Table 4. Summary of reaction review.
H2CCCO = propadienone, HCCCHO = propynal , c-C3H2O = cyclopropenone
k = α×(T/300)β×exp(-γ/T) cm3 molecule−1 s−1 , T range is 10-300K
Ionpol1: k = αβ(0.62+0.4767γ (300/T)0.5) cm3 molecule−1 s−1, (Wakelam et al. 2012, Wakelam et al. 2010)
F0 = exp(Δk/k0) and F(T)=F0×exp(g×|1/T-1/T0|)
| Reaction | α | β | γ | F0 | g | ref | |
|---|---|---|---|---|---|---|---|
| 1. | C+ + H2CCCO → c-C3H2+ + CO → 1-C3H2+ + CO → H2C3O+ + C  | 
2.0e-9 1.0e-9 1.0e-9  | 
0 0 0  | 
0 0 0  | 
2 2 2  | 
0 0 0  | 
/ C+ + H2CO (Anicich 2003) | 
| 2. | C+ + c-C3H2O → c-C3H2+ + CO →1-C3H2+ + CO →H2C3O+ + C  | 
2.0e-9 1.0e-9 1.0e-9  | 
0 0 0  | 
0 0 0  | 
2 2 2  | 
0 0 0  | 
/ C+ + H2CO (Anicich 2003) | 
| 3. | C+ + HCCCHO → c-C3H2+ + CO →1-C3H2+ + CO →H2C3O+ + C  | 
2.0e-9 1.0e-9 1.0e-9  | 
0 0 0  | 
0 0 0  | 
2 2 2  | 
0 0 0  | 
/ C+ + H2CO (Anicich 2003) | 
| 4. | C + HCCCHO → t-C3H2 + CO | 2.0e-10 | 0 | 0 | 2 | 0 | Rate constant / C + H2CO, C + CH3CHO (Husain & Ioannou 1999) and C + C2H4 (Chastaing et al. 1999, Chastaing et al. 2001, Bergeat & Loison 2001, Haider & Husain 1993a, Haider & Husain 1993b). Simplified products t-C3H2 is the third isomer of C3H2 with a stability between c-C3H2 and 1-C3H2 (Vazquez et al. 2009, Aguilera-Iparraguirre et al. 2008) | 
| 5. | C + c- C3H2O → c-C3H2 + CO | 2.0e-10 | 0 | 0 | 2 | 0 | Rate constant / C + H2CO, C + CH3CHO (Husain & Ioannou 1999) and C + C2H4 (Chastaing et al. 1999, Chastaing et al. 2001, Bergeat & Loison 2001, Haider & Husain 1993a, Haider & Husain 1993b). Simplified products | 
| 6. | C + H2CCCO → 1-C3H2 + CO | 2.0e-10 | 0 | 0 | 2 | 0 | Rate constant / C + H2CO, C + CH3CHO (Husain & Ioannou 1999) and C + C2H4 (Chastaing et al. 1999, Chastaing et al. 2001, Bergeat & Loison 2001, Haider & Husain 1993a, Haider & Husain 1993b). Simplified products | 
| 7. | O + c-C3H2 → HCCCO + H →HCO + C2H → H + CO + C2H →CO + C2H2  | 
4.0e-11 1.0e-11 1.0e-11 3.0e-11  | 
0 0 0 0  | 
0 0 0 0  | 
2 2 2 2  | 
0 0 0 0  | 
No barrier at M06, MP2 and CCSD level. C2H + CO branching ratio from (Boullart et al. 1996) | 
| 8. | O + 1-C3H2 → HCCCO + H →H + CO + C2H → CO + C2H  | 
2.0e-11 4.0e-11 4.0e-11  | 
0 0 0  | 
0 0 0  | 
2 2 2  | 
0 0 0  | 
No barrier at M06, MP2 and CCSD level. C2H + CO branching ratio from (Boullart et al. 1996) | 
| 9. | O + t-C3H2 → HCCCO + H → HCO + C2H → H + CO + C2H  | 
3.0e-11 1.0e-11 1.0e-11  | 
0 0 0  | 
0 0 0  | 
2 2 2  | 
0 0 0  | 
/ O + 3CH2 (Bohland et al. 1984, Vinckier & Debruyn 1979) | 
| 10. | O + C3H3 → HCCCHO + H → C2H2 + HCO → C2H3 + CO → c-C3H2 + OH  | 
1.6e-10 2.0e-11 5.0e-11 1.0e-11  | 
0 0 0 0  | 
0 0 0 0  | 
2 2 2 2  | 
0 0 0 0  | 
Global rate constant from (Slagle et al. 1991), branching ratio deduced from (Lee et al. 2006). | 
| 11. | OH + c-C3H2 → c-C3H2O + H → H + CO + C2H2  | 
2.0e-10 0  | 
0 0  | 
0 0  | 
3 0  | 
0 0  | 
No barrier for 2c- C3H2OH formation, high exit barrier for 2H + 1CO + 1C2H2. | 
| 12. | OH + 1-C3H2 → H2CCCO + H → H + CO + C2H2  | 
2.0e-10 0  | 
0 0  | 
0 0  | 
3 0  | 
0 0  | 
/ OH + c-C3H2 | 
| 13. | OH + t-C3H2 → HCCCHO + H → H + CO + C2H2  | 
1.0e-10 0  | 
0 0  | 
0 0  | 
3 0  | 
0 0  | 
/ OH + c-C3H2 | 
| 14. | OH + HCCCHO → HCCCO + H2O → H2CCO + HCO  | 
1.0e-11 1.0e-11  | 
−0.6 −0.6  | 
0 0  | 
2 2  | 
0 0  | 
Simplified, but realistic, products | 
| 15. | OH + c-C3H2O → H2CCO + HCO | 2.0e-11 | −0.6 | 0 | 5 | 0 | Oversimplified products. Rate constant may be much lower. | 
| 16. | OH + H2CCCO → CH3CO + CO | 2.0e-11 | −0.6 | 0 | 2 | 0 | Oversimplified products | 
| 17. | C2H3+ + CO → C2H3CO+ | 2.0e-15 | −2.5 | 0 | 10 | 0 | (Herbst et al. 1984) deduced the radiative association rate constant from (unpublished) termolecular rate. (Scott et al. 1995, Maclagan et al. 1995) identified the product of the reaction as H2C=CH-CO+, the most stable C3H3O+ isomer. | 
| 18. | HCCCHO + H3+ → HCCCHOH+ + H2 | 1.0 | 3.2e-9 | 4.1 | 3 | 0 | Capture rate, Ionpol1 | 
| 19. | HCCCHO + HCO+ → HCCCHOH+ + CO | 1.0 | 1.2e-9 | 4.1 | 3 | 0 | Capture rate, Ionpol1 | 
| 20. | HCCCHO + H3O+ → HCCCHOH+ + H2O | 1.0 | 1.4e-9 | 4.1 | 3 | 0 | Capture rate, Ionpol1 | 
| 21. | c-C3H2O + H3+ → c-C3H2OH+ + H2 → C2H3CO+ + H2  | 
0.5 0.5  | 
3.2e-9 3.2e-9  | 
6.3 6.3  | 
3 3  | 
0 0  | 
Capture rate, Ionpol1 | 
| 22. | c-C3H2O + HCO+ → c-C3H2OH+ + CO → C2H3CO+ + CO  | 
0.5 0.5  | 
1.2e-9 1.2e-9  | 
6.3 6.3  | 
3 3  | 
0 0  | 
Capture rate, Ionpol1 | 
| 23. | c-C3H2O + H3O+ → c-C3H2OH+ + H2O → C2H3CO+ + H2O  | 
0.5 0.5  | 
1.4e-9 1.4e-9  | 
6.3 6.3  | 
3 3  | 
0 0  | 
Capture rate, Ionpol1 | 
| 24. | H2CCCO + H3+ → C2H3CO+ + H2 | 1.0 | 3.2e-9 | 3.8 | 3 | 0 | Capture rate, Ionpol1 | 
| 25. | H2CCCO + HCO+ → C2H3CO+ + CO | 1.0 | 1.2e-9 | 3.8 | 3 | 0 | Capture rate, Ionpol1 | 
| 26. | H2CCCO + H3O+ → C2H3CO+ + H2O | 1.0 | 1.4e-9 | 3.8 | 3 | 0 | Capture rate, Ionpol1 | 
| 27. | H2C3O+ + e− → H + HC3O → C2H2 + CO → C2H + H + CO → H + H + C3O → H2 + C3O  | 
1.0e-7 2.0e-7 4.0e-7 1.0e-7 0  | 
−0.7 −0.7 −0.7 −0.7  | 
0 0 0 0  | 
3 3 3 3  | 
0 0 0 0  | 
By comparison with similar reactions (Florescu-Mitchell & Mitchell 2006, Fournier et al. 2013), branching ratio roughly guessed | 
| 28. | HCCCHOH+ + e− → H + HCCCHO → H + H + HC3O → H + C2H2 + CO  | 
4.0e-8 2.0e-7 6.0e-7  | 
−0.7 −0.7 −0.7  | 
0 0 0  | 
3 10 3  | 
0 0 0  | 
By comparison with similar reactions (Florescu-Mitchell & Mitchell 2006, Fournier et al. 2013), branching ratio roughly guessed | 
| 29. | c-C3H2OH+ + e− → H + c-C3H2O → H + H + HC3O → H + C2H2 + CO  | 
4.0e-8 1.0e-7 7.0e-7  | 
−0.7 −0.7 −0.7  | 
0 0 0  | 
3 3 3  | 
0 0 0  | 
By comparison with similar reactions (Florescu-Mitchell & Mitchell 2006, Fournier et al. 2013), branching ratio roughly guessed | 
| 30. | C2H3CO+ + e− → H + H2C3O → H + H + HC3O → H + C2H2 + CO  | 
4.0e-8 4.0e-8 8.0e-7  | 
−0.7 −0.7 −0.7  | 
0 0 0  | 
3 3 3  | 
0 0 0  | 
By comparison with similar reactions (Florescu-Mitchell & Mitchell 2006, Fournier et al. 2013). Branching ratio deduced from the fact that H2C3O is not detected. |