
Abstract
Kidney transplantation is the best available treatment 
for patients with end stage renal disease. Despite the 
introduction of effective immunosuppressant drugs, 
episodes of acute allograft rejection still endanger graft 
survival. Since efficient treatment of acute rejection 
is available, rapid diagnosis of this reversible graft 
injury is essential. For diagnosis of rejection, invasive 
core needle biopsy of the graft is the “gold-standard”. 
However, biopsy carries the risk of significant graft 
injury and is not immediately feasible in patients taking 
anticoagulants. Therefore, a non-invasive tool assessing 
the whole organ for specific and fast detection of 
acute allograft rejection is desirable. We herein review 
current imaging-based state of the art approaches 
for non-invasive diagnostics of acute renal transplant 
rejection. We especially focus on new positron emission 
tomography-based as well as targeted ultrasound-
based methods.
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Core tip: Kidney transplantation is the best available 
treatment for patients with end stage renal disease. 
For diagnosis of rejection, invasive core needle biopsy 
of the graft is currently considered as the “gold-
standard”. As biopsies carry the risk of significant graft 
injury, a non-invasive, specific and fast tool screening 
the whole graft for acute rejection is desirable. We 
herein review current imaging-based state of the art 
approaches for non-invasive diagnosis of acute kidney 
allograft rejection, focussing particularly on new 
positron emission tomography-based as well as targeted 
ultrasound-based methods.
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INTRODUCTION
Kidney transplantation (KTx) is the favorable treatment 
for patients suffering from end stage renal disease 
(ESRD)[1]. Although modern immunosuppressive re
gimens offer good patient and graft survival rates, 
acute rejection (AR) after KTx remains a serious 
problem significantly limiting both graft and patient 
survival[2,3]. 

Therefore, early detection and treatment of AR is 
necessary. To date, renal biopsy is the “goldstandard” 
to diagnose AR, but might jeopardize allograft reci
pients due to its invasive character. 

Thus, noninvasive techniques for detection of AR 
are desired. During the last decades, medical imaging 
techniques have improved tremendously. Novel me
thods do not only focus on structural details, but also 
visualize functional processes.  

This review focuses on the current noninvasive 
imaging techniques to detect AR which might replace 
renal biopsies in the future.  

ULTRASOUND
Sonographic allograft examination is part of the 
standard care of transplanted patients. This procedure 
detects allograft swelling, morphological changes, 
abatement of corticomedullary differentiation, alte
rations of echogenicity and distinctive structures such 
as medullary pyramids; renal blood circulation can 
be analyzed by means of Doppler ultrasound and 
contrastenhanced ultrasound examination. While the 
method is costeffective and widely available, it still has 
considerable limitations in sensitivity and specificity for 
the diagnosis of AR.  

New approaches might overcome these caveats. The 
resistive index (RI) is a noninvasive method using the 
vascular resistance and elastic compliance to evaluate the 
function of the allograft. Unfortunately, the RI measured 
in the allograft is influenced by systemic parameters 
like the vascular compliance, pulse pressure, heart 
rate and rhythm. Due to progressing arteriosclerotic 
processes of the vascular system, older recipient age is 
the strongest determinant for a higher RI[4]. Higher RIs 
are also associated with antibodymediated rejection 
and acute tubular necrosis in index biopsies[4], and RIs 
of 0.8 or higher are associated with decreased patient 
survival[4,5]. However, data on the correlation between RI 
and allograft outcome are unequivocal[46]. 

Recently, another noninvasive index for the 

prediction of AR has been developed on the base of 
contrastenhanced ultrasonography (CEUS). It includes 
CEUS factors such as rising time, time to peak and 
deltatime among regions of interest[7]. 

Acoustic radiation force impulse imaging (ARFI) 
assesses tissue elasticity and was utilized to identify 
AR in a small series of 8 patients. ARFIvalues were 
elevated by more than 15% in patients undergoing AR, 
when compared to other causes of allograft damage[8]. 
However, the method has not been evaluated by 
others and is not used in clinical routine yet.

An experimental but promising procedure is the 
use of microbubbles targeting Tlymphocytes. The 
accumulation of T cells during AR can be visualized via 
microbubbles coupled to antiCD3 antibodies (Figure 
1)[9]. The method allows differential diagnosis of AR 
with high specificity.

MAGNETIC RESONANCE IMAGING 
Magnetic resonance imaging (MRI) is another non
invasive method to evaluate kidney allograft function. 
MRI is based on the detection of signals from hydrogen 
nuclei or protons changing their magnetic behaviour 
in response to altered magnetic fields in the MRI 
system, and can reveal various tissue characteristics, 
including intrinsic MR properties like the relaxation 
times T1 and T2

[10]. An important advantage of MRI 
is the high spatiotemporal resolution, which allows 
the precise visualization of anatomical structures as 
well as functional assessment of the graft. MRI allows 
the detection of distinctive features of vascular and 
interstitial structures, there by discriminating between 
different mechanisms of renal allograft injury such as 
AR or acute tubular necrosis (ATN)[11]. In the field of 
nephrology, various MRI techniques can be used to 
visualize different pathophysiological processes[10]. 

Dynamic contrast enhanced MRI (DCE MRI) is a 
common MRI method involving the use of a contrast 
agent. DCE MRI using gadoliniumbased contrast 
agents is also termed MR renography (MRR). The 
contrast agents are freely filtered at the glomeruli 
but are not secreted or reabsorbed in the tubules. 
Therefore they can optimally be used to quantify renal 
perfusion, glomerular filtration rate (GFR) and tubular 
function, which helps to distinguish between AR and 
ATN[11]. The assessment involves the measurement 
of cortical and medullary blood flow within the graft 
after administration of contrast agent. In contrast to 
normal grafts, the cortical and medullary blood flow 
is significantly reduced in grafts experiencing AR. The 
predominantly reduced medullary blood flow seems 
to be characteristic for AR and helps to differentiate 
between AR and ATN[12]. 

Identification of and discrimination between various 
mechanisms of allograft damage is also possible by 
using a tracer kinetic renal model which determines 
the mean transit time (MTT) of a tracer through the 
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different compartments of the kidney[13]. However, 
although differences in the fractional MTT values 
between normal grafts or grafts undergoing AR or 
ATN have been observed, substantial overlaps among 
these groups and with healthy control kidneys exist. 
Moreover, the rare but characteristic risk of gadolinium
induced nephrogenic systemic fibrosis needs to be 
considered[14]. 

Another MRI technique which is independent from 
contrast agent usage is diffusionweighted MRI (DWI 
MRI). DWI MRI depends on the signal decay that is 
induced by the relative diffusionbased displacement of 
water molecules, which can be quantified by calculating 
the so called apparent diffusion coefficient (ADC). The 
ADC is influenced by the tissue microstructure and 
does not account for directionality of molecular motion. 
To address this issue of anisotropic diffusion properties 
due to the radial orientation of main anatomic struc
tures like vessels and tubules, the more sensitive 
diffusion tensor imaging (DTI) has been applied[15]. DTI 
allows the assessment of the fractional anisotropy (FA) 
of tissues, thereby considering the directionality of 
diffusion. Recently, the role of diffusionweighted MRI 
for differentiation between AR and ATN was discussed, 
and new automated segmentation protocols might be 
helpful[16].

The differentiation between AR and ATN might also 
be possible by applying bloodoxygen leveldependent 
(BOLD) MR[1719]. This method utilizes the paramagnetic 
effects of deoxyhemoglobin. Deoxyhemoglobin is 
increased in tissues with lower oxygen concentration 
and shortens the transverse relaxation time constant 
T2*. Inversely, the apparent relaxation rate, R2* (= 
1/T2*), is elevated. Therefore, BOLD MR can serve 
as a noninvasive technique to evaluate the renal 
parenchymal oxygenation concentration. In kidneys 
displaying AR, a significantly lower medullary R2*, 
corresponding to a higher oxygenation, was observed 
compared to ATN[18,20].

Arterial spin labeling (ASL) MRI is another approach 
to assess allograft function especially for longitudinal 

perfusion evaluation. ASL MR utilizes arterial blood 
as an endogenous contrast agent. Inflowing blood 
is selectively labeled by altering its longitudinal 
magnetization to have an opposite magnetization 
compared to the destination tissue. The difference 
between a labeled image (tag) and a nonlabeled 
image (control) can be used to determine tissue 
perfusion. ASL MR has successfully been applied to 
examine native and transplant kidneys. ASL studies 
using a flow sensitive alternating inversion recovery 
(FAIRASL) scheme (for details see[21]) revealed a 
significant lower overall or medullary perfusion in 
allografts when compared to healthy kidneys for 
subjects with eGFR > 60 mL/min per 1.73 m2 or with 
eGFR < 60 mL/min per 1.73 m2 respectively[22]. Also, a 
significant lower cortical perfusion in renal grafts with 
acute decrease in renal function was observed when 
compared to allografts with good postoperative and 
longterm function[23]. 

Given the need for non-invasive diagnosis of renal 
inflammation, several studies used nanoparticles to 
detect specific immune cells or immune proteins in 
the kidney (for review see[24]). In the context of renal 
transplantation, Hauger et al[25] and Chae et al[26] 
reported successful usage of super magnetic iron oxide 
(SPIO) particleloaded macrophages to differentiate 
between various causes of graft failure. Accumulation 
of iron particles in the kidney during AR was shown 3 
and 5 d after application, respectively. Unfortunately, 
nonphagocytic cells such as Tcells generally have 
a low labeling efficiency and poor contrast agent 
incorporation, which limits cellular MR imaging in vivo. 
Recently, Liu et al[27] reported a new synthesized class 
of MRI contrast agent, IOPCNH2 particles, for labeling 
of Tcells in allograft rejection in a rat model of heart
lung transplantation. This technique might represent 
an approach for potential clinical translation of MRI
based tracking of nonphagocytic cells, such as T and 
Blymphocytes. 

Various MRI techniques including BOLD, DWI 
and ASL have been combined in several longitudinal 
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Figure 1  Representative ultrasound images of an allogeneically transplanted (aTX) rat kidney (graft) and its native control kidney (native) on day 4 post 
surgery. Depicted are examples of transversal images taken before (pre CM) and 15 min after (post CM) tail vein injection of anti-CD3-antibody labeled microbubbles. 
CM: Contrast media/microbubbles conjugated to anti CD3 antibody.

                        Native kidney                                                                                         Allograft
Pre CM                                          Post CM                                         Pre CM                                           Post CM
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with glucosebased radionuclides is not specific for a 
particular disease and needs to be evaluated in the 
clinical context. For example, the uptake of 18F-FDG 
depends on the presence of glucose transporters 
which are upregulated under several conditions, like 
inflammation and tumor genesis. The application field 
of PET has extended over the last years, and 18F-FDG-
PET has successfully been used in many pathological 
processes like cancer[3638], vasculitis[39], fever of 
unknown origin[40], asthma[41], cystic fibrosis[42], and 
organ transplantation[4346]. 

Recently, our group was able to noninvasively 
assess renal function by 18Ffluoride clearance and 
to monitor graft inflammation by 18F-FDG[43,47]. This 
PET method allows the visualization of molecular 
and cellular processes characteristic for AR, e.g., 
the assessment of metabolic activity of recruited 
leucocytes, hypoxia cell death, as well as allograft 
function. The pattern of the 18F-FDG-uptake during AR 
indicates a state of increased metabolism, driven by 
inflammatory cells (Figure 2). The specific distribution 
pattern of cell activity allows the discrimination of 
AR from other pathological conditions in both a rat 
renal transplantation model and in transplanted 
patients[44,48]. Despite specific signals in kidney 
allografts undergoing AR, the clearance of 18F-FDG 
has to be taken into account. 18F-FDG signals derived 
from urinary tracer remnants within the urinary pelvis 
can be avoided by extending the time between the 
application of the tracer and the PET procedure, or by 
simply using 18F-FDG labelled T-cells[44,49]. As 18F-FDG 
uptake by renal allografts immediately decreases after 

studies, but case numbers were low and results were 
contradictory[28,29]. Further longitudinal studies with 
larger sample sizes are needed to determine the value 
of the different MR techniques for the evaluation of 
longterm allograft function. 

POSITRON EMISSION TOMOGRAPHY 
Positron emission tomography (PET) is an imaging 
procedure based on the detection of internal radiation. 
After administration of an intravenous radioactive 
tracer, gamma rays emitted by the tracer are recorded 
by an external detector system called gamma camera. 
PET enables whole body visualization with high intrinsic 
sensitivity and provides high specificity although only 
very low concentrations of the tracer are needed[30,31]. 
The method offers a spatial resolution of 35 mm 
and generates 3D images[32]. Metabolic and cellular 
processes like pHchanges, apoptosis, inflammation 
and infection can be visualized[33]. 

The use of 18F-fluordeoxyglucose (FDG) for sci-
ntigraphic detection of glucose metabolism was 
published in 1978[34] and became the mainly used 
radionuclide in PET. After injection of the tracer, 
18F-FDG enters the cell using glucose transporters 
like GLUT1. 18F-FDG acts like a glucose analogue 
and correlates with the metabolic activity of the cell. 
After phosphorylation of 18F-FDG, it cannot be further 
metabolized and is entrapped in cells with a high 
metabolism. The biodistribution of 18F-FDG can be 
assessed by PET[35]. 18F-FDG-PET is a well-established 
method used in clinical diagnostic. However, PET 

POD 1                                          POD 2                                          POD 4                                          POD 7

A B C D 3%

0%

Figure 2  Representative positron emission tomography-images of dynamic whole body acquisitions of a series of an allogeneically transplanted rat 
[postoperative day 1 (A), 2 (B), 4 (C), and 7 (D)], after tail vein injection of 30 MBq 18F-fluordeoxyglucose (maximum a posterior projection, 180 min pi). 
While the allograft undergoing rejection shows distinct enhancement of 18F-FDG (yellow circle) the native control kidney without rejection does not (green circles). 
Figure taken from[44]. POD: Postoperative day; FDG: Fluordeoxyglucose.
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successful treatment of AR, the method might also be 
used to monitor treatment efficacy[43]. 

SINGLE PHOTON EMISSION COMPUTED 
TOMOGRAPHY
Single photon emission computed tomography (SPECT) 
is another nuclear imagingbased method for the 
detection of AR in kidney allografts. Similar to PET, 
SPECT provides functional rather than morphological 
data, but while PET captures an indirect signal (pairs of 
gamma rays resulting from annihilation of the emitted 
positrons with electrons) SPECT directly measures 
gamma radiation from the deployed radioisotopes. 
Although PET provides higher spatial resolution[32], 
better sensitivity and better quantification, SPECT 
is still the most commonly used technique. Beside 
its high availability and the wide range of adequate 
radionuclides, the costeffectiveness is a noteworthy 
advantage of SPECT[50]. Regarding the available tracers 
used to visualize metabolic processes as well as cellular 
and molecular events, the generally longer halflives 
of SPECT radionuclides are of additional advantage, 
as they better correspond to the duration of the 
investigated biological processes. Common markers in 
SPECT are 111In, 67Ga, 123I and 99mTc, the latter offering 
the broadest application spectrum because of its 
relatively simple production, availability and optimal 
decay characteristics compared to the rather unstable 
and shortlived PET tracers[51]. However, the more 
complex incorporation process of 99mTc into a molecule 
which is impeded by involvement of chelating moieties 
and possible steric hindrance needs to be mentioned. 
Thus, thorough definition and characterization of the 
respective processes to be examined is necessary in 
order to choose the appropriate tracer.

The broad application field of SPECT imaging 
in numerous diseases has continuously expanded 
during the last years. Existing technologies have been 
optimized and new, more sophisticated approaches 
have been evolved. Particular in oncology, lots of 
different strategies have been introduced facilitating 
SPECTbased diagnosis and therapeutic monitoring 
in oncological patients[5254]. Moreover, processes like 
tissue injury, cell death or angiogenesis in cardiac and 
pulmonary diseases[5557], as well as specific bacterial 
infections[58], inflammation severity in rheumatoid 
arthritis[59] and neurological disorders[6062] can be 
detected and monitored with increasing precision. 

According to the various pathophysiological me
chanisms involved in AR after kidney transplantation, 
different markers for SPECT imaging have been 
developed during the last decades. The general 
principles of detecting the diverse pathophysiological 
processes and their implementation in PETbased 
diagnosis have already been discussed above. Many of 
these processes can be assessed by SPECT as well.

As early as in 1976, George et al[63] were able to 

visualize kidney allograft rejection using 99mTcsulfur 
colloid, which accumulates in areas of fibrin thrombi in 
acute and chronic rejecting allografts. 

As leukocyte recruitment plays a crucial role in 
allograft rejection, many attempts to label various cell 
lines ex vivo and in vivo have been made. Common 
markers used for radiolabelling white blood cells in 
SPECT are 99mTCHMPAO or 111Inoxine[6466]. Compared 
to 18F-FDG, these markers are more stable, have a 
longer halflife time and therefore should be used for 
sustained biological processes[67]. Labeling efficiency 
and viability of the marked cells are additional concerns. 
Whereas the labeling rate of 18F-FDG is only about 
60%, 111Inoxine and the PET marker 64Cu exhibit are 
more efficient and have labeling rates of approximately 
80%. Viability of the cells was shown to be comparable 
within the first four hours for 111Inoxine, 99mTcHMPAO, 
64Cu and 18F-FDG, while a significant decline of cell 
survival was observed after 24 h[68]. Regarding kidney 
transplantation, the use of 99mTcHMPAOlabeled 
mononuclear cells has been shown to differentiate 
between rejection and ATN[69].

Different 99mTc, 111In or 123Ilabeled antibodies 
binding to cell surface markers of different immune cells, 
like CD3, CD4, CD20 or CD25 have been developed 
for in vivo imaging (for review see[31]). Detection of 
AR in kidney transplantation is possible by using 99mTc
OKT3, a mouse monoclonal antibody against the CD3 
complex, which targets T cells, natural killer cells and 
natural killer T cells[70]. Side effects of this antibody due 
to its immunogenicity have been eliminated by using a 
humanized form, 99mTcSHNHvisilizumab[71,72]. Further 
studies are needed to evaluate its utility in diagnosing 
AR.

A high-affinity radiolabelled ligand binding to FPR1, a 
leukocyte receptor which is involved in chemotaxis and 
inflammatory responses, has recently been reported 
as a novel method to detect leukocyte accumulation in 
inflammation. FPR1 is upregulated during inflammation, 
and the 99mTclabeled FPR1 antagonist cFLFLFKNH2 has 
been shown to bind to FPR1 without interfering with the 
inflammatory processes[73].

SharifPaghaleh et al[74] published a reporter gene 
mediated method of radiolabelling regulatory T cells 
with Techentium99m pertechnetate (99mTcO4

) in 
vitro and in vivo, enabling the precise visualization of 
the cells as long as they are vital. This method might 
become a useful tool in the transplant setting as well.

Besides accumulation of immune cells, com
plement activation is another mechanism which 
plays an important role in the pathophysiology of 
transplantation. Recently SharifPaghaleh et al[75] 
successfully demonstrated noninvasive imaging of 
complement activation following ischemiareperfusion 
injury (IRI) in a model of cardiac transplantation, using 
99mTcrecombinant complement receptor 2 (99mTcrCR2). 
As IRI and complement activation per se are involved 
in transplant rejection and complement inhibitors have 
been developed as a therapeutic option, this principle 

Thölking G et al . Imaging of acute rejection



179 March 24, 2016|Volume 6|Issue 1|WJT|www.wjgnet.com

could be a useful tool to identify tissue damage after 
transplantation, to allow patient risk stratification and to 
monitor the effects of therapeutic interventions.

SPECT imaging can also be applied for monitoring 
of allograft function. While static imaging using 99mTc
dimercaptosuccinic acid (DMSA) can visualize functioning 
kidney tissue and anatomical abnormalities[76,77], dynamic 
imaging with 99mTcdiethylenetriaminepentaacetic (DTPA) 
or 99mTc-mercaptoacetyltriglycine (MAG3) further allows 
detection of AR and discrimination from ATN[7881].

DISCUSSION
Although core needle biopsy of the kidney allograft is still 
the gold standard to discriminate causes of renal injury, 
imaging of immunological processes offers promising, 
novel and noninvasive possibilities. As perfect ima
ging depends on severity of rejection, imagingbased 
methods still suffer from low sensibility[82]. Currently, 
PET and SPECT are able to discriminate ATN from AR. 
Unfortunately, differentiation between different forms 
of AR, namely acute antibody mediated rejection 
(ABMR) and T cellmediated rejection (TCMR), has not 
been tested sufficiently in preclinical imaging studies 
so far. As both entities are treated differently, the 
discrimination between both is of high clinical relevance. 
Identification and assessment of discriminating targets 
like T cells (TCMR) or C4d (ABMR) might support further 
differential diagnostics. The ultrasound visualization 
of Tcells by use of microbubbles coupled to antiCD3 
antibodies is a first approach for specific diagnostics of 
TCMR[9]. MRIbased assessment of IOPCNH2 labeled 
Tcells is based on the same principle and has been 
shown to be useful for the detection of rejection of a 
heartlung transplant[27]. New biomarkers, like cell free 
DNA, microRNA, chemokines, clusters of differentiation 
or tubular injury markers that correlate with AR, might 
provide additional information. Unfortunately, most of 
these markers are timeconsuming, expensive and do 
not distinguish between subclinical tubulitis, BK virus 
infection and different forms of AR. Nevertheless, some 
of these approaches, like a combination of monitoring 
urinary CXCL10:creatinine ratio and donor specific 
antibodies, might significantly improve the noninvasive 
diagnosis of ABMR[83]. An approach involving the use 
of biomarkers as well as noninvasive imaging, might 
improve sensitivity as well as specificity for the detection 
of renal allograft AR. 

CONCLUSION
Noninvasive methods for specific diagnosis of AR 
and surveillance monitoring of the allograft are 
highly desired. Advances in technology and tracer 
development provide new diagnostic options. At present 
most of the promising new imaging technologies are 
still used at a preclinical stage, but represent very 
useful research tools on the way into clinical use. Future 

studies in human allograft recipients are needed to fully 
support these methods for clinical routine. 
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