Skip to main content
. 2016 Feb 10;30:229–236. doi: 10.1007/s10822-016-9898-z

Table 4.

Comparison of the k-NN classification model with other models

Model Our study Su et al. [42] Wang et al. [43] Su et al. [18] Li et al. [44]
Method k-NN SVM Naive Bayesian classifier PLS transformed into binary QSAR SVM
Descriptors 2D PaDEL fingerprints 2D and 3D MOE, 4D fingerprints from MD simulation Physico-chemical property based and geometry based descriptors, and fingerprints 2D and 3D MOE descriptors and 4D fingerprints GRIND descriptors derived from docking
Training set
Cut-off (µM) 5 10 40 40
Total 172 546 719 250 495
True positives 73 188 247 83
True negatives 48 242 315 283
Sensitivity 0.78 0.90 0.89 0.55
Specificity 0.61 0.72 0.72 0.83
Q 0.70 0.79 0.78 0.74
F-measurea 0.74 0.76 0.76 0.56
G-mean 0.69 0.80 0.80 0.67
Test set
Cut-off (%)b 20 20 20 20 20
Total 1795 1668 1953 1668 1877
True positives 140 67 135 121 107
True negatives 851 1298 1247 963 1271
Sensitivity 0.63 0.41 0.54 0.74 0.57
Specificity 0.54 0.86 0.73 0.64 0.75
Q 0.55 0.82 0.71 0.65 0.73
F-measure 0.26 0.31 0.32 0.29 0.30
G-mean 0.59 0.60 0.63 0.69 0.66

a2[(precision*sensitivity)/(precision + sensitivity)], b % hERG blockage