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Abstract

The DNA double helix has captured the imagination of many, bringing it to the forefront of 

biological research. DNA has unique features that extend our interest into areas of chemistry, 

physics, material science and engineering. Our laboratory has focused on studies of DNA charge 

transport (CT), wherein charges can efficiently travel long molecular distances through the DNA 

helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT 

chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop 

electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies 

now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a 

cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this 

review, we describe this evolution of DNA CT chemistry from the discovery of fundamental 

chemical principles to applications in diagnostic strategies and possible roles in biology.

Introduction

DNA is considered as the repository for genetic information in the cell. Structurally, 

individual strands of DNA consist of a phosphate-deoxyribose backbone connecting 

nitrogenous bases, either purines (adenine and guanine) or pyrimidines (cytosine and 

thymine). The nitrogenous bases of DNA are composed of aromatic rings with base pairs 

spaced 3.4 Å in the double helix. This structure allows the electron density of adjacent bases 

to overlap, resulting in π-stacking and a large measure of stabilization to the double helix. 

Significant structural similarity exists between stacked base pairs in DNA and the z-

direction of graphite, a known conductive material. Specifically, adjacent graphene sheets 

are spaced at 3.35 Å (Chaban et al., 2014). The similar spacing of aromatic moieties in 

graphite and DNA led researchers to hypothesize that DNA could also be conductive 

through the overlap of adjacent π-orbitals (Figure 1). Decades of research have now 

established that DNA can indeed conduct charge efficiently through the π-stack of the 

nitrogenous bases (Grodick et al., 2015; Elias et al., 2008). Thus in addition to its role as the 
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repository for genetic information, electrons as well as electron holes are readily transported 

through the DNA π-stack (Genereux and Barton, 2010).

As a macromolecular assembly in solution, however, DNA differs from graphite and other 

π-stacked solids. The bases of DNA are constantly undergoing dynamic motion on 

timescales from picoseconds to milliseconds, and these motions, though subtle, are 

sufficient to facilitate or interrupt CT. DNA CT is attenuated by large and small 

perturbations in π-stacking. Single base mismatches, base modifications and lesions, and 

even protein binding events that kink the DNA duplex or flip out a base are sufficient to 

interrupt DNA CT (Boal and Barton, 2005; Gorodetsky et al., 2008a; Hall and Barton, 1997; 

Kelley et al., 1997a, 1999). Interestingly, nicks in the phosphate-deoxyribose backbone are 

tolerated as long as the sugar-backbone modifications do not interfere with base-base 

stacking (Liu and Barton, 2005). DNA CT thus reports on the integrity of the base pair 

stack.

Our laboratory has focused on studies of DNA charge transport (CT), beginning with 

understanding the basic chemistry and the parameters that govern charge transport, and 

moving towards understanding how this chemistry may be harnessed within the cell. Here, 

we describe that evolution. DNA CT represents powerful chemistry that permits redox 

reactions to be activated over long molecular distances, enabling sensing of small 

perturbations to the DNA base pair stack with high sensitivity, and potentially providing a 

means to communicate across the genome.

Platforms for Exploring DNA Charge Transport

Various platforms for investigating DNA CT have been developed. Two of the most 

effective platforms consist of photoinduced reactions using DNA assemblies in solution with 

tethered donors and/or acceptors (Figure 2) and ground state electrochemistry on DNA 

monolayers (Figure 3). With these very different platforms, the important aspects of DNA 

CT chemistry are evident: (i) that DNA CT can proceed over long molecular distances; (ii) 

that DNA CT is sensitive to intervening perturbations in π-stacking.

Photoinduced DNA CT with tethered intercalators

For photoinduced CT experiments in solution, we have utilized DNA assemblies with 

tethered photooxidants containing an intercalating ligand that allows for π-stacking and thus 

electronic coupling between the photooxidant and the DNA bases (Figure 2). Irradiation of 

the photooxidant typically produces an excited state that is sufficiently oxidizing and long-

lived to withdraw an electron from DNA. Examples of metallointercalators that have been 

used to probe the redox properties of DNA include [Rh(phi)2(bpy′)]3+, [Ru(phen)(bpy′)

(dppz)]2+, [Re(CO)3(dppz)(py′)]+, and [Ir(ppy)2(dppz′)]+, where phi = 9,10-

phenanthrenequinone diimmine, bpy′ = 4-methyl-4′-(butyric acid)-2,2′-bipyridine, phen = 

1,10-phenanthroline, dppz = dipyrido[2,3-a:2′,3′-c]phenazine, py′ = 3-(pyridin-4-yl)-

propanoic acid, ppy = 2-phenylpyridine, and dppz′ = 6-(dipyrido[3,2-a:2′,3′-c]phenazin-11-

yl)hex-5-ynoic acid) (Olmon et al., 2011; Shao and Barton, 2007; Williams et al., 2004). 

The yield of oxidative DNA damage produced by metallointercalators has been found to 

depend primarily on the thermodynamic driving force for CT, the efficiency of back electron 
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transfer (ET) processes, and, importantly, the degree of electronic coupling to the DNA π-

stack (Olmon et al., 2011). These complexes can be covalently tethered to DNA by utilizing 

modified ligands (dppz′, bpy′, phen′) in order to localize the complex to one end of the DNA 

(Holmlin et al., 1999).

An early example of the application of metallointercalators to the study of DNA CT 

employed an intercalating donor, a dppz complex of Ru(II), and as acceptor, a phi complex 

of Rh(III), both of which were tethered to either ends of the DNA duplex (Murphy et al., 

1993). The dppz complex is a DNA light-switch: whereas its luminescence is quenched in 

aqueous solution, upon the addition of DNA, the ruthenium complex luminesces brightly 

(Friedman et al., 1990). However, when [Rh(phi)2(phen′)]3+ is appended to the opposite 

strand, the DNA-bound [Ru(phen′)2(dppz)]2+ luminescence is completely quenched 

(Murphy et al., 1993). Nanosecond time-resolved luminescence experiments were too slow 

to observe this quenching process. Extensive control experiments, including those that ruled 

out intermolecular events, coupled with the improbability of energy transfer, confirmed that 

this quenching is due to rapid intramolecular DNA-mediated electron transfer between the 

metal complexes, from the *Ru2+ excited state to the rhodium complex. This experiment 

provided the first insights into long-range DNA charge transport.

Oxidative DNA damage through DNA CT

Besides examining DNA CT spectroscopically, we also used DNA-bound photooxidants to 

explore oxidative damage to the DNA from a distance using biochemical methods. Here the 

electron donor was the DNA itself, specifically the 5′-G of guanine doublets and triplets. 

Because guanine is the most easily oxidized of the DNA bases (Fukuzumi et al., 2005) and 

the presence of adjacent guanines further lowers the guanine oxidation potential (Sugiyama 

and Saito, 1996), guanine doublets and triplets are electron hole sinks within DNA. Work in 

our laboratory demonstrated that oxidative damage can be generated from a distance via 

DNA CT, and that this damage is localized to these low potential guanine multiplets (Arkin 

et al., 1997; Hall et al., 1996). Here metallointercalating photooxidants were covalently 

tethered to one end of the DNA duplex, ensuring spatial separation between the 

photooxidant and the guanine doublet. After irradiation and piperidine treatment of 

radiolabeled DNA, damage was observed predominantly at the 5′-G of a guanine doublet 

located far from the site of metallointercalation. Because the timescale of DNA CT is much 

faster than the formation of permanent oxidative lesions (vide infra), the injected electron 

hole can equilibrate along the base-pair π-stack and localize to the low potential guanine 

doublet. Thus the pattern of oxidative damage to guanine multiplets is a characteristic of 

damage from a distance via DNA CT. In these studies we also observed the sensitivity of 

DNA CT to intervening perturbations in base pair stacking; introduction of an intervening 

DNA bulge could turn off the long-range damage (Hall and Barton, 1997). These studies 

further illustrated the long distances over which DNA CT could proceed: long range 

oxidative damage to DNA was demonstrated over 200 Å away from the tethered 

photooxidant, a remarkable molecular distance (Núñez et al., 1999).

The ability to carry out long range oxidative damage is not special to the 

metallointercalating photooxidants; indeed long range photoxidation of DNA was also 
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demonstrated using a tethered and helix-capping anthraquinone (Schuster, 2000). Studies 

with various organic photooxidants underscored how long range oxidative damage depended 

not on the probe but on the DNA duplex.

Kinetics of DNA CT

Experiments using picosecond spectroscopy explored electron transfer between non-

covalently bound, intercalated ruthenium and rhodium metal complexes to learn more about 

the timescale for DNA CT (Arkin et al., 1996). While even on the picosecond timescale, 

DNA-mediated CT between the metal complexes was faster than the instrumental 

resolution; these studies established a lower limit for the electron transfer rate of 3 × 1010 

s−1 (Arkin et al., 1996).

The rates of DNA CT along with effects of driving force were then extensively studied on a 

fast timescale using synthetic DNA hairpins (Lewis et al., 2000). Here mechanistic studies 

were carried out (see below) and the reorganization energy within the DNA duplex could be 

determined, but given the rigidity of the crosslinked hairpins, dynamical motions within the 

duplex are limited, and new tethered probes were required to probe the importance of DNA 

dynamics to DNA CT.

Femtosecond transient absorption experiments were then able to observe DNA-mediated 

electron transfer between photoexcited tethered ethidium and a modified base in DNA (Wan 

et al., 1999). Here, the modified base 7-deazaguanine was positioned at varying distances 

from the tethered ethidium, which is sufficiently oxidizing in the excited state to oxidize 7-

deazaguanine but not the other DNA bases. After femtosecond-resolved laser excitation of 

the ethidium, 5 ps and 75 ps decay components were observed that can be ascribed to 

electron transfer from 7-deazaguanine to the ethidium excited state. These two electron 

transfer rates correspond to different ethidium orientations: the 5 ps rate corresponds to an 

ethidium orientation that is favorable for CT, whereas the slower 75 ps rate corresponds to 

an initially unfavorable conformation that requires reorientation or rotation of the ethidium 

in order for CT to occur (Wan et al., 1999). Importantly, the rates of electron transfer are 

unaffected by donor-acceptor distance from 10 to 17 Å. However, the efficiency of CT was 

observed to decrease with increasing distance. Hence it appears that the CT is gated by the 

motions of the base pairs. Overall, this study demonstrated the ultrafast nature of favorable 

electron transfer through DNA, as well as the shallow distance dependence of the CT rate 

and the importance of DNA dynamics. Interestingly, in another study where the ethidium 

was incorporated into the DNA in a more constrained conformation, no CT could be 

observed; these subtle changes reflect the sensitivity of DNA CT to stacking dynamics and 

electronic coupling (Valis et al., 2006).

DNA Electrochemistry

In addition to DNA photooxidant assemblies in solution, the other major platform that has 

been effectively used to study DNA CT in our laboratory has been electrochemistry on DNA 

monolayers (Figure 3). Here we can explore DNA CT in the ground state. Typically, a 

single strand of DNA is modified with a terminal alkanethiol moiety and annealed to its 

complementary strand. These thiol-modified DNA duplexes can then be self-assembled into 
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DNA monolayers on gold electrode surfaces, forming covalent gold-thiol bonds (Kelley et 

al., 1997b). Monolayers can be assembled in the absence and presence of MgCl2 to create 

low and high density monolayers, respectively (Pheeney and Barton, 2012). More recently, 

click chemistry methods have been utilized to enable controlled variation in the amount of 

DNA on the surface, while concurrently producing more evenly spaced monolayers (Furst et 

al., 2013). Finally, DNA can also be functionalized with pyrene to form DNA monolayers 

on highly oriented pyrolytic graphite (HOPG), allowing for a wider potential window than 

gold electrodes (Gorodetsky and Barton, 2006).

After DNA monolayer formation, a DNA-bound redox probe can be exploited to investigate 

DNA CT on a surface. Organic dyes such as Nile blue and methylene blue have been 

commonly used as redox probes (Kelley et al., 1997b; Pheeney and Barton, 2012; Slinker et 

al., 2011). In these systems, charge can flow directly from the electrode to the redox probe, 

or charge can be conducted in a DNA-mediated fashion, flowing from the electrode through 

the alkane-thiol tether and the DNA π-stack to reach the redox probe. Here again, stacking 

of the redox probe with the DNA base-pair π-stack to facilitate electronic coupling is vital 

(Boon et al., 2003a). The intercalated redox probe may be covalently tethered to the distal 

end of the DNA relative to the electrode surface; in this case, the nature of the linkage to the 

DNA is also important (Gorodetsky et al., 2007). Long, saturated linkages do not maintain 

electronic coupling to the DNA π-stack and thus do not facilitate DNA CT, in contrast to 

short, unsaturated linkages which preserve this coupling (Gorodetsky et al., 2007).

A DNA-mediated pathway can be demonstrated by comparing well-matched DNA with 

DNA that contains a mismatch or abasic site; the disruption to the base pair π-stacking 

attenuates the amount of charge that reaches the redox probe (Figure 3). Electrochemical 

charge transport through the DNA π-stack can occur well below the potential of individual 

DNA bases, likely due to charge delocalization (Genereux and Barton, 2010). Therefore, 

unlike experiments with DNA photooxidants, these experiments do not involve potentials 

that damage the DNA. Instead, at these potentials CT is much like that through graphite (in 

the perpendicular direction to the graphene sheets), where charge migration depends upon a 

delocalized interaction among the π-stacked sheets. Indeed, using single molecule 

electrochemical studies, where we measured DNA CT across a carbon nanotube gap, we 

found the resistivity of the DNA duplex to be quite close to that calculated for a segment of 

graphite of similar size arranged in the perpendicular direction in the nanotube gap (Guo et 

al., 2008). Again in this experiment, the presence of a single base mismatch interfered with 

CT and increased the resistivity of the DNA duplex 100-fold.

DNA electrochemistry experiments have directly demonstrated the shallow distance 

dependence of DNA CT (Slinker et al., 2011). Multiplexed chips were developed that allow 

for simultaneous investigation of up to four different types of DNA on a single gold surface 

with four-fold redundancy (Slinker et al., 2010). An application of these chips directly 

compared DNA CT between 17-mer and 100-mer duplexes covalently modified on the distal 

end with a Nile blue redox probe (Slinker et al., 2011). In quadrants of the multiplexed chip 

where a single C:A mismatch was incorporated into the 100-mer duplex, DNA CT was 

significantly attenuated even over this long molecular distance, indeed to the same extent as 

for the 17-mer. Moreover, the estimated ET rates of 25 – 40 s−1 were indistinguishable 
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between the 17-mer and 100-mer duplex constructs, indicating that tunneling through the 

alkanethiol tether is still rate-limiting, consistent with earlier work (Drummond et al., 2004), 

while CT through the DNA 100-mer is rapid. Overall, this DNA electrochemistry 

experiment established that charge is efficiently transported through DNA in the ground 

state over long molecular distances, at least up to 100 base pairs or 34 nm, the longest 

documented distance for this type of molecular wire.

Mechanism of DNA CT

Many experiments taken together suggest a model for the mechanism of DNA CT, although 

there is much we still need to understand. Superexchange involves coherent orbital-mediated 

tunneling along the entire DNA bridge between the electron donor and acceptor and displays 

an exponential dependence of the rate of electron transfer on distance. This substantial 

distance dependence with a superexchange mechanism is inconsistent with the fast electron 

transfer rates that have been measured over relatively long molecular distances (Genereux 

and Barton, 2010). For example, the DNA-mediated electron transfer from excited [Ru(phen

′)(dppz)]2+ to [Rh(phi)2(phen′)]3+ occurs over a distance of 41 Å within just 3 nanoseconds 

(Murphy et al., 1993).

Instead, an incoherent hopping mechanism, where there is some intermediate state of charge 

localization on the bridge, is more likely for long-range charge transport through DNA 

because of its more shallow distance dependence. One hopping proposal consists of 

thermally induced localized hopping on individual DNA bases (Giese et al., 2001). 

Localized hole hopping is typically envisioned as occurring through guanine hopping, given 

that guanine is the most easily oxidized base (Fukuzumi et al., 2005, Berlin et al., 2001), but 

this mechanism does not explain several experimental observations regarding DNA CT, 

such the coherent transmission of the energy of the injected charge to the final distal 

acceptor or the ground state electrochemical studies (Genereux and Barton, 2010). 

Alternatively, a delocalized hopping mechanism is possible wherein charge is delocalized 

over multiple bases. Based on studies with the photooxidant anthraquinone, Schuster and 

coworkers proposed that such delocalization could occur through a thermally assisted 

polaron hopping mechanism (Schuster, 2000). However, thermal activation mechanisms still 

do not explain ground state electrochemistry studies where transport occurs significantly 

below the potentials of the DNA bases (Kelley et al., 1997b). Overall, many researchers 

have now found evidence for charge delocalization along multiple DNA bases during DNA 

CT (Kawai and Majima, 2013; Renaud et al., 2013; Genereux et al., 2011).

Importantly, a periodic oscillation with distance has been observed in different systems 

measuring DNA CT. Work by Tao and coworkers investigated the resistance of duplexed 

DNA between two electrodes (Xiang et al., 2015). They found that the resistance of the 

DNA circuit, which is inversely proportional to CT rate, increases linearly with distance, 

and detected an oscillation with a period of 2 to 3 bases in sequences with stacked GC base-

pairs (Xiang et al., 2015). Similarly, in photooxidation experiments, our group has observed 

a periodic oscillation of the yield of DNA CT with distance with a period of 3 to 4 bases 

(O’Neill and Barton, 2004; Genereux et al., 2008). The source of this oscillation is 

Arnold et al. Page 6

Cell Chem Biol. Author manuscript; available in PMC 2017 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



considered as the delocalization of electrons or electron holes along the number of DNA 

bases in the period and depends sensitively on the sequence-dependent dynamics of DNA.

Taken together, current experimental evidence suggests that charge transport through DNA 

is best described as a partially coherent hopping mechanism, consisting of multiple hopping 

steps between delocalized (approximately 3 base pair) domains of well-coupled stacked 

bases (O’Neill and Barton, 2004; Xiang et al., 2015). These CT-active domains of π-stacked 

bases are created through conformational dynamics of the bases that modulate their 

electronic coupling. Coherent superexchange would occur along these π-stacked domains of 

approximately 3 base pairs. Thus DNA CT can essentially be envisioned as hopping 

between adjacent stacked regions in the DNA. This mechanism also explains why a 

mismatch or lesion would attenuate DNA CT: it perturbs the formation of these well-

coupled 3 base pair delocalized domains, and does so similarly in long and short DNA 

duplexes.

Detection and diagnostic applications of DNA CT

Given the sensitivity of DNA CT to structural modifications that disrupt π-stacking of the 

bases, DNA-modified electrochemistry can be harnessed for the detection of DNA damage, 

base modifications, and DNA-binding proteins that either attenuate CT or contain redox-

active moieties that couple into the DNA π-stack. DNA-modified electrodes that employ 

DNA CT as a reporting mechanism have been used to detect single base mismatches (Boon 

et al., 2000; Kelley et al., 1999; Slinker et al., 2010) and a variety of DNA lesions such as 

oxidized bases (Boal and Barton, 2005), all of which disrupt the dynamics of base-pair 

stacking within DNA (Genereux and Barton, 2010). Additionally, proteins that disrupt the 

structure of DNA can be effectively detected. These proteins include enzymes that flip bases 

out of the helix during enzymatic activity such as the HhaI methylase or uracil DNA 

glycosylase (Boon et al., 2002). The TATA-binding protein can also be detected 

electrochemically using DNA CT because it significantly kinks the DNA when bound (Boon 

et al., 2002; Furst et al., 2013; Gorodetsky et al., 2008a).

DNA CT methods can measure not only the presence but also the activity of DNA-

processing enzymes. One such example is detection of human methyltransferases activity. It 

is well established that hyper-and hypo-methylation within cells is an early marker of 

numerous cancerous phenotypes (Baylin and Herman, 2000; Das and Singal, 2004) and that 

the methylation levels are correlated with the levels of methyltransferase activity. 

Unfortunately, currently available methods to detect methyltransferase activity in the clinic 

are comparatively expensive, time-consuming, and are not as sensitive. In contrast, the 

activity of human methyltransferases can be sensitively detected using DNA-modified 

electrodes (Figure 4). Within this assay, DNA-modified electrodes containing a hemi-

methylated DNA substrate are incubated with Dnmt1, a methyltransferase that prefers to 

methylate hemi-methylated DNA. Next, the electrodes are treated with a restriction enzyme 

that preferentially cuts unmethylated or hemi-methylated DNA. Fully methylated DNA, 

which arises from methylation by Dnmt1, is protected from restriction enzyme cutting 

(Muren and Barton, 2013). Given that the electrochemical readout is provided by a redox-

active probe intercalated into DNA on the surface of the electrode, signal attenuation occurs 
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if the unmethylated or hemi-methylated DNA is cut by the restriction enzyme and the probe 

is released into solution. Thus, the retention of the electrochemical current following 

treatment with the restriction enzyme represents a signal-on reporter of the activity of the 

methyltransferase. The methylation activity of human Dnmt1 has been detected using this 

electrochemical strategy in a variety of contexts and coupled to electrocatalysis in a two-

electrode platform for high sensitivity in detection (Furst and Barton, 2015; Furst et al., 

2014; Muren and Barton, 2013).

Most recently, DNA-modified electrodes have been used to detect Dnmt1 from the crude 

lysates of tumor samples, eliminating the need to purify the tumor sample prior to analysis 

(Furst et al., 2014). By electrochemically measuring the activity of Dnmt1 using these DNA-

modified electrodes, hyperactivity of Dnmt1 in colorectal cancer tumors but not adjacent 

tissue is observed. Notably, this hyperactivity cannot be observed by assaying for Dnmt1 

expression using qPCR or western blotting, which measure protein amount rather than 

activity, nor by assaying activity using a much less sensitive radiometric labeling assay 

(Furst and Barton, 2015). This strategy can be expanded to encompass different families of 

DNA-binding proteins and thus offers a completely new platform for rapid and sensitive 

detection and diagnosis in cell lysates.

We can also use these DNA electrodes to monitor the redox cofactors inherently present in 

many DNA processing enzymes. MutY, a base excision repair (BER) protein containing a 

[4Fe4S] cluster, was the first protein to be thus investigated (Boon et al., 2003b). 

Importantly, these studies were able to determine the DNA-bound redox potential of MutY. 

The observed redox potential of 90 mV versus NHE was assigned to the [4Fe4S]3+/2+ 

couple, and is consistent with potential ranges for high potential iron-sulfur proteins 

(HiPIPs). The DNA-mediated nature of the electrochemical signal was confirmed through 

introduction of an intervening abasic site in the DNA that attenuated the signal. Finally, a 

MutY mutant was assayed wherein one of the ligating cysteine residues of the [4Fe4S] 

cluster was changed to a histidine; C199H MutY displayed a redox potential of 65 mV 

versus NHE, a negative shift relative to the WT protein as expected for histidine ligation 

(Boon et al., 2003b). This mutant experiment confirmed the iron-sulfur cluster as the origin 

of the observed electrochemical signal. Indeed, an array of DNA-processing enzymes 

containing iron-sulfur clusters have now been detected using DNA-modified 

electrochemistry (Grodick et al., 2015).

DNA CT by Repair Proteins containing [4Fe4S] Clusters

How might DNA charge transport be used by proteins inside the cell? Following the work 

with E. coli MutY (Boon et al., 2003b), other BER proteins with [4Fe4S] clusters were 

discovered to have similar DNA-bound [4Fe4S]3+/2+ reduction potentials, including E. coli 

Endonuclease III (EndoIII) and Archeoglobus fulgidus uracil DNA glycosylase (UDG) 

(Boal et al., 2005). As the first step in the BER pathway, these glycosylase enzymes prevent 

mutagenesis by, for example, removing adenine mispaired with 8-oxoguanine in the case of 

MutY, or oxidized pyrimidines in the case of EndoIII, followed by the insertion of the 

correct base by a polymerase (Kim and Wilson, 2012). While the mechanistic details of 

glycosylase enzymes once they have found their substrates are relatively well understood 
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(David et al., 2007), how the search is efficiently coordinated is less clear given their low 

copy numbers in the cell. In E. coli, there are an estimated 500 copies of EndoIII per cell, 

and only approximately 30 copies of MutY (Demple and Harrison, 1994). Given their low 

copy numbers and the vast quantity of DNA that must be searched, diffusion-only search 

models simply are too slow to permit scanning of the entire genome within the doubling 

time of E. coli (Boal et al., 2009).

Could the [4Fe4S] cluster of these glycosylase enzymes be involved in the search process? 

The [4Fe4S]2+ cluster of EndoIII is relatively insensitive to reduction and oxidation in 

solution (Cunningham et al., 1989), leading originally to a proposed structural role for the 

cluster, although it is not required for folding or stability in the homologous enzyme MutY 

(Porello et al., 1998). However early redox studies of these proteins were performed in the 

absence of the DNA polyanion, which surely could be expected to alter the cluster potential. 

Using DNA-modified electrodes, we measured the DNA-bound potential of these proteins 

and found that the redox potential of the EndoIII cluster shifts upon DNA binding 

(Gorodetsky et al., 2006). On DNA-modified HOPG electrodes, the observed midpoint 

potential of 20 mV versus NHE was assigned to the [4Fe4S]3+/2+ couple, similarly to what 

had been previously reported on DNA-modified gold electrodes. On bare HOPG, without 

DNA, two signals were observed: an irreversible anodic peak at 250 mV and a cathodic 

peak at −300 mV, assigned to the [4Fe4S]3+/2+ and [4Fe4S]2+/1+ couples, respectively. Thus 

DNA binding negatively shifts the [4Fe4S]3+/2+ redox potential of the cluster by at least 200 

mV, activating the cluster towards oxidation (Gorodetsky et al., 2006). Because significant 

conformational changes do not occur upon DNA binding, a thermodynamic consequence of 

this shift in redox potential is that the oxidized [4Fe4S]3+ form of EndoIII has a much higher 

affinity for DNA (3 orders of magnitude) than the reduced [4Fe4S]2+ form. Lower DNA 

binding affinity for the reduced enzyme was also observed qualitatively with bulk 

electrolysis experiments on EndoIII, MutY, and UDG (Boal et al., 2005). Therefore while 

these proteins are relatively insensitive to oxidation in solution, the redox potential of the 

[4Fe4S] cluster shifts into the physiologically relevant range when bound to DNA.

The combination of (i) the negative shift in redox potential of the [4Fe4S] cluster of 

glycosylase enzymes upon DNA binding that entails higher binding affinity in the oxidized 

[4Fe4S]3+ state compared to the reduced [4Fe4S]2+ state, (ii) similar DNA-bound 

[4Fe4S]3+/2+ redox potentials of approximately 80 mV versus NHE for all of the enzymes 

studied, and (iii) the rapid kinetics of DNA CT (ps), suggested a model whereby these 

proteins could use interprotein DNA-mediated CT, in a kind of electron transfer self-

exchange reaction, to cooperate in order to find lesions inside the cell (Boal et al., 2009) 

(Figure 5). In this model, a repair enzyme containing a [4Fe4S] cluster, bound to DNA in the 

reduced form, could initially become oxidized through DNA CT by guanine radicals in 

DNA or reactive oxygen species. A second enzyme, also containing a [4Fe4S] cluster, binds 

DNA within (at a minimum) 100 bases of the first enzyme, becoming activated towards 

oxidation and releasing an electron into the π-stack of the DNA. This electron can then 

reduce the first distally bound repair enzyme via DNA CT if the intervening DNA is 

undamaged, resulting in dissociation of this reduced enzyme. The repair proteins have thus 

scanned this intervening region of the genome and found it to be free of damage. Because 
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the DNA-bound redox potentials of the clusters are very similar, this interprotein DNA-

mediated CT can be viewed as an activationless self-exchange CT reaction. However, if 

there is a lesion in the DNA between the proteins, DNA CT will be attenuated and the 

electron will not efficiently reach the distal protein. Instead, both proteins will remain bound 

to the DNA and can processively diffuse to the location of damage. In this manner, the range 

over which the slower process of diffusion must occur is significantly reduced. Thus we 

propose that DNA-mediated signaling would be an efficient way to localize BER proteins to 

the vicinity of DNA lesions within the cell.

Observing protein redox activation via DNA CT spectroscopically

Experiments first focused on gathering in vitro evidence for the feasibility of [4Fe4S] cluster 

oxidation in proteins by guanine radicals through DNA CT. MutY oxidation via the flash-

quench technique was monitored by EPR and transient absorption spectroscopies (Yavin et 

al., 2005). After the “flash” of photoinduced excitation, the Ru2+ photooxidant excited state 

is oxidatively “quenched” by a diffusing molecule in order to yield a highly oxidizing 

intercalated ground state Ru3+ species in situ. With DNA, [Ru(phen)2(dppz)]2+, a diffusing 

quencher, and MutY, g-values consistent with the oxidation of the cluster to [4Fe4S]3+ and 

its decomposition product, the [3Fe4S]+ cluster, are observed upon irradiation using low 

temperature EPR. With similarly composed transient absorption experiments utilizing 

alternating poly(dG-dC) DNA, a very long-lived positive transient is observed with a fast 

phase corresponding to guanine radical and a slow phase with characteristics consistent with 

[4Fe4S]3+, also indicating oxidized MutY. Importantly, the long-lived positive transient is 

not observed with poly(dA-dT), suggesting the importance of guanine radical as an 

intermediate in DNA CT to yield MutY oxidation. Furthermore, the yield of guanine 

oxidation was monitored biochemically in radiolabeled mixed sequence DNA containing a 

guanine doublet (Yavin et al., 2005). In the absence of MutY, damage is localized 

specifically to the 5′-G of the guanine doublet as expected for oxidative damage generated 

through DNA CT; this damage is inhibited upon titration with MutY. Overall, these data 

indicate that while MutY can be oxidized without guanine radical as an intermediate, the 

thermodynamically favorable oxidation of the MutY [4Fe4S]2+ cluster by guanine radical 

enables more efficient MutY oxidation.

Subsequently, EPR experiments with a nitroxide spin label conjugated to uracil within the 

DNA sequence demonstrated the feasibility of CT from both EndoIII and MutY to the 

oxidized spin label (Yavin et al., 2006). The EPR-active, S = ½ nitroxide species can be 

oxidized with a mild Ir4+ oxidant to yield an EPR-silent species with a reduction potential 

sufficient to oxidize the [4Fe4S]2+ cluster of BER proteins. The reappearance of the 

nitroxide signal upon the addition of protein indicates iron-sulfur cluster oxidation to reduce 

the spin label. A DNA-mediated mechanism is suggested because of the dependence of spin 

probe reduction on the electronic coupling of the nitroxide spin label: when the spin label is 

well-coupled to the DNA via an unsaturated linkage, the nitroxide is efficiently reduced, 

whereas the reduction yield is significantly attenuated with a poorly coupled saturated 

linkage. The spin label thus acts as a trap for DNA-mediated CT from the proteins.
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DNA CT within the cell

In eukaryotic cells, genomic DNA is not freely accessible but is instead wrapped around 

histones to form nucleosome core particles. To answer the question of whether DNA CT is 

feasible under cellular conditions, we investigated oxidative DNA damage induced by 

tethered [Rh(phi)2(bpy′)]3+ in DNA with and without bound histones (Núñez et al., 2002). 

The level of damage to a distal guanine doublet was nearly identical between bare DNA and 

histone-wrapped DNA, indicating that DNA CT is not attenuated in nucleosome core 

particles. Although DNA may be protected from some damage when packaged into 

nucleosomes, it is not protected from damage created through DNA CT as electron holes 

flow freely through histone-wrapped DNA.

Furthermore, there is significant protein traffic on DNA in living cells, including 

transcription factors and DNA processing enzymes. While DNA CT is attenuated by 

proteins that distort DNA π-stacking by significantly bending the DNA (i.e., TATA binding 

protein) or flipping out a DNA base, DNA CT is preserved amidst protein traffic that 

maintains DNA π-stacking (Gorodetsky et al., 2008a; Rajski and Barton, 2001). In fact, 

DNA CT can even be slightly enhanced by protein binding, potentially due to the rigidifying 

effect of protein binding on base stacking. Hence DNA CT can occur in nucleosome core 

particles and is tolerant of most protein traffic, making it feasible in vivo.

Inter-Protein Signaling through DNA CT

Signaling between base excision repair proteins

Subsequent work in our laboratory focused on garnering both in vitro and in vivo evidence 

for interprotein signaling via DNA CT. Our model predicts a redistribution of BER proteins 

from regions of undamaged DNA to the vicinity of a lesion (Figure 5). Using atomic force 

microscopy (AFM), we have shown that WT EndoIII does indeed redistribute from short 

well-matched DNA strands onto long strands containing a lesion (Boal et al., 2009). The 

lesion we utilized was a single C:A mismatch which inhibits DNA CT but is not itself a 

substrate for EndoIII. Redistribution is quantified as a binding density ratio, r, of the number 

of proteins on the long mismatched strands relative to those on short matched strands; a 

binding density ratio of 1 would indicate equal protein distribution. For WT EndoIII, a 

binding density ratio of 1.6 ± 0.1 is observed that is even more pronounced in the presence 

of increasing concentrations of hydrogen peroxide. According to our model, some level of 

protein oxidation is necessary for redistribution; redistribution is enhanced under conditions 

that simulate oxidative stress in the cell. The redistribution is also found to be dependent on 

the proficiency of the protein for DNA CT. For example, mutation of an aromatic tyrosine 

residue to an alanine (Y82A) results in a protein that is electrochemically deficient in DNA 

CT but proficient in enzymatic glycosylase activity (Boal et al., 2009) (Figure 6). Likely 

because of poorer electronic coupling, less charge can be passed to the [4Fe4S] cluster, 

resulting in a lower signal intensity in cyclic voltammetry experiments. Importantly, Y82A 

EndoIII is unable to redistribute onto mismatched strands in the AFM assay because of its 

inability to perform effective DNA CT. Indeed we have seen that the binding density ratio 

correlates directly with the efficiency of DNA-mediated CT (Romano et al. 2011); the 
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greater the efficiency of DNA-mediated CT by an EndoIII mutant, the greater the propensity 

to find the mismatched strand, and the higher the resulting binding density ratio.

We have also utilized a genetic assay measuring the cooperativity of BER proteins through 

signaling in vivo (Boal et al., 2009). A lac+ reversion assay within the CC104 strain of E. 

coli can be used to quantify MutY activity; thus, a gene of interest can be knocked out to 

investigate the resultant effects on MutY activity inside living cells. When the gene for 

EndoIII is knocked out, lac+ revertants increase reflecting a decrease in MutY activity 

although MutY and EndoIII target different lesions within the cell, indicating that EndoIII 

contributes to MutY activity by some other mechanism. DNA-mediated signaling between 

EndoIII and MutY to assist the very low copy number MutY to localize to the vicinity of 

lesions is suggested by experiments with EndoIII mutants. Restoring CT-deficient Y82A 

EndoIII to the E. coli strain does not rescue MutY activity. Conversely, D138A EndoIII, 

while deficient in glycosylase activity, retains an intact 4Fe4S cluster and the ability to 

transport charge, and is able to rescue MutY activity. Consequently, the important factor for 

EndoIII rescuing MutY activity is proficiency for DNA CT. This assay was the first 

indication of inter-protein DNA CT within cells.

Importantly, our model for redistribution would provide a feasible means for proteins to 

locate lesions within the time constraints imposed by replication, and since CT would occur 

through the base π-stack, the process can bypass protein traffic. It must be emphasized that a 

DNA-CT mediated signaling mechanism as a first step for binding within the vicinity of 

damage is not mutually exclusive with other proposed models of DNA damage recognition 

by glycosylases and, in fact, could complement existing strategies (Blainey et al., 2006; 

Friedman and Stivers, 2010; Fromme et al., 2004; Wallace, 2013).

Signaling between distinct repair pathways: nucleotide excision repair helicase, XPD

Other DNA repair proteins outside the BER pathway have been found with similar DNA-

bound [4Fe4S]3+/2+ redox potentials. XPD is an ATP-dependent nucleotide excision repair 

(NER) helicase with a 4Fe4S cluster. On DNA-modified electrodes, archaeal XPD from the 

thermophile Sulfolobus acidocaldarius (SaXPD), was found to have a DNA-bound potential 

of 80 mV versus NHE that is sensitive to an intervening mismatch (Mui et al., 2011). 

Interestingly, an increase in the electrochemical signal intensity is observed upon the 

addition of ATP to SaXPD on the DNA-modified electrode surface but is not observed in 

the presence of the slowly hydrolyzable analog ATP-γ-S. An ATPase and helicase deficient 

mutant, G34R XPD, also does not display this increase in current. Therefore the signal 

increase upon ATP addition was ascribed to conformational changes associated with ATP 

hydrolysis, demonstrating that DNA-mediated electrochemistry can report on enzymatic 

activity.

AFM studies combining EndoIII and XPD give direct in vitro evidence for inter-protein 

DNA-mediated signaling (Sontz et al., 2012). Initial AFM studies showed that WT XPD 

redistributes from short matched DNA strands to long mismatched strands with a binding 

density ratio similar to that of WT EndoIII. In contrast, L325V XPD, an electrochemically 

CT-deficient XPD mutant, does not redistribute, analogously to Y82A EndoIII. Equimolar 

mixtures of XPD and EndoIII were then assayed at concentrations where approximately 2 
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proteins are bound per DNA strand. Remarkably, mixtures of the E. coli BER protein 

EndoIII and archaeal NER protein XPD efficiently redistribute, localizing to the vicinity of a 

DNA lesion (Sontz et al., 2012). However, this redistribution is not observed if either 

protein in the mixture is CT-deficient, likely because, at these protein loadings, a CT-

deficient protein results in no partner for the electron transfer self-exchange reaction. When 

WT XPD is titrated into Y82A EndoIII at a ratio of 3:1, efficient redistribution is recovered 

because there is a significant population of partners of CT-proficient proteins. Therefore, 

given similar DNA-bound redox potentials of their [4Fe4S]3+/2+ clusters, proteins from 

different repair pathways, in fact even different organisms, can use DNA-mediated CT to 

cooperate in order to find lesions.

Signaling between distinct repair pathways in vivo

DinG is an E. coli DNA damage-inducible helicase with a [4Fe4S] cluster and homology to 

XPD as well as to other eukaryotic helicases. DinG performs the vital function of unwinding 

RNA-DNA hybrid structures, called R-loops, which result from stalled replication forks 

(Boubakri et al., 2010; Ren et al., 2009; Voloshin et al., 2003). When investigated on DNA-

modified electrodes, DinG displays a DNA-bound redox potential of 80 mV versus NHE 

(Grodick et al., 2014), the same DNA-bound [4Fe4S]3+/2+ potential that had been observed 

for the BER proteins and SaXPD (Boal et al., 2005; Mui et al., 2011). Like the fellow ATP-

dependent helicase XPD, the intensity of the DinG electrochemical signal increases upon 

ATP addition. Utilization of the AFM assay demonstrated in vitro redistribution with solely 

WT DinG proteins as well as with equimolar mixtures of WT DinG and EndoIII proteins; 

conversely, redistribution does not occur in a 1:1 mixture of WT DinG with Y82A EndoIII.

We also used genetic assays to test for signaling within the cell. A modest decrease in MutY 

activity in vivo upon knocking out DinG is observed in the CC104 lac+ reversion assay. This 

defect can be rescued by complementing the cells with a plasmid that constitutively 

expresses D138A EndoIII but not Y82A EndoIII, suggesting DNA-mediated cross-talk 

between MutY, DinG, and EndoIII inside cells (Grodick et al., 2014).

A much more dramatic in vivo result was found with the InvA strain of E. coli (Figure 7). 

By inverting a highly transcribed ribosomal RNA operon, the InvA strain contains an 

increased frequency of collisions between the transcriptional and replication machineries, 

forming stalled replication forks (Boubakri et al., 2010). The resulting RNA-DNA hybrid 

structures must be unwound by DinG to maintain cellular viability. Signaling between DinG 

and EndoIII was investigated in vivo by knocking out the gene for EndoIII within the InvA 

E. coli strain. Bacterial growth is severely impaired in this InvA EndoIII knockout strain. An 

R-loop phenotype was implicated by rescue with RNaseH, as this enzyme selectively 

degrades RNA in RNA-DNA hybrids. Bacterial growth could also be restored by 

complementation with WT or D138A EndoIII, but not Y82A EndoIII, indicating that 

EndoIII and DinG cooperate via a DNA-mediated CT mechanism (Grodick et al., 2014). 

This result provides compelling in vivo evidence for DNA CT between DinG and EndoIII to 

assist DinG in maintaining cellular viability under the adverse conditions caused by 

increased collisions between the transcriptional and replication machineries.
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The number of DNA processing enzymes shown to contain [4Fe4S] clusters continues to 

increase. For example, in addition to glycosylase and helicase enzymes involved in DNA 

repair, [4Fe4S] clusters have been found in RNA polymerase (Hirata et al., 2008), all four 

yeast B-family DNA polymerases (Netz et al., 2012), as well as in primase (Weiner et al., 

2007). As more potential electron self-exchange partners are discovered, DNA-mediated 

signaling becomes an increasingly viable mechanism that could be utilized to coordinate not 

only DNA repair, but also transcription and replication in organisms from bacteria to man 

(Fuss et al., 2015).

DNA CT in Response to Oxidative Stress

SoxR, a transcriptional sensor

DNA charge transport may also be used biologically to promote cellular responses to 

oxidative stress both in bacteria and eukaryotes for the long-range and selective activation of 

redox-active transcription factors (Figure 8). SoxR is a homodimeric bacterial transcription 

factor that responds to superoxide stress, containing a [2Fe2S]2+/+ cluster within each 

monomer (Watanabe et al., 2008). In E. coli, oxidation of the [2Fe2S] cluster of SoxR 

causes a conformational change which improves an RNA polymerase binding site, 

stimulating transcription of SoxS, a secondary transcription factor, which in turn induces the 

transcription of about 100 genes to combat superoxide stress (Imlay, 2008). There were 

many questions regarding the direct oxidant of SoxR in vivo. While in vitro experiments 

support direct oxidation of the [2Fe2S] cluster by superoxide (Fujikawa et al., 2012), in vivo 

experiments indicated weak induction by superoxide and instead suggested SoxR oxidation 

by redox cycling drugs (Gu and Imlay, 2011) or the modulation of cellular NADPH content 

(Krapp et al., 2011). Adding to the confusion, the measured redox potential of the protein 

cluster [2Fe2S]2+/+ in solution (−290 mV versus NHE) is such that SoxR could be oxidized 

by many cellular oxidants, even in the absence of oxidative stress.

We considered whether DNA-mediated CT might play a role in SoxR oxidation and more 

generally in activation of the cellular response to oxidative stress. Using DNA 

electrochemistry, we found first that DNA binding shifts the redox potential of the [2Fe2S] 

cluster of SoxR (Gorodetsky et al., 2008b). The positive shift in potential by 500mV to 200 

mV versus NHE upon DNA binding means that DNA-bound SoxR is primarily in its 

transcriptionally inactive, reduced form in vivo, solving the conundrum found using the 

solution potential measured without DNA.

It was then established that SoxR could be activated for transcription from a distance 

through long-range DNA-mediated oxidation (Lee et al., 2009). First, it was demonstrated 

that reduced SoxR with remaining dithionite, but not oxidized SoxR or dithionite alone, 

inhibits oxidative damage to a guanine doublet that had been generated via the flash-quench 

technique. Moreover, SoxR can be activated in vivo using the photooxidant [Rh(phi)2bpy]3+, 

which specifically induces DNA damage via DNA-mediated CT rather than by general 

production of reactive oxygen species such as would be expected by redox-cycling drugs. E. 

coli cells were treated with [Rh(phi)2bpy]3+, irradiated, and the resulting level of soxS 

mRNA transcript quantified by reverse transcription PCR. Under these conditions, the soxS 

transcript is significantly induced, indicating the feasibility of SoxR activation by DNA 
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oxidation in cells. Finally, an abortive transcription assay was used to observe directly 

transcriptional activation from a distance through DNA-mediated oxidation of SoxR. Here, 

[Rh(phi)2(bpy′)]3+ was tethered to the 5′ end of the DNA, 80 base pairs from the SoxR 

binding site (Figure 8A). The DNA sequence also contained the promoter binding regions of 

soxS, where upon SoxR oxidation, RNA polymerase will bind and initiate soxS transcription. 

Starting with reduced, transcriptionally inactive SoxR, samples were irradiated, and then 

incubated with RNA polymerase and ribonucleotides. Remarkably, a 4-mer radiolabeled 

mRNA corresponding to soxS could be detected at significant levels. This activation was 

triggered simply by irradiation that results in DNA oxidation; furthermore, long-distance 

electron transfer is ensured by the physical separation of the photooxidant and SoxR.

These results suggested a model for transcriptional activation of SoxR where reactive 

oxygen species abstract electrons from DNA and electron holes thus produced localize to 

low potential sites within the DNA, i.e., guanine multiplets. This process results in rapid 

oxidation of SoxR via DNA CT, filling of the guanine radical hole and activation of 

transcription (Lee et al., 2009). Transcriptional activation from a distance via DNA CT 

could thus represent a unifying mechanism for SoxR activation in vivo.

Dps proteins, mini-ferritins that bind DNA

We also considered whether DNA CT might play a role in the response of pathogenic 

bacteria to oxidative stress, an important issue in how host cells respond to pathogenic 

infection. Dps proteins are bacterial mini-ferritins that are produced in high concentrations 

in response to stress. These proteins are thought to protect DNA from oxidative stress by 

utilizing their ferroxidase activity to deplete ferrous iron and hydrogen peroxide, which can 

otherwise produce damaging hydroxyl radicals via Fenton chemistry (Zeth, 2012). Some 

Dps proteins also nonspecifically bind DNA, such as that from E. coli, which utilizes N-

terminal lysine residues for DNA binding (Ceci et al., 2004). Dps is implicated in the 

survival and virulence of pathogenic bacteria such as Bacteroides fragilis, the most common 

anaerobic species isolated from clinical infections which is both highly aerotolerant and 

resistant to oxidative stress (Sund et al., 2008), and Borrelia burgdorferi, the causative agent 

of Lyme’s disease (Li et al., 2007), among others (Halsey et al., 2004; Olsen et al., 2005; 

Pang et al., 2012; Satin et al., 2000; Theoret et al., 2012). Fully elucidating the mechanism 

by which Dps proteins protect pathogenic bacteria from the host immune response could 

inform the development of new antibiotics.

Previous studies toward revealing the mechanism of Dps protection have shown that Dps 

protects DNA from DNase cleavage (Almirón et al., 1992), traps hydroxyl radicals, and 

inhibits DNA nicking by the Fenton reagents Fe2+ and H2O2 (Zhao et al., 2002). Could the 

effective protection by ferritins also be derived from using DNA CT to exert protective 

effects from a distance? Thus, in addition to direct diffusion of oxidants to the iron bound at 

the ferroxidase sites of Dps, the protein could be envisioned to become oxidized from a 

distance through DNA CT, thereby protecting the surrounding DNA for potentially 

hundreds of base pairs.

In order to investigate the possibility of Dps protection from a distance via DNA CT, a 

tethered ruthenium photooxidant was employed to generate oxidative DNA damage to 
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mixed sequence DNA via the flash-quench technique, mimicking damage that occurs in vivo 

as a result of oxidative stress (Arnold and Barton, 2013) (Figure 8B). In the absence of 

protein, oxidative damage localizes specifically to a low potential guanine triplet within the 

70-mer duplex, as expected for electron holes equilibrating along the DNA π-stack (Hall et 

al., 1996). The level of oxidative DNA damage at this guanine triplet can be quantified by 

using radiolabeled DNA, allowing for analysis of whether Dps can attenuate this guanine 

damage.

Interestingly, the protective effects of Dps vary as a function of the iron content of the 

protein (Arnold and Barton, 2013). When no iron is present as in Apo-Dps and or when the 

ferroxidase sites of the protein are loaded with oxidized ferric iron, which both lack 

available reducing equivalents, little change in the level of guanine oxidation is observed 

upon addition of protein. However, when the ferroxidase sites of Dps are loaded with 

ferrous iron, the yield of oxidative DNA damage at the guanine triplet is significantly 

attenuated. These data demonstrate that ferrous iron-loaded Dps is selectively oxidized to fill 

guanine radical holes, thereby restoring the integrity of the DNA. Ruthenium luminescence 

studies indicate no direct interaction between the photooxidant and Dps, supporting the 

DNA-mediated oxidation of ferrous iron-loaded Dps. Thus DNA CT may be a mechanism 

by which Dps proteins efficiently protect the genome of pathogenic bacteria from a distance, 

contributing to their survival and virulence. Finding methods to disrupt Dps protection from 

a distance via DNA CT could reveal novel ways to treat bacterial infections.

Protein p53, global regulator of cellular response

While focus has mainly concentrated on proteins that contain metals as their redox-active 

cofactors, metal clusters are not a requirement for proteins to be able to carry out DNA CT. 

The tumor suppressor protein p53 is a tetrameric transcription factor that decides cellular 

fates by selectively binding to different promoter sites within the genome to favor DNA 

repair and survival or, instead, apoptotic cell death (Vousden and Lu, 2002). But how is that 

decision rapidly transmitted across the genome? While p53 does not contain an iron-sulfur 

cluster, there is a network of redox-active cysteine residues whose oxidation state modulates 

p53 DNA binding. Specifically, p53 oxidation promotes dissociation from the DNA. Given 

the close proximity of some of these redox-active cysteine residues to the DNA (Cho et al., 

1994) and the demonstrated feasibility of disulfide bond formation from a distance via DNA 

CT (Takada and Barton, 2005), we investigated whether p53 could be oxidized in a DNA-

mediated fashion (Augustyn et al., 2007). In constructs with the photooxidant anthraquinone 

tethered to the DNA distally from the p53 response element, irradiation induced p53 

dissociation in an artificial response element as measured in gel-shift assays. However, this 

p53 dissociation was not observed with an intervening C:A mismatch, implying a DNA-

mediated process. Intriguingly, in natural p53 response elements, this p53 oxidation via 

DNA CT is sequence-specific. Promoter sequences for the p21 gene, encoding a protein 

involved in cell cycle arrest, and that for Gadd45, encoding a protein more involved in DNA 

repair, were compared using anthraquinone constructs. Dissociation of p53 from the Gadd45 

response element was observed upon irradiation, which would serve to downregulate the 

gene inside cells, while little dissociation was observed from the p21 sequence. Under 

conditions of overwhelming oxidative stress within the cell, genes encoding proteins 
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stimulating DNA repair, such as Gadd45, would be downregulated in favor of those 

promoting cell cycle arrest and apoptotic pathways, such as p21. The sequence-specific 

DNA-mediated oxidation and dissociation of p53 provides a mechanism for how this could 

occur selectively.

Further work elucidated the important factors for the sequence selectivity of p53 

dissociation (Schaefer and Barton, 2014). Again using anthraquinone constructs, artificial 

p53 response elements were created where the guanine content of a purine region within the 

response element was successively increased, essentially titrating the oxidation potential. 

Upon irradiation, a response element containing AAA displayed the lowest level of p53 

dissociation, while a sequence with GGG showed the highest level of dissociation. Natural 

response element with similar guanine content behaved in the same way: S100A2 with GGG 

in its response element dissociated more upon irradiation than the caspase sequence with 

AGA. Thus p53 is preferentially dissociated when low potential guanine multiplets are 

located within the consensus sequence (Figure 8C). The relative importance of particular 

cysteine residues in the DNA-mediated oxidation of p53 was then explored by serine 

mutagenesis (Schaefer et al., 2015). The ability to dissociate from the Gadd45 promoter 

upon DNA-mediated oxidation was assayed for six cysteine to serine p53 mutants. The 

C275S and C277S mutations, located nearby the DNA interface, most significantly impaired 

protein dissociation. Mass spectrometry experiments then provided further insight by 

mapping the cysteine oxidation of specific residues through differential thiol labeling with 

iodoacetamide.

Thus DNA CT provides a compelling mechanism by which p53 can selectively dissociate 

from different consensus sequences within the cell under conditions of oxidative stress. 

Moreover, as evidenced by p53, proteins that contain redox-active cofactors other than iron-

sulfur clusters can also participate in DNA-mediated processes.

Conclusions

Here we have examined how DNA CT involves the efficient transport of electrons or 

electron holes through the DNA π-stack over long molecular distances. Along with this 

shallow distance dependence, DNA CT is sensitive to mismatches or lesions that disrupt π-

stacking and is critically dependent on proper electronic coupling of the donor and acceptor 

moieties into the base stack. Thus DNA CT provides a mechanism for probing the fidelity of 

the DNA. Favorable DNA CT is very rapid, occurring on the picosecond timescale. Because 

of this speed, electron holes equilibrate along the DNA π-stack, forming a characteristic 

pattern of DNA damage at low potential guanine multiplets. Electrochemical devices that 

take advantage of the characteristics of DNA CT have now been developed and shown to be 

competent to detect a variety of DNA-bound species and the activity of DNA binding 

enzymes, even from crude cell lysate. Therefore DNA CT provides a platform for rapid and 

simple DNA-based diagnostics.

More fundamentally, DNA CT may play specific biological roles especially in processes 

that we know must occur rapidly and over long distances within the cell such as genome 

surveillance. DNA processing enzymes with [4Fe4S] clusters can perform DNA-mediated 
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CT self-exchange reactions with other [4Fe4S] cluster proteins, even if the protein functions 

are quite dissimilar, as long as the DNA-bound [4Fe4S]3+/2+ redox potentials are conserved 

and the proteins are well coupled to the DNA to carry out CT. This chemistry thus enables a 

search of the genome for lesions and the coordinated signaling of a network of DNA repair 

enzymes containing [4Fe4S] clusters in seeking out those lesions. DNA CT chemistry also 

represents a means to protect the genome from oxidative damage, where the equilibrating 

electron holes within the DNA duplex may be intercepted by DNA-bound proteins, such as 

Dps, so as to protect the DNA library. DNA-bound redox-active transcription factors can 

also be activated from a distance through long range DNA CT, thereby providing a rapid 

response to an oxidative threat without the need for diffusion through the traffic of the cell.

Therefore DNA CT chemistry, sensitive to lesions and offering long-range signaling, 

provides a means of rapid communication across the genome. Given the increasing number 

of DNA-processing enzymes shown to contain redox-active moieties, it is tantalizing to 

consider the myriad ways DNA CT chemistry may be utilized. DNA-mediated signaling 

networks, facilitating coordination across the genome, await elucidation.
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Figure 1. Comparison of DNA and graphite structures
Spacing between adjacent base pairs in DNA (3.4 Å) is similar to the planar spacing in 

graphite (z-direction). This close proximity of aromatic base-pairs allows for significant 

oribital overlap along the DNA helix, resulting in π-stacking of the DNA bases. The 

structural similarity between graphite, a known conductive material, and DNA was an initial 

clue to the conductivity of DNA. PDB file 3BSE (DNA).
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Figure 2. Solution platforms for studying DNA CT
Top: In the initial studies of DNA CT, electron transfer between metal complexes via the 

DNA could be detected by monitoring the quenching of the fluorescence from a tethered 

ruthenium metal complex (green) by a distally tethered rhodium complex (red). Bottom: 

DNA CT can also be detected by monitoring the oxidation of guanine by a tethered rhodium 

photooxidant (red) injecting holes into the DNA that localize to the distal guanines. 

Structure of an intercalating photooxidant [Rh(phi)2(bpy′)]2+ is shown.
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Figure 3. Mismatch detection on DNA-modified electrodes
Comparison of the electrochemical properties of a well-matched DNA monolayer assembled 

on gold electrodes to that of a monolayer containing a single base pair mismatch. A distally 

bound, covalent redox probe such as Nile blue can stack with the DNA bases and report on 

the integrity of the DNA. Cyclic voltammogram (CV) traces demonstrate that current flows 

from the electrode surface to the redox probe at different applied potentials in physiological 

buffer. Charge can flow efficiently through well-matched DNA, but when the π-stacking of 
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the bases is disrupted by a single base pair mismatch or lesion, DNA CT is attenuated and 

current does not flow effectively to the redox probe.
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Figure 4. Electrochemical assay for the detection of methyltransferase activity
A self-assembled monolayer of DNA tethered to methylene blue on a gold electrode can be 

used to measure the methyltransferase activity of assayed solutions. The electrode is first 

treated with either purified methyltransferases, such as human Dnmt1, or lysates from 

tumors. If the DNA is not fully methylated, then a restriction enzyme can cut the DNA at a 

restriction site, highlighted in blue, within the DNA. After washing, the electrochemical 

signal is turned off, leading to a low percent of signal remaining compared to the signal 

before treatment with the restriction enzyme. If the DNA is methylated, corresponding to 

high methyltransferase activity, then the DNA is protected from restriction and the 

electrochemical signal is unperturbed, corresponding to a high percent of signal remaining. 

This assay has been used to detect the methyltransferase activity from tumor lysates (right). 

For tumor lysates tested with this device, the percent of signal remaining after treatment 

with restriction enzymes is high owing to increased methyltransferase activity. Lysates from 

adjacent tissue, however, have low percent signal remaining. Thus, lysates from tumors and 

normal tissue can be distinguished using this assay.
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Figure 5. Redistribution of DNA repair proteins to sites of damage via DNA-mediated CT 
signaling
Diffusing DNA-processing enzymes with 4Fe-4S clusters such as EndoIII, MutY, or DinG 

bind to DNA in the 2+ oxidation state (green) [1]. An electron can be transferred to a nearby 

oxidized protein in the 3+ oxidation state (blue), reducing it to the 2+ oxidation state, 

promoting its dissociation from DNA owing to a decreased binding affinity [2]. The protein 

can then take advantage of 3D diffusion in order to search the genome elsewhere for damage 

[3]. If there is an intervening lesion or substrate that attenuates or blocks DNA CT such as a 

DNA lesion or R-loop, the proteins stay bound to the DNA and use 1D diffusion to locate 
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the substrate to be processed [4]. This mechanism provides a means for proteins to locate 

DNA damage within a sea of undamaged bases in the genome.

Arnold et al. Page 30

Cell Chem Biol. Author manuscript; available in PMC 2017 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. DNA electrochemistry of WT and Y82A EndoIII
DNA-binding proteins with redox-active cofactors such as iron-sulfur clusters can be 

assayed on DNA-modified electrodes, effectively measuring their DNA-bound redox 

potentials. DNA binding shifts the redox potential of the [4Fe4S]3+/2+ couple of the base 

excision repair protein EndoIII, activating the protein towards oxidation. The EndoIII 

mutant Y82A is less proficient in DNA charge transfer electrochemically, with less charge 

passing from the DNA through the protein to the cluster. Thus Y82A EndoIII is less able to 
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cooperate with other iron-sulfur cluster proteins via DNA CT to scan the genome for 

damage.
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Figure 7. Genetic experiments indicate DNA-mediated signaling among DinG, EndoIII, and 
MutY
Left: When EndoIII is knocked out of InvA cells that depend upon R-loop repair by DinG 

for growth, a significant growth defect is observed (red). When the knockout, InvA Δnth, is 

complemented with a plasmid encoding WT EndoIII, EndoIII D138A, or RNaseH growth is 

restored (blue). When InvA Δnth is complemented with an empty plasmid or a plasmid 

encoding EndoIII Y82A, the growth defect remains (red). Taken together this indicates that 

the growth defect is indeed due to silencing the nth gene, that there is signaling between 

EndoIII and DinG to facilitate the unwinding of R-loops, and that this signaling is DNA-

mediated; the enzymatically active but CT-deficient mutant EndoIII Y82A cannot restore 

growth while the CT-proficient but catalytically inactive EndoIII D138A does restore 

growth. Right: The InvA growth assay and Lac+ reversion assays tested indicate that DNA-

mediated signaling facilitates signaling among DinG, EndoIII, and MutY.
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Figure 8. SoxR, Dps and p53 proteins use DNA CT to sense and respond to distant DNA damage 
produced by a tethered photooxidant
(A) SoxR, a bacterial transcription factor involved in response to superoxide stress, contains 

[2Fe2S]2+/1+ clusters and undergoes a conformational change and transcriptional activation 

upon oxidation. Irradiation of a construct with covalently tethered photooxidant 

[Rh(phi)2(bpy′)]3+ located 80 base pairs from the SoxR promoter binding site produced 

soxS, the target gene for SoxR. Irradiation of the photooxidant produces an excited state 

capable of oxidizing DNA, the injected electron hole localizes to guanine radicals, and SoxR 

then becomes oxidized to fill guanine radicals, resulting in transcriptional activation from a 

distance via DNA CT. (B) Dps proteins, bacterial mini ferritins implicated in the virulence 

of pathogenic bacteria, contain iron-binding ferroxidase sites and are involved in DNA 

protection from oxidative stress. Damage created at a low redox potential guanine triplet 

upon irradiation with tethered photooxidant [Ru(phen)(dppz)(bpy′)]2+ can be attenuated by 
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Dps loaded with ferrous iron, but not by Apo-Dps or Dps loaded with ferric iron, which both 

lack reducing equivalents. Charge transfer from the ferrous iron bound at the ferroxidase 

sites of Dps to guanine radical holes within DNA could be an efficient mechanism of 

genomic protection from a distance via DNA CT. (C) p53, a human transcription factor 

known as the “guardian of the genome”, contains a network of redox-active cysteine 

residues. Irradiation of constructs with a tethered anthraquinone photooxidant separated 

from the p53 response element can result in oxidation of these cysteine residues and 

dissociation of p53 from the DNA. Specifically, when the response element contains low 

redox potential guanine sites, p53 can become efficiently oxidized via DNA CT, resulting in 

decisions regarding the cellular fate. PDB files: SoxR (2ZHG), Dps (1N1Q), p53 (3KMD).
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