Skip to main content
. Author manuscript; available in PMC: 2016 Mar 22.
Published in final edited form as: Mon Not R Astron Soc. 2016 Mar 11;456(4):4101–4110. doi: 10.1093/mnras/stv2866

Table 4. Summary of reaction review.

H2CCCO = propadienone, HCCCHO = propynal , c-C3H2O = cyclopropenone

k = α×(T/300)β×exp(-γ/T) cm3 molecule−1 s−1 , T range is 10-300K

Ionpol1: k = αβ(0.62+0.4767γ (300/T)0.5) cm3 molecule−1 s−1, (Wakelam et al. 2012, Wakelam et al. 2010)

F0 = exp(Δk/k0) and F(T)=F0×exp(g×|1/T-1/T0|)

Reaction α β γ F0 g ref
1. C+ + H2CCCO → c-C3H2+ + CO
       → 1-C3H2+ + CO
       → H2C3O+ + C
2.0e-9
1.0e-9
1.0e-9
0
0
0
0
0
0
2
2
2
0
0
0
/ C+ + H2CO (Anicich 2003)
2. C+ + c-C3H2O → c-C3H2+ + CO
       →1-C3H2+ + CO
       →H2C3O+ + C
2.0e-9
1.0e-9
1.0e-9
0
0
0
0
0
0
2
2
2
0
0
0
/ C+ + H2CO (Anicich 2003)
3. C+ + HCCCHO → c-C3H2+ + CO
       →1-C3H2+ + CO
       →H2C3O+ + C
2.0e-9
1.0e-9
1.0e-9
0
0
0
0
0
0
2
2
2
0
0
0
/ C+ + H2CO (Anicich 2003)
4. C + HCCCHO → t-C3H2 + CO 2.0e-10 0 0 2 0 Rate constant / C + H2CO, C + CH3CHO (Husain & Ioannou 1999) and C + C2H4 (Chastaing et al. 1999, Chastaing et al. 2001, Bergeat & Loison 2001, Haider & Husain 1993a, Haider & Husain 1993b). Simplified products t-C3H2 is the third isomer of C3H2 with a stability between c-C3H2 and 1-C3H2 (Vazquez et al. 2009, Aguilera-Iparraguirre et al. 2008)
5. C + c- C3H2O → c-C3H2 + CO 2.0e-10 0 0 2 0 Rate constant / C + H2CO, C + CH3CHO (Husain & Ioannou 1999) and C + C2H4 (Chastaing et al. 1999, Chastaing et al. 2001, Bergeat & Loison 2001, Haider & Husain 1993a, Haider & Husain 1993b). Simplified products
6. C + H2CCCO → 1-C3H2 + CO 2.0e-10 0 0 2 0 Rate constant / C + H2CO, C + CH3CHO (Husain & Ioannou 1999) and C + C2H4 (Chastaing et al. 1999, Chastaing et al. 2001, Bergeat & Loison 2001, Haider & Husain 1993a, Haider & Husain 1993b). Simplified products
7. O + c-C3H2 → HCCCO + H
       →HCO + C2H
       → H + CO + C2H
       →CO + C2H2
4.0e-11
1.0e-11
1.0e-11
3.0e-11
0
0
0
0
0
0
0
0
2
2
2
2
0
0
0
0
No barrier at M06, MP2 and CCSD level. C2H + CO branching ratio from (Boullart et al. 1996)
8. O + 1-C3H2 → HCCCO + H
       →H + CO + C2H
       → CO + C2H
2.0e-11
4.0e-11
4.0e-11
0
0
0
0
0
0
2
2
2
0
0
0
No barrier at M06, MP2 and CCSD level. C2H + CO branching ratio from (Boullart et al. 1996)
9. O + t-C3H2 → HCCCO + H
       → HCO + C2H
       → H + CO + C2H
3.0e-11
1.0e-11
1.0e-11
0
0
0
0
0
0
2
2
2
0
0
0
/ O + 3CH2 (Bohland et al. 1984, Vinckier & Debruyn 1979)
10. O + C3H3 → HCCCHO + H
       → C2H2 + HCO
       → C2H3 + CO
       → c-C3H2 + OH
1.6e-10
2.0e-11
5.0e-11
1.0e-11
0
0
0
0
0
0
0
0
2
2
2
2
0
0
0
0
Global rate constant from (Slagle et al. 1991), branching ratio deduced from (Lee et al. 2006).
11. OH + c-C3H2 → c-C3H2O + H
       → H + CO + C2H2
2.0e-10
0
0
0
0
0
3
0
0
0
No barrier for 2c- C3H2OH formation, high exit barrier for 2H + 1CO + 1C2H2.
12. OH + 1-C3H2 → H2CCCO + H
       → H + CO + C2H2
2.0e-10
0
0
0
0
0
3
0
0
0
/ OH + c-C3H2
13. OH + t-C3H2 → HCCCHO + H
       → H + CO + C2H2
1.0e-10
0
0
0
0
0
3
0
0
0
/ OH + c-C3H2
14. OH + HCCCHO → HCCCO + H2O
       → H2CCO + HCO
1.0e-11
1.0e-11
−0.6
−0.6
0
0
2
2
0
0
Simplified, but realistic, products
15. OH + c-C3H2O → H2CCO + HCO 2.0e-11 −0.6 0 5 0 Oversimplified products. Rate constant may be much lower.
16. OH + H2CCCO → CH3CO + CO 2.0e-11 −0.6 0 2 0 Oversimplified products
17. C2H3+ + CO → C2H3CO+ 2.0e-15 −2.5 0 10 0 (Herbst et al. 1984) deduced the radiative association rate constant from (unpublished) termolecular rate. (Scott et al. 1995, Maclagan et al. 1995) identified the product of the reaction as H2C=CH-CO+, the most stable C3H3O+ isomer.
18. HCCCHO + H3+ → HCCCHOH+ + H2 1.0 3.2e-9 4.1 3 0 Capture rate, Ionpol1
19. HCCCHO + HCO+ → HCCCHOH+ + CO 1.0 1.2e-9 4.1 3 0 Capture rate, Ionpol1
20. HCCCHO + H3O+ → HCCCHOH+ + H2O 1.0 1.4e-9 4.1 3 0 Capture rate, Ionpol1
21. c-C3H2O + H3+ → c-C3H2OH+ + H2
       → C2H3CO+ + H2
0.5
0.5
3.2e-9
3.2e-9
6.3
6.3
3
3
0
0
Capture rate, Ionpol1
22. c-C3H2O + HCO+ → c-C3H2OH+ + CO
       → C2H3CO+ + CO
0.5
0.5
1.2e-9
1.2e-9
6.3
6.3
3
3
0
0
Capture rate, Ionpol1
23. c-C3H2O + H3O+ → c-C3H2OH+ + H2O
→ C2H3CO+ + H2O
0.5
0.5
1.4e-9
1.4e-9
6.3
6.3
3
3
0
0
Capture rate, Ionpol1
24. H2CCCO + H3+ → C2H3CO+ + H2 1.0 3.2e-9 3.8 3 0 Capture rate, Ionpol1
25. H2CCCO + HCO+ → C2H3CO+ + CO 1.0 1.2e-9 3.8 3 0 Capture rate, Ionpol1
26. H2CCCO + H3O+ → C2H3CO+ + H2O 1.0 1.4e-9 3.8 3 0 Capture rate, Ionpol1
27. H2C3O+ + e → H + HC3O
       → C2H2 + CO
       → C2H + H + CO
       → H + H + C3O
       → H2 + C3O
1.0e-7
2.0e-7
4.0e-7
1.0e-7
0
−0.7
−0.7
−0.7
−0.7
0
0
0
0
3
3
3
3
0
0
0
0
By comparison with similar reactions (Florescu-Mitchell & Mitchell 2006, Fournier et al. 2013), branching ratio roughly guessed
28. HCCCHOH+ + e → H + HCCCHO
       → H + H + HC3O
       → H + C2H2 + CO
4.0e-8
2.0e-7
6.0e-7
−0.7
−0.7
−0.7
0
0
0
3
10
3
0
0
0
By comparison with similar reactions (Florescu-Mitchell & Mitchell 2006, Fournier et al. 2013), branching ratio roughly guessed
29. c-C3H2OH+ + e → H + c-C3H2O
       → H + H + HC3O
       → H + C2H2 + CO
4.0e-8
1.0e-7
7.0e-7
−0.7
−0.7
−0.7
0
0
0
3
3
3
0
0
0
By comparison with similar reactions (Florescu-Mitchell & Mitchell 2006, Fournier et al. 2013), branching ratio roughly guessed
30. C2H3CO+ + e → H + H2C3O
       → H + H + HC3O
       → H + C2H2 + CO
4.0e-8
4.0e-8
8.0e-7
−0.7
−0.7
−0.7
0
0
0
3
3
3
0
0
0
By comparison with similar reactions (Florescu-Mitchell & Mitchell 2006, Fournier et al. 2013). Branching ratio deduced from the fact that H2C3O is not detected.