Skip to main content
. 2016 Feb 10;30:229–236. doi: 10.1007/s10822-016-9898-z

Table 3.

Statistical parameters for the consensus models

Modela Dataset TPb FPc TNd FNe TP + TN Totalf Qg Sens.h Spec.i Prec.j G-meank
1 Training 72 25 54 21 126 172 0.73 0.77 0.68 0.74 0.73
Validation 130 654 920 91 1050 1795 0.58 0.59 0.58 0.17 0.59
2 Training 73 31 48 20 121 172 0.70 0.78 0.61 0.70 0.69
Validation 140 723 851 81 991 1795 0.55 0.63 0.54 0.16 0.59
3 Training 71 31 48 22 119 172 0.69 0.76 0.61 0.70 0.68
Validation 135 707 867 86 1002 1795 0.56 0.61 0.55 0.16 0.58
4 Training 74 32 47 19 121 172 0.70 0.80 0.59 0.70 0.69
Validation 128 718 856 93 984 1795 0.55 0.58 0.54 0.15 0.56
5 Training 73 29 50 20 123 172 0.72 0.78 0.63 0.72 0.70
Validation 132 685 889 89 1021 1795 0.57 0.60 0.56 0.16 0.58
6 Training 73 28 51 20 124 172 0.72 0.78 0.65 0.72 0.71
Validation 131 675 899 90 1030 1795 0.57 0.59 0.57 0.16 0.58

aModel 1 = substructure (SS) + substructure count (SSC) + extended CDK (ECDK), 2 = PubChem (PC) + SSC + ECDK, 3 = PC + SSC + SS, 4 = PC + SSC + MACCS, 5 = PC + SSC + ECDK + SC + MACCS, 6 = PC + SSC + ECDK + SS + MACCS + CDK + CDK Graph, b true positives, c false positives, d true negatives, e false negatives, f TP + TN + FP + FN, g overall accuracy of prediction, h sensitivity, i specificity, j precision, k  Sensitivity×Specificity