Table 3.
Statistical parameters for the consensus models
| Modela | Dataset | TPb | FPc | TNd | FNe | TP + TN | Totalf | Qg | Sens.h | Spec.i | Prec.j | G-meank |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Training | 72 | 25 | 54 | 21 | 126 | 172 | 0.73 | 0.77 | 0.68 | 0.74 | 0.73 |
| Validation | 130 | 654 | 920 | 91 | 1050 | 1795 | 0.58 | 0.59 | 0.58 | 0.17 | 0.59 | |
| 2 | Training | 73 | 31 | 48 | 20 | 121 | 172 | 0.70 | 0.78 | 0.61 | 0.70 | 0.69 |
| Validation | 140 | 723 | 851 | 81 | 991 | 1795 | 0.55 | 0.63 | 0.54 | 0.16 | 0.59 | |
| 3 | Training | 71 | 31 | 48 | 22 | 119 | 172 | 0.69 | 0.76 | 0.61 | 0.70 | 0.68 |
| Validation | 135 | 707 | 867 | 86 | 1002 | 1795 | 0.56 | 0.61 | 0.55 | 0.16 | 0.58 | |
| 4 | Training | 74 | 32 | 47 | 19 | 121 | 172 | 0.70 | 0.80 | 0.59 | 0.70 | 0.69 |
| Validation | 128 | 718 | 856 | 93 | 984 | 1795 | 0.55 | 0.58 | 0.54 | 0.15 | 0.56 | |
| 5 | Training | 73 | 29 | 50 | 20 | 123 | 172 | 0.72 | 0.78 | 0.63 | 0.72 | 0.70 |
| Validation | 132 | 685 | 889 | 89 | 1021 | 1795 | 0.57 | 0.60 | 0.56 | 0.16 | 0.58 | |
| 6 | Training | 73 | 28 | 51 | 20 | 124 | 172 | 0.72 | 0.78 | 0.65 | 0.72 | 0.71 |
| Validation | 131 | 675 | 899 | 90 | 1030 | 1795 | 0.57 | 0.59 | 0.57 | 0.16 | 0.58 |
aModel 1 = substructure (SS) + substructure count (SSC) + extended CDK (ECDK), 2 = PubChem (PC) + SSC + ECDK, 3 = PC + SSC + SS, 4 = PC + SSC + MACCS, 5 = PC + SSC + ECDK + SC + MACCS, 6 = PC + SSC + ECDK + SS + MACCS + CDK + CDK Graph, b true positives, c false positives, d true negatives, e false negatives, f TP + TN + FP + FN, g overall accuracy of prediction, h sensitivity, i specificity, j precision, k