Table 4.
Comparison of the k-NN classification model with other models
| Model | Our study | Su et al. [42] | Wang et al. [43] | Su et al. [18] | Li et al. [44] |
|---|---|---|---|---|---|
| Method | k-NN | SVM | Naive Bayesian classifier | PLS transformed into binary QSAR | SVM |
| Descriptors | 2D PaDEL fingerprints | 2D and 3D MOE, 4D fingerprints from MD simulation | Physico-chemical property based and geometry based descriptors, and fingerprints | 2D and 3D MOE descriptors and 4D fingerprints | GRIND descriptors derived from docking |
| Training set | |||||
| Cut-off (µM) | 5 | – | 10 | 40 | 40 |
| Total | 172 | 546 | 719 | 250 | 495 |
| True positives | 73 | 188 | 247 | – | 83 |
| True negatives | 48 | 242 | 315 | – | 283 |
| Sensitivity | 0.78 | 0.90 | 0.89 | – | 0.55 |
| Specificity | 0.61 | 0.72 | 0.72 | – | 0.83 |
| Q | 0.70 | 0.79 | 0.78 | – | 0.74 |
| F-measurea | 0.74 | 0.76 | 0.76 | – | 0.56 |
| G-mean | 0.69 | 0.80 | 0.80 | – | 0.67 |
| Test set | |||||
| Cut-off (%)b | 20 | 20 | 20 | 20 | 20 |
| Total | 1795 | 1668 | 1953 | 1668 | 1877 |
| True positives | 140 | 67 | 135 | 121 | 107 |
| True negatives | 851 | 1298 | 1247 | 963 | 1271 |
| Sensitivity | 0.63 | 0.41 | 0.54 | 0.74 | 0.57 |
| Specificity | 0.54 | 0.86 | 0.73 | 0.64 | 0.75 |
| Q | 0.55 | 0.82 | 0.71 | 0.65 | 0.73 |
| F-measure | 0.26 | 0.31 | 0.32 | 0.29 | 0.30 |
| G-mean | 0.59 | 0.60 | 0.63 | 0.69 | 0.66 |
a2[(precision*sensitivity)/(precision + sensitivity)], b % hERG blockage