shown in Fig. 8A. On the top row 

is the inferred place field; on the bottom is the true place field computed using the locations 

of the rat when cell c fired shown by black dots. We further assess the difference between 

the true and estimated place fields in population. Specifically, we compute the total 

variation distance between the inferred and true place fields for all 47 neurons, and the 

histogram statistic is shown in Fig. 8B.
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In addition, we evaluate the model in terms of the information latent states convey about the 

rat's position in the circular environment. To do so, we divide the environment into 121 bins 

of equal area and treat the rat's position as a discrete random variable. Likewise, we treat the 

latent state as a discrete random variable, and we compute the discrete mutual information 

between these two variables. We investigate the information content of each individual state 

by constructing a binary random variable indicating whether or not the model is in state i 

and measuring its mutual information with the rat's position. The result is shown in Fig. 9, 

where the latent states are ordered in decreasing order of occupancy. As expected, states that 

are more frequently occupied carry more information about the rat's position.

4. Extensions and discussion

4.1. Hidden semi-Markovian models

In experimental data analysis, a striking feature of the inferred state transition matrix (Fig. 

6E) is that the first 40 states exhibit strong self-transitions. This is a common feature of time 

series and has been addressed by a number of augmented Markovian models. In particular, 

hidden semi-Markovian models (HSMMs) explicitly model the duration of time spent in 

each state separately from the rest of the state transition matrix (Johnson and Willsky, 2013). 

Building this into the model allows the Dirichlet or HDP prior over state transition vectors to 

explain the rest of the transitions, which are often more similar. Alternatively, the “sticky” 

HMM and HDP-HMM accomplish a similar effect (Fox et al., 2008).

4.2. Statistical and computational considerations

We have seen a great advantage in nonparametric Bayesian formalism (i.e., HDP-HMM vs. 

HMM) regarding automatic model selection. This is especially important for sparse sample 

size or short recording in some neuroscience applications, where cross validation on data is 

infeasible.

For any statistical estimation, we need to consider the “bias vs. variance” problem. In VB 

inference, there is a potential estimate bias due to bound optimization (since we optimize the 

lower bound of the marginal likelihood). In addition, because of the mean-field 

approximation, the parameter's variance tends to be underestimated. In MCMC inference, 

the estimate is asymptotically unbiased, however, if the Markov chain mixes slowly, the 

estimate's variance can be inaccurate.

Computationally, the fully-Bayesian HDP-HMM inference is the most demanding. In 

practice, one can choose various inference tools with gradually increased computational 

resources (VB, empirical Bayes, Gibbs sampling or HMC) depending on the data sample 

size and complexity. In addition, the convergence of these algorithm may vary according to 

the choice of hyperparameters.

4.3. Latent state dimensionality and continuous latent state

In experimental data analysis, the number of identified states from HDP-HMM depends on 

the data as well as the priors of hyperparameters. Given the same size of environment, 

different numbers of cells or different recording duration may yield different estimation 
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results (Fig. 3), since the nonparametric prior allocates states in accordance with the 

complexity of the data. We found that the weak priors over the concentration parameters 

have a minimal effect on the number of inferred states (Fig. 7). Fixing the scale 

hyperparameter of the firing rate prior distribution and performing Gibbs sampling over the 

scale of the prior is a simple and robust method.

In our problem, we formulate the latent state is discrete (finite or infinite) and infer the state-

transition matrix, from which we can derive the “topology graph” of the unknown 

environment (Chen et al., 2012a, 2014). In parallel to the discrete-state HMM or HDP-

HMM, we can also formulate a continuous state-space model, where the state is Gaussian 

and the observation is Poisson (Brown et al., 1998; Smith and Brown, 2003; Yu et al., 2009; 

Buesing et al., 2012). Various inference algorithms (Gaussian or variational approximation) 

have been developed for such models in the literature. Different from discrete state, the 

continuous-state has a smoother representation (due to infinite spatial resolution). However, 

similar to the HMM, we will need to deal with the model selection (dimensionality of latent 

state) problem, which is often tackled by cross validation (Yu et al., 2009). In addition, 

continuous latent state is subject to sign/scale ambiguity. For the purpose of representing 

space and spatial topology, the discrete-state representation is more appropriate. Provided 

that the animal's behavior (spatial location) is available, the continuous representation of 

space will be more accurate. In general, nonparametric Bayesian inference can be applied to 

continuous or discrete states, as well as continuous or discrete observations (Teh et al., 2006; 

Van Gael et al., 2008; Fox et al., 2008, 2010; Chen, 2015).

4.4. Robustness of the population firing model

A key assumption in our probabilistic model is the Poisson likelihood. Although this 

assumption may not be true in experimental data, our results have showed excellent 

performance. To further assess the robustness of HDP-HMM-Poisson model in experimental 

data analysis, at every temporal bin we further add additional homogeneous non-Poissonian 

noise to the observed population spike counts by drawing from a NB distribution (with 

varying levels of mean 0.25-1.0 and variance 0.5-2.0), and repeat the decoding error 

analysis. We have found that, as a general trend, the median decoding error gradually grows 

as increasing noise mean or variance; yet the decoding performance remains quite 

satisfactory (results not shown).

4.5. Use of soft-labeled spikes

Thus far, we have assumed that all recorded ensemble spikes are sorted and clustered into 

single units. Nevertheless, it is known that spike sorting is complex, time-consuming and 

error-prone (Wood and Black, 2008; Shalchyan and Farina, 2014). On the one hand, sorting 

error is inevitable when there are overlapping features (such as spike energy, amplitudes or 

principal components). On the other hand, traditional spike-sorting procedures often throw 

away considerable non-clusterable “noisy” spikes, which might contain informative tuning 

information. How to use these noisy spikes and maximize the information efficiency 

remains an open question. In other words, can we conduct the ensemble spike analysis using 

unsorted spikes?
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Motivated from a sorting-free ensemble decoding analysis (Chen et al., 2012b; Kloosterman 

et al., 2014), we may use a soft-clustering method based on a Gaussian mixtures model 

(parameterized by an augmented vector  that characterizes the weights, 

mean, and covariance parameters of the Gaussian mixtures). By clustering the spike 

waveform feature space, we assign each spike with a “soft” class label (about the unit 

identity) according to the posterior probability within the K-mixtures. In the feature space, 

the points close to (far away from) the c-th cluster center are associated with a probability 

assignment value close to (smaller than) 1 in the c-th class. Because of the soft membership 

of individual spikes, the spike count yc,t (c = 1, …, K) within a time interval can be a non-

integer value. Consequently, we replace the variable C with K to indicate that the number of 

neurons is unknown, and rewrite the log likelihood as follows

(22)

In this case, the inference procedure consists of two steps. At the first stage, d-dimensional 

spike waveform features are clustered using a “constrained” Gaussian mixture model (Zou 

and Adams, 2012), which can be either finite or infinite. In the case of infinite Gaussian 

mixtures, we can also resort to the nonparametric Bayesian approach (Rasmussen, 2000; 

Görür and Rasmussen, 2010; Wood and Black, 2008). Upon completing the inference, each 

spike will be given a posterior probability of being assigned to each cluster. At the second 

stage, we sum the soft-labeled spikes to obtain the probabilistic spike count yc,t for all K-

clusters, and the remaining nonparametric Bayesian (MCMC or VB) inference procedure 

remains unchanged. A detailed investigation of this idea will be pursued in future work.

5. Conclusion

In this paper, we have explored the use of HDP-HMMs with Poisson likelihoods to analyze 

rat hippocampal ensemble spike data during spatial navigation. Compared to the parametric 

finite-state HMM, the HDP-HMM allows more flexibility to model the experimental data 

(without relying on time-consuming cross-validation in model selection). We evaluate two 

nonparametric Bayesian inference algorithms for HDP-HMM, one based on VB and the 

other based on MCMC. Furthermore, we consider two approaches for hyperparameter 

selection, an issue that is particularly important for the real-life application. It is found that 

the MCMC algorithm with HMC updates for the hyperparameters is robust and achieves the 

best performance in all simulated and experimental data. Our investigation shows a 

promising direction in applying nonparametric Bayesian methods for ensemble neuronal 

spike data analysis.

The unsupervised Bayesian inference approach allows us (or hippocampus downstream 

structures) to read out spatial information from hippocampal neuronal ensembles without a 

priori place receptive field information. One important future research direction is to apply 

this method to investigate sleep-associated hippocampal ensemble spike activity during 

either slow wave sleep (SWS) or rapid eye movement (REM) sleep (Louie and Wilson, 

2001; Lee and Wilson, 2002). Traditionally, one would rely on place receptive fields 
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estimated from pre-sleep run behavior to infer the content of population spike activity in 

sleep, but this approach is accompanied with many well-known statistical challenges, such 

as non-stationarity, firing rate remapping, and timescale warping. Our approach proposed 

here can provide an effective and complementary paradigm to investigate neural 

representation of hippocampal population codes without direct measurement of spatial 

correlate (Chen et al., 2015). The same principle can also be applied to neocortical ensemble 

spike data (Ji and Wilson, 2007; Peyrache et al., 2009; Gulati et al., 2014).
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Highlights

• Nonparametric Bayesian HDP-HMM can efficiently perform model selection 

and identify model parameters.

• MCMC inference outperforms other inference methods such as variational 

Bayes or empirical Bayes.

• The HDP-HMM and MCMC inference can efficiently uncover rat hippocampal 

population codes during spatial navigation.
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Figure 1. 
An example of a synthetic dataset drawn from an HDP-HMM. (A) Simulated population 

spike trains or spike counts. (B) Inferred latent state sequence. (C) Inferred state transition 

matrix P. (D) Inferred neuronal firing rate vectors λi specific to each state.
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Figure 2. 
MCMC state trajectories for an HDP-HMM fit to the synthetic dataset shown in Fig. 1. True 

values are shown by the dotted black lines. The first five iterations of the Markov chain are 

omitted since they differ greatly from the final states. The chain quickly converges to nearly 

the correct number of states (A) and achieves close to the true log likelihood (B). (C, D) The 

chain trajectories of hyperparameters α0 and γ. (E, F) Inferred state transition matrix P and 

neuronal firing matrix Λ = {λc,i} drawn from the last iteration.
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Figure 3. 
In a synthetic data experiment, we generated a spike train for a population of Ctrue = 50 cells 

and Ttrue = 2000 time bins. Then we varied the number of neurons C, recording duration T, 

scale of the firing rate λ, temporal bin size Δt, and inferred the number of inferred latent 

states from the data. Horizontal dashed lines indicate the ground truth. Box plots are 

obtained from 10 independent Monte Carlo chains, and each chain was run for 1000 

iterations; the number of states in the last iteration is used.
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Figure 4. 
One rat's behavioral trajectory (A) and spatial occupancy (B) in the open field environment.
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Figure 5. 
Estimation result from HDP-HMM (Gibbs) for the rat hippocampal ensemble spike data. (A) 

Estimated state space map, where the mean value of the spatial position for each latent state 

is shown by a black dot. The size of the dot is proportional to the occupancy of the state. (B) 

Probability distributions over location corresponding to the top three latent states, measured 

by state occupancy. The small black dots indicate the location of the animal while in that 

state, and are used to compute the empirical distribution over location indicated by colored 

shading. (C) The true (black) and reconstructed (blue) trajectories shown in Cartesian 

coordinate. For each time bin, we use the mean location of the latent states to determine an 

estimate of the animal's location.
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Figure 6. 
Estimation result from HDP-HMM (Gibbs) for the rat hippocampal ensemble spike data. (A) 

The total number of states (solid blue) slowly increases as states are allocated for a small 

number of time bins. The number of states converges after 2500 iterations. (B) The log 

likelihood of the training data grows consistently as highly specific states are added. (C, D) 

The concentration parameters, α0 and γ also converge after 2500 iterations. (E, F) The 

inferred state transition matrix P and neuronal firing matrix Λ = {λc,i} drawn from the last 

iteration.

Linderman et al. Page 27

J Neurosci Methods. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Measuring the effect of concentration hyperparameters on the number of inferred latent 

states. We find that the concentration hyperparameters of the Gamma priors on the 

concentration parameters, α0 and γ, have a minimal effect. Box plots are obtained from 10 

independent Monte Carlo chains, and each chain was run for 1000 iterations; the number of 

states in the last iteration is used.

Linderman et al. Page 28

J Neurosci Methods. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
(A) Comparison of inferred and true place fields for four randomly selected hippocampal 

neurons. The inferred place field (top row) for cell c is a combination of location 

distributions for each state i weighted by the inferred firing rates λc,i, whereas the true place 

field (bottom row) for cell c is a histogram of locations in which cell c fires. The black dots 

show the rat's locations used for each histogram. The inferred place fields closely match the 

true place fields. With adequate spike data recording, we expect a higher latent state 

dimensionality to yield higher spatial resolution in the inferred place fields. (B) Summary 

statistics of total variation (TV) distance between the inferred and true place fields for 47 

neurons. The TV distance for the four examples in panel (A) are 0.0123, 0.0067, 0.0136, and 

0.0091, respectively.
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Figure 9. 
Mutual information of the inferred states and the rat's position. Latent state are ordered by 

their occupancy, i.e. the number of times the rat was in that state.
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Table 3

A comparison of HMMs, HDP-HMMs, and inference algorithms on the rat hippocampal data. Performance is 

measured in predictive log likelihood and mean decoding error on two minutes of held out test data (the best 

result is marked in bold font).

Pred. log likelihood (bits/spike) Decoding error (cm)

HMM (m = 25) 0.712 10.85 ± 6.43

HMM (m = 45) 0.706 10.71 ± 6.67

HMM (m = 65) 0.717 11.01 ± 6.93

HDP-HMM (Gibbs) 0.722 9.56 ± 5.31

HDP-HMM (HMC) 0.646 9.96 ± 6.05

HDP-HMM (EB) 0.579 10.81 ± 6.78

HDP-HMM (VB) 0.602 10.93 ± 6.24
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