Table 1.
DNA-binding domain | Antitoxin | Toxin | Host organism | Toxin-antitoxin complex stoichiometries | References |
---|---|---|---|---|---|
HTH | HipB | HipA | Escherichia coli | HipB2HipA2 | Schumacher et al., 2009 |
HipBSO | HipASO | Shewanella oneidensis | (HipBSO)2(HipASO)2 | Wen et al., 2014 | |
MqsA | MqsR | E. coli | MqsR-MqsA2-MqsR | Brown et al., 2009, 2011 | |
HigA | HigB | E. coli | unknowna | Arbing et al., 2010 | |
HigA | HigB | Proteus vulgaris | HigA2HigB2 | Schureck et al., 2014 | |
HigA2 | HigB2 | Vibrio cholerae | Unknown | Hadži et al., 2013 | |
PezA | PezT | Streptococcus pneumoniae | PezA2PezT2 | Khoo et al., 2007 | |
RHH | RelB | RelE | E. coli | RelB2RelE2 | Bøggild et al., 2012 |
RelB | RelE | Methanococcus jannaschii | RelB2RelE2 | Francuski and Saenger, 2009 | |
DinJ | YafQ | E. coli | DinJ2YafQ2 | Liang et al., 2014; Ruangprasert et al., 2014 | |
ParD | ParE | E. coli plasmid RK2 | ParD2b | Oberer et al., 2007 | |
ParD1 | ParE1 | Caulobacter crescentus | (ParD1)2(ParE1)2 | Dalton and Crosson, 2010 | |
CcdA | CcdB | E. coli F plasmid | (CcdA37−72)(CcdB)2 (CcdA37−72)2(CcdB)2 | Madl et al., 2006; De Jonge et al., 2009 | |
HicB3 | HicA3 | Yersinia pestis | (HicB3)4(HicA3)2 | Bibi-Triki et al., 2014 | |
FitA | FitB | Neisseria gonorrhoeae | (FitA-FitB)4 | Mattison et al., 2006 | |
VapB3 | VapC3 | Mycobacterium tuberculosis | (VapB3)2(VapC3)2 | Min et al., 2012 | |
VapB5c | VapC5 | M. tuberculosis | (VapB553−86)(VapC5) | Miallau et al., 2009 | |
VapB30 | VapC30 | M. tuberculosis | (VapB30)2(VapC30)2 | Lee et al., 2015 | |
ω (regulator for ε-ζ, not antitoxin) | Streptococcus pyogenes pSM19035 tripartite TA system ω-ε-ζ | ε2ζ2 for the TA complex; ω2 for the regulator protein | Murayama et al., 2001; Meinhart et al., 2003 | ||
SpoVT/AbrB | MazE | MazF | E. coli | MazF2-MazE2-MazF2 | Kamada et al., 2003; Loris et al., 2003; Zorzini et al., 2015 |
VapB2 | VapC2 | Rickettsia felis | (VapC2)4(VapB2)2 (VapC2)4(VapC2)4 | Maté et al., 2012 | |
VapB | VapC | Shigella flexneri | VapB4VapC4 | Dienemann et al., 2011 | |
Phd/YefMe | Phd | Doc | E. coli phage P1 | Doc-Phd2-Doc | Arbing et al., 2010; Garcia-Pino et al., 2010 |
YefM | YoeB | E. coli | YefM2YoeB | Kamada and Hanaoka, 2005 | |
YefM | YoeB | M. tuberculosis | unknownd | Kumar et al., 2008 | |
Unknownf | aRelB | aRelE | Pyrococcus horikoshii OT3 | (aRelB)2(aRelE)2 | Takagi et al., 2005 |
Unknowng | VapB15 | VapC15 | M. tuberculosis | (VapB15)2(VapC15)2 (VapB15)(VapC15)2 | Das et al., 2014 |
Structure was only available for the HigA antitoxin (Arbing et al., 2010).
Structure only solved for ParD in solution by NMR (Oberer et al., 2007).
N-terminal region of VapB5 could not be modeled but predicted to be RHH motif (Miallau et al., 2009).
TA complex possibly YefM2YoeB; only YefM was crystalized (Kumar et al., 2008).
YefM was found to share structural similarity with the Phd antitoxin with strong conservation of the N-terminal DNA-binding domain, which are thus classified as having a Phd/YefM-like fold (Arbing et al., 2010).
DNA-binding domain unclear, potentially leucine zipper dimerization with N-terminal basic residues used for DNA recognition (Takagi et al., 2005).
N-terminal residues of VapB15 could not be modeled into the electron density (Das et al., 2014).