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Abstract

Protein thermostability is a crucial factor for biotechnological enzyme applications. Protein
engineering studies aimed at improving thermostability have successfully applied both
directed evolution and rational design. However, for rational approaches, the major chal-
lenge remains the prediction of mutation sites and optimal amino acid substitutions.
Recently, we showed that such mutation sites can be identified as structural weak spots by
rigidity theory-based thermal unfolding simulations of proteins. Here, we describe and vali-
date a unique, ensemble-based, yet highly efficient strategy to predict optimal amino acid
substitutions at structural weak spots for improving a protein’s thermostability. For this, we
exploit the fact that in the majority of cases an increased structural rigidity of the folded state
has been found as the cause for thermostability. When applied prospectively to lipase A
from Bacillus subtilis, we achieved both a high success rate (25% over all experimentally
tested mutations, which raises to 60% if small-to-large residue mutations and mutations in
the active site are excluded) in predicting significantly thermostabilized lipase variants and
a remarkably large increase in those variants’ thermostability (up to 6.6°C) based on single
amino acid mutations. When considering negative controls in addition and evaluating the
performance of our approach as a binary classifier, the accuracy is 63% and increases to
83% if small-to-large residue mutations and mutations in the active site are excluded. The
gain in precision (predictive value for increased thermostability) over random classification
is 1.6-fold (2.4-fold). Furthermore, an increase in thermostability predicted by our approach
significantly points to increased experimental thermostability (o < 0.05). These results sug-
gest that our strategy is a valuable complement to existing methods for rational protein
design aimed at improving thermostability.
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Author Summary

Protein thermostability is a crucial factor for biotechnological enzyme applications. How-
ever, performance studies of computational approaches for predicting effects of mutations
on protein (thermo)stability have suggested that there is still room for improvement. We
describe and validate a novel and unique strategy to predict optimal amino acid substitu-
tions at structural weak spots. At variance with other rational approaches, we exploit the fact
that in the majority of cases an increased structural rigidity of the folded state is the underly-
ing cause for thermostability. When applied prospectively on lipase LipA from Bacillus sub-
tilis, a high success rate in predicting thermostabilized lipase variants and a remarkably large
increase in their thermostability is achieved. This demonstrates the value of the novel strat-
egy, which extends the existing portfolio of methods for rational protein design.

Introduction

Thermostability is a crucial factor for a wealth of biotechnological enzyme applications [1,2].
Protein engineering aimed at improving thermostability is thus an important field of research
in biotechnology [3,4]. There, methods of directed evolution are usually applied, which mimic
natural evolution [5-8]. However, directed evolution is limited in that out of the extraordi-
narily large number of possible variant proteins, only a small subset can be experimentally
tested [9]. Alternatively, rational approaches have been successfully pursued [10-13] but the
major challenge here remains the prediction of mutation sites and the optimal amino acid sub-
stitution at such sites [14,15].

As to the prediction of mutation sites, we developed the rigidity theory-based Constraint
Network Analysis (CNA) approach [16-21] (available as a web service at http://cpclab.uni-
duesseldorf.de/cna/ [16-21]), which identifies residues in a protein that are structural “weak
spots”. For this, a protein is modeled as a network of sites (atoms) and constraints (covalent
and noncovalent interactions) [22]. Rigid atom clusters and flexible regions in between are
then rigorously determined by rigidity analysis [23-25]. By successively removing non-cova-
lent constraints from the network, the thermal unfolding of the protein is simulated (Fig 1a
and 1b) [16,18,19,26]. From the unfolding trajectory, a phase transition temperature T}, is iden-
tified, which relates to the (thermodynamic) thermostability, as are the weak spots (Fig 1c).
Mutating such weak spots should likely improve a protein’s thermostability [16,18,19].

Here, we describe and validate a novel and unique strategy based on the CNA approach to
predict optimal amino acid substitutions at these weak spots. At variance with other rational
approaches that rely upon calculating free energies for predicting effects of mutations on a pro-
tein’s thermostability [27-33], we exploit the fact that in the majority of cases an increased
structural rigidity of the folded state has been identified as the underlying cause for thermosta-
bility [34]. To this end, we add a highly efficient, ensemble-based second step by generating
structural models of single-point site-saturation mutations at identified weak spots, filtering
the models with respect to their structural quality, and screening for variants with increased
structural rigidity (Fig 1d-1f, see below for detailed descriptions). Using the recently developed
ENT™NC approach [35] that performs rigidity analyses on an ensemble of network topologies
generated from a single input structure using fuzzy network constraints, rather than a struc-
tural ensemble, this second step only takes about 1 h on a single core per variant and can be
performed in parallel for multiple variants. We applied this strategy prospectively on lipase
LipA from Bacillus subtilis (BsLipA); BsLipA has considerable biotechnological importance
[36,37] and has been extensively studied with respect to thermostability [6,15,38-43], which
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Fig 1. Strategy to rationally predict mutations that increase structural rigidity and thermostability.

(a) A structural ensemble of the respective protein is generated by MD simulations. (b) The average thermal
unfolding trajectory depicting a decomposition into rigid clusters (in the order of decreasing size colored in
blue, green, magenta, cyan, orange, and violet) for each step of the unfolding simulation is created by
subjecting the structural ensemble to CNA. (c) For every major transition during the thermal unfolding, weak
spot residues (depicted as a sphere for the C, atom and sticks for the side-chain) are identified. (d) Weak
spot residues that are highly conserved across the protein family (> 80% identity) are removed from the weak
spot list. (e) For the rest, structures of site-saturation single-point variants (termed M1-M19) are generated.
Mutations that lead to energetically unfavorable structures (indicated by red discs around the mutated residue
in the case of M18) are discarded. (f) For each variant, the phase transition temperature T, is computed using
CNA; a higher T, value than that of the WT protein indicates a thermostabilizing mutation.

doi:10.1371/journal.pcbi.1004754.g001
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makes BsLipA a prominent model system. Out of 589 BsLipA variants screened in silico, twelve
were suggested for experimental testing. Of these, three showed a significant increase of up to
6.6°C in thermostability with respect to the wild-type enzyme (WT). We thus achieved both a
high success rate in predicting thermostabilized lipase variants and a remarkably large increase
in the thermostability of such variants. This demonstrates the value of the novel strategy,
which extends the existing portfolio of methods for rational protein design aimed at improving
thermostability.

Results
Predicting thermostabilizing mutations

BsLipA has a minimal o/f hydrolase fold in which a central parallel B-sheet of six -strands is
surrounded by six o-helices [44]. For identifying weak spots on BsLipA, a thermal unfolding
simulation was carried out by CNA on an ensemble of 2000 WT BsLipA structures extracted
from a molecular dynamics (MD) trajectory of 100 ns length (Fig 1a). The ensemble-based
CNA was pursued to increase the robustness of the rigidity analyses [19,35,45]. The unfolding
trajectory (Figs 1b and 2) reveals the early segregation of loops from the largest rigid cluster,
followed by the segregation of a-helices and, finally, the segregation and disintegration of the
B-sheet region. This order of segregation is in agreement with experimental findings on the
unfolding of other /B hydrolase proteins [46,47]. The realistic description of WT BsLipA ther-
mal unfolding encouraged us to identify weak spots at major phase transitions along the
unfolding trajectory (Fig 1c). By visual inspection of the unfolding trajectory, we identified five
major transitions (T1-T5) at which helices oA, oF, oD and oE, oB, oC as well as the central
beta sheet segregate from the largest rigid cluster at temperatures 316, 318, 334, 336, and

338 K, respectively (Table 1 and Fig 2).

Weak spot residues were then identified as those residues that are in the neighborhood of
the largest rigid cluster from which they segregate at the respective major transition. These resi-
dues are particularly promising for increasing BsLipA’s thermostability considering that their
mutation can improve the interaction strength with the largest rigid cluster and, hence, delay
the disintegration of that cluster with increasing temperature. In total, 36 weak spots were
found, which are located on a-helices and loops joining o-helices and B-strands (Fig 2). The
weak spot residues are very diverse in size (ranging from Gly to Trp) and physicochemical
properties (charged, uncharged polar, and hydrophobic) (Table 1). Of these, weak spot residues
at highly conserved sequence positions were discarded (Figs 1d and S1; Table 1) because con-
served residues are usually important for function and/or stability of a protein and, hence,
should not be mutated [48,49].

For each of the remaining 31 weak spots (~17% of all BsLipA residues), computational site
saturation mutagenesis was performed by generating structures of all possible single-point
amino acid substitutions using the SCWRL program (Fig le) [50]. SCWRL constructs variant
models by predicting backbone-dependent side-chain conformations with the help of a rota-
mer library. This resulted in 589 single point variants. 67 variant structures were discarded
based on the evaluation of residue-wise non-local interaction energies by the ANOLEA server
(S1 Fig) [51,52]. In such structures, the mutation apparently does not fit into the environment
of the other residues.

The remaining 522 variants were subjected to thermal unfolding simulations on ensembles
of network topologies using the ENT*™ approach [35] implemented in CNA. Differences in
the phase transition temperatures AT}, = T}, (variant) — T,, (WT) were averaged over 1000 sim-
ulations started from different network topologies generated for each variant (see “Materials
and Methods section”; Fig 1f). A map of AT}, values of all variants is shown in S1 Fig. In total,
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Fig 2. Thermal unfolding trajectory of WT BsLipA showing transitions for which weak spot residues were identified. Uniformly colored bodies
represent rigid clusters; for clarity, only the largest rigid cluster (blue) is shown for the first four transitions (T1-T4), and the two largest rigid clusters (blue and
green) are shown for the last transition (T5). C, atoms of the identified weak spot residues are shown as spheres, and side-chain atoms are shown in stick
representation. Weak spot residues are colored according to the rigid cluster they are part of (rigid clusters are assigned blue, green, magenta, cyan, and
orange colors in the descending order of their size in terms of the number of residues); a weak spot residue colored in gray indicates that it is part of a rigid
cluster composed of less than three residues. Weak spot residues that are highly conserved in the multiple sequence alignment of the lipase family are not
shown. Important helices that segregate from the largest rigid cluster at the respective transition are labeled.

doi:10.1371/journal.pcbi.1004754.9002
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Table 1. Phase transition points at which weak spot residues are identified during the thermal unfolding simulation of BsLipA.

Phase
transition

T1
T2

T3
T4

T5

@ n K.

Temperature of the phase
transition!®!

314-316
316-318

332-334
334-336

336-338

Major secondary structures segregating from Weak spot residues!”
the giant rigid cluster

aA 122, L26, W31

aF D133, V136, G158, L159, L160, S163, V165,
N166, 1169, G172, L173

aD and aE G103, G104, A105, N106, T109, S141

aB N48, N51, G52, V54, L55, F58, V59, V62, L63,
E65, T66, V71

aC and central B sheet T83, L84, 187, V96

°l Residues in bold are highly conserved in the multiple sequence alignment; see the main text for details.

doi:10.1371/journal.pcbi.1004754.1001

this procedure yielded a predicted thermostabilization with respect to WT BsLipA for 75 out of
the 522 mutations (~14%) investigated. In order to further reduce the number of mutations for
experimental validation only the mutation with the highest AT, was chosen from all mutations
with AT}, > 1 K at a weak spot. The sole exception is G104 located in the active site, for which
two mutations were chosen. This resulted in twelve lipase variants of which the most are associ-
ated with weak spot residues on helix oB identified during the late transition T4 (Table 2;

S1 Fig).

As a negative control, we also predicted 10 variants with negative AT,,, i.e., where a mutation
according to the thermal unfolding simulations leads to a decrease in thermostability with
respect to WT (S1 Table). Six of these mutations were chosen from the above analyses of 522
variants such that they have the most negative AT}; four were chosen with the most negative
AT, from analyses of variants with a mutation not at a weak spot.

Table 2. BsLipA variants with positive AT, characterized experimentally.

BsLipA
variant®!
Wild-type
122W
N51F
Gb52M
V54H
L55F
F58I
V59F
187W
V96S
G104l
G104L
L160H

Location of the mutation on secondary structure Phase transition of weak spot Predicted T's50l!
element identification AT,

- - - 49.10
oA T1 2.80 44.89
aB T4 4.30 46.05
aB T4 16.47 49.59
aB T4 2.09 54.80
oB T4 3.48 47.62
oB T4 2.27 55.65
oB T4 11.95 49.44
aC T5 4.91 -[d]
B6 T5 2.36 52.65
Loop 6- aD T3 1.98 -[d]
Loop B6- aD T3 5.07 -[d]
aF T2 2.25 43.30

el variants highlighted in bold show a significant increase in T's, compared to WT.

] Difference phase transition temperatures T, (variant) — T, (WT); in °C.

[°l The temperature at which the fraction of the activity to the initial activity (at 40°C) is 50% after incubating for 30 min; in °C.
[ No activity after 30 min incubation at temperatures of 40-60°C.

doi:10.1371/journal.pcbi.1004754.t002
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Experimental characterization of thermostability

Initially, specific activities of WT BsLipA and the twelve variants (Table 2) for hydrolysis of p-
nitrophenyl-palmitate (pNPP) were measured at temperatures between 40 and 60°C after keep-
ing them at the respective temperatures for 5 min. WT BsLipA showed the highest specific
activity (246 U/mg) among all BsLipA variants at the temperature of maximum activity T,
(40°C) (S2 Fig). At temperatures above 55°C, the activity begins to drop, which is probably due
to an unfolding already within 5 min of preincubation. However, two variants, F581 and V96S,
showed higher activities than the WT at temperatures above 58°C (S2 Fig), which may origi-
nate from them being more stable at high temperatures.

Next, thermostability was assessed by measuring the activity of each BsLipA variant at tem-
peratures between 40 and 60°C after incubating the respective variant at these temperatures for
30 min. Three variants, V54H, F581, and V968, were more thermostable than WT; they consis-
tently showed higher activities than the WT at temperatures above 48°C (Figs 3a and S3). The
largest differences between thermostabilities of WT and variants of BsLipA was observed at
53.5°C where the activities of V54H and V96S were twice as a high as that of the WT, and the
activity of F581 was four times higher (Fig 3). The kinetic constants of these variants were
derived from initial rate measurements for hydrolysis of p-nitrophenyl-decanoate (pNPD) at
40°C (see S1 Text). No significant impact on the Michaelis constant (Ky,) was observed, and
the turnover numbers (k,,) were reduced by at most 25% (Table 3). Thus, the thermostability
of the variants has been increased without significantly influencing ke, / Ky at 40°C. Still, two
of the three thermostable variants showed lower activities than WT at temperatures below
~45°C (Fig 3). This may have been caused by a rigidification of the lipase structure in the ther-
mostable variants (see section “Analysis of thermostability changes at the structural level”
below), which may also influence the flexibility of the active site. Similarly, in a series of five
orthologs of 2-deoxy-p-ribose-5-phosphate aldolase (DERA) from psychrophilic, mesophilic,
and hyperthermophilic organisms investigated by us recently in terms of biochemical, struc-
tural, and rigidity properties, an anticorrelation between specific activity at temperatures < 40°C
and experimental or computed melting temperature was observed [53]. In that study, both the
analysis of local rigidity by CNA and B-factor analysis of X-ray structures provided indepen-
dent clues that psychrophilic DERAs have a more flexible environment of the substrate binding
pocket. Thus, it may depend on the actual operating temperature of an enzymatic process
whether it is worth to apply thermostable variants with increased activities at high(er) tempera-
tures only.

Finally, the thermostability of BsLipA variants was quantified by T's, values; these values
report on the temperature at which the fraction of the activity to the initial activity (at 40°C) is
50% after incubation for 30 min. This is different from the T, values normally used for charac-
terizing the thermostability of proteins [15,54,55] in that the activity here is measured at the
temperature of incubation, not at room temperature after cooling. T's, thus reports on the
thermo-tolerance of an enzyme during operational bioprocesses carried out at elevated temper-
atures for a longer duration of time, e.g., as done in the lipid processing industry [56]. The
three variants V54H, F581, and V96S showed T's, values higher by 5.7, 6.6, and 3.6°C, respec-
tively, than WT BsLipA (Fig 3c; Table 2). The predicted AT, values for these variants were sim-
ilar to each other, in agreement with the similar T' 5, values found, but at the lower end of all
predicted AT}, (Table 2).

For the variants used as a negative control (S1 Table) [57], the thermostability was quantified
by T'5 values; these values report on the temperature of incubation for 20 min after which the
fraction of the activity at room temperature to the initial activity is 50%. With respect to the T's,
values used above, a significant and very good correlation was obtained for T's, (see S1 Text)
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Fig 3. Thermostability of WT (black) and variants V54H (blue), F58I (green), and V96S (red) shown as
activity vs. temperature curves. The activity was measured at indicated temperatures after incubating for
30 min at these temperatures. Curves show absolute specific activity (a), activity normalized by the activity of
WT (b), and the fraction of the activity to the initial activity at 40°C (c).

doi:10.1371/journal.pcbi.1004754.9003
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Table 3. Kinetic parameters of BsLipA variants and wild-type.

Variant
Wild-type
V54H
F58I
V96S

Kn!® (uM) Keat (8™) Keat/ Kn (UM * s7)
34.72 £+ 6.49 926.40 + 38.81 26.68 +6.10
40.02 + 8.64 784.60 + 38.97 19.51 +5.18
36.71 +7.83 690.50 + 33.35 18.80 + 4.91
32.30 £ 7.39 785.00 £ 39.73 24.30 £ 6.79

[8 Kinetic parameters were derived from experiments conducted at 40°C using pNPD as substrate.

doi:10.1371/journal.pcbi.1004754.t003

For nine out of ten variants, significantly lower thermostabilities were measured, with the largest
decrease being 7.3°C for the N48R variant (S1 Table).

Analysis of thermostability changes at the structural level

The three thermostable variants involve mutations at weak spots identified at later phase tran-
sitions T4 and T5 during the thermal unfolding simulation. This finding supports our previous
reasoning that it is the late phase transition(s) involving the final decay of the rigid core during
thermal unfolding that mostly determine(s) the thermodynamic thermostability of a protein
[16,18,19]. Accordingly, mutations that strengthen contacts of weak spot residues identified at
late phase transitions should particularly improve thermostability. A sound discussion of this
implication requires X-ray structural data of the variants, which is not yet available. Still, using
the modeled variant structures, we observed that the three variants V54H, F58I, and V96S do
have in general stronger “rigid contacts” between neighboring residues than the WT (a “rigid
contact” denotes that two residues belong to one rigid cluster): On average, the mutations
V54H, F581, and V96S increased the strength of rigid contacts of neighboring residues by 2.0,
1.2, and 0.4 K, respectively, compared to WT (54 Fig; see section “Constraint Network Analy-
sis: Local rigidity indices” for an explanation how these values were calculated).

Considering the most thermostable variant F58I in more detail, the strengthening holds
true for local contacts as well as contacts that arise from a long-range stabilization. As to local
contacts, Ile at position 58 along with residues of the neighboring loop f4-aB (A38, V39, D40)
are part of a rigid cluster, which persists to a temperature ~3 K higher than the rigid cluster
formed by F58 of WT and the same loop residues (Figs 4a, 4b, S4b and S6a). The persistence at
higher temperature results from a better side-chain packing (Fig 4¢). In particular, in variant
F58I, V39 forms four hydrophobic contacts with three different residues (V7, S16, F41),
whereas in WT it only forms two such hydrophobic contacts (Fig 4c). However, not all F581
mutation-induced changes lead to stabilization (Fig 4d). As to contacts that arise from a long-
range stabilization, residues of several pairs of secondary structure (oA/p strands 3,4,5; oB/o.C;
loop aB-B5/loop a.C-B6; loop alC-B6/loop 0D-B7) remain part of one rigid cluster for tempera-
tures 2-5 K higher in the variant F58I than in WT (Figs 4d, S4b and S5b-S5e). This demon-
strates the inherent long-range aspect to rigidity percolation [23,45,58-60], i.e., a local change
on one end of a network can affect the stability all across the network.

Recently, we described the unfolding pathway of BsLipA in detail as deduced from thermal
unfolding simulations [61] (see also page 9, Fig 3 in that publication). We observed that o-heli-
ces oD and oF first segregate to form individual small rigid clusters, followed by oA and oF.
The giant rigid cluster at this temperature is formed by the central B-sheet region and the two
helices oB and o.C. Next, the B-sheet region becomes sequentially flexible, beginning with 4
and B8, followed by the remaining B-strands in the order 3, 7, and B5—f6, finally leading to a
completely flexible B-sheet region. As described above, several of these secondary structural

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004754 March 22,2016 9/21
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Fig 4. Structural origin of differences in the thermostability of WT and F58l, shown by a rigid cluster decomposition of WT (a) and F58I (b) at 316 K.
Rigid clusters are shown as uniformly colored bodies. The mutation site (residue 58), shown by a cyan (a) and a magenta (b) surface, is part of the largest
rigid cluster (blue) in both WT and F58I. Hydrophobic contacts in the proximity of the mutation site between carbon atom pairs at most 3.8 A apart are shown
as green (WT) and red (F58I) dashed lines (c). Residues involved in making such contacts are shown as cyan (WT) and magenta (F58I) sticks. Differences in
the stability of “rigid contacts” between variant F581 and WT are depicted on the variant structure (d). Two residues form a “rigid contact” if they belong to one
rigid cluster. A red (blue) stick connecting C, atoms of two residues indicates that a rigid contact in the variant is more (less) stable than in the WT (see color
scale). Only those contacts of variant F58I that are stabilized or destabilized by > 2 K are shown for clarity; for the same reason, contacts between two
residues of the same secondary structure element are not shown. The mutated residue 158 is displayed by magenta sticks. Blow-ups of panel d showing the
contact stability between secondary structure pairs mentioned in the main text can be found in S5 Fig.

doi:10.1371/journal.pcbi.1004754.9004

elements are involved in the thermal stabilization of the variant F581 (S4 Fig). Furthermore, the
amino acids forming the catalytic triad in BsLipA are S77 located between strand 5 and helix
oC, D133 between strand B7 and helix o, and H156 between strand 8 and helix oF [62]. Sta-
bilization of these secondary structural elements due to introducing mutation F581 (S4 Fig; in
particular, loops aB-B5 and aC-B6 (S5d Fig), loops a.C-p6 and aD-B7 (S5e Fig), and helices oB
and oC (S5c¢ Fig)) may thus delay the unfolding of the active site.

Five mutations at weak spots identified at transitions T4 and T5 resulted in lower T'5, values
than that of WT BsLipA (Table 2). This result appears to contradict our reasoning that muta-
tions which strengthen connections of weak spot residues identified at late phase transitions
should particularly improve thermostability. In each case, however, a small amino acid was
substituted by a large amino acid, which likely could not be accommodated by the fold. This

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004754 March 22,2016 10/21



©PLOS

COMPUTATIONAL

BIOLOGY

Application of Rigidity Theory to Thermostabilization

calls for improved modeling considering backbone relaxation [63] for variant construction in
future studies with the aim to improve discrimination between amino acid substitutions in
already densely packed regions, which could not accommodate small-to-large residue muta-
tions, and substitutions in the vicinity of a protein cavity, where small-to-large residue muta-
tions are an established strategy to increase protein stability [39,64]. Along the same lines, the
two variants G104I and G104L out of the three variants that showed a nearly complete loss of
activity at room temperature, and no residual activity after 30 min incubation at temperatures
between 40-60°C, involved a residue located in the active site. While at the opposite side of the
catalytic triad, introducing larger residues may occlude the substrate binding region. Such
weak spots can be filtered out in future studies based on their location in the protein [65].

Discussion

We developed a novel rational approach based on increasing structural rigidity for improving a
protein’s thermostability and applied it prospectively to BsLipA. The approach combines
ensemble- and rigidity theory-based weak spot prediction by CNA, filtering of weak spots
according to sequence conservation, computational site saturation mutagenesis, assessment of
variant structures with respect to their structural quality, and screening of the variants for
increased structural rigidity by ensemble-based CNA. Two reasons account for its high compu-
tational efficiency: In the first step, the number of potential mutation sites is dramatically
reduced due to concentrating only on structural weak spots. In the second step, the use of
ensembles of network topologies, rather than structural ensembles, alleviates the need for costly
conformation sampling. As a result, about one mutation per hour can be processed on one
core once weak spots have been detected (Table 4); this task is trivially parallelizable for multi-
ple mutations. From a methodological point of view, this majorly distinguishes our approach
from other state-of-the art methods for predicting effects of mutations on protein stability [27-
33] in that these methods would need to consider all potential mutation sites due to the lack of
an equivalent “step one”. Furthermore, these methods either do not consider ensemble

Table 4. Computing times for weak spot identification, site saturation mutagenesis, and screening for
increased structural rigidity.

Step!® Time Comment
required!®
a) MD simulation ~78 h 100 ns long MD simulation on a single GPU
b) Thermal unfolding 4 h and 35 min Structural ensemble of 2000 structures run on one CPU
simulation core
c) Weak spot detection 2h Manual identification by visual inspection
d) Filtering weak spots Instantaneous Highly conserved weak spots were discarded
e) Variant modeling by <1s For a single mutation
SCWRL
f) ENT™NC run ~1hand 10 min For a single mutation applying 1000 network topologies
Total ~700 h The computations for 522 times step f) (~610 h) can be

trivially parallelized.

8 Steps are according to Fig 1.

®! For the case study with BsLipA described here. With respect to the protein size N, the times required for
the steps scale as a) N log N [86], b) N [23], ¢) N (assuming that the number of weak spots scales linearly
with the protein size), e) N, and f) N2,

doi:10.1371/journal.pcbi.1004754.1004
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representations of the protein [28-33] or use structural ensembles [27]. Finally, our approach
does not require weighting or fitting parameters, in contrast to other methods [27,30,31,66].

As to the application to BsLipA, our approach resulted in three out of twelve experimentally
tested single-point mutations with significantly increased thermostability with respect to WT,
yielding 6.6°C as the largest increase. This increase compares favorably to the median increase
in the apparent melting temperature of 8°C found for 93 cases of engineered proteins, most of
which contain more than one mutation [67]. Considering all tested single-point mutations, our
approach yielded a success rate as to significantly increased thermostability of 25%, which
raises to 60% if the five small-to-large residue mutations and the two mutations in the active
site are excluded. These success rates are markedly higher than the 5% of mutations showing
an increase in protein stability found within 1285 variants of ten different proteins [68,69]. It is
also instructive to compare our results to those obtained by testing a complete site saturation
mutagenesis library of BsLipA for improved detergent tolerance, where the success rate
amounts to 2% [57]. Furthermore, for state-of-the-art methods for predicting the sign of stabil-
ity change due to a mutation, impressive accuracies of over 80% have been reported [28].
These values result from the methods being very good at predicting destabilizing mutations
and the prevalence of such mutations in the investigated data sets [28]. In line with this, for our
predicted negative controls, we found a success rate as to significantly decreased thermostabil-
ity of 90%. In contrast, the methods’ performances are much worse in predicting stabilizing
mutations, yielding an average success rate for such mutations of 36% over 12 methods [28].

Evaluating the performance of our approach as a binary classifier [70] (S2 Table), our
approach discriminates between mutations leading to increased thermostability versus those
leading to decreased thermostability with a sensitivity of 83%, a specificity of 56%, and an accu-
racy of 63% considering all variants in Tables 2 and S1, and a sensitivity of 100%, a specificity
of 77%, and an accuracy of 83% if the small-to-large residue mutations and the two mutations
in the active site are excluded. In our view, this signifies that our approach provides for a robust
binary classifier. Our approach has a precision (predictive value for increased thermostability)
of 42% (60% if the small-to-large residue mutations and the two mutations in the active site are
excluded) (S2 Table), which leads to a gain in precision with respect to a random classifier of a
factor of 1.6 (2.4). Furthermore, a Mann-Whitney U test [71] demonstrates that predicted pos-
itive AT, significantly points to increased experimental thermostability (p < 0.05) (see 52
Text).

An approach related to CNA is the distance constraint model (DCM)[72], which reaches
average percent errors of 1.1% (Pearson correlation coefficient R = 0.72) [73] and 4.3%

(R =0.64) [74] for melting point predictions of protein variants with single and multiple muta-
tions, corresponding to an error of ~4 K [73] and ~14 K [74]. This model requires a system-
specific fitting to experimental heat capacity curves from differential scanning calorimetry,
however [73,74]. Over all variants predicted (including the negative controls but excluding the
three variants for which no activity could be measured (Table 2)), our approach, which does
not require fitting parameters, yields a significant (R = 0.48, p = 0.02) correlation between pre-
dicted and experimental thermostabilities; if small-to-large residue mutations and the two
mutations in the active site are excluded, the correlation improves further (R = 0.62, p = 0.02;
S6 Fig). These results show that our approach can reproduce experimental trends with suffi-
cient accuracy.

The effectiveness of our approach is also demonstrated when comparing it to the study by
Reetz and coworkers [15] applying iterative saturation mutagenesis to BsLipA. The largest
increase in T, they have found for a variant containing a single point mutation in the first step
was 4.3°C; our largest increase of 6.6°C compares favorably to this value. Four more steps of
optimization and screening of about 8000 colonies then yielded two variants carrying five and
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seven mutations that showed an increase of Tso by 45°C. The study of Reetz et al. also differs
from ours in a fundamental aspect: in the former study, those residues that showed the highest
crystallographic B-factors, i.e., were the most mobile, were chosen as weak spots. In our study,
weak spots constitute residues that segregate from large rigid, i.e. internally immobile, clusters
during thermal unfolding.

In summary, these results suggest that our approach is a valuable, orthogonal complement
to existing methods for rational protein design aimed at improving thermostability. The more
thermostable variants can serve as starting points for further engineering of substrate scope
and/or enantioselectivity by directed evolution, exploiting that enhanced thermostability pro-
motes the ease of evolvability [75].

Materials and Methods
Constraint Network Analysis: Thermostability prediction

Constraint Network Analysis (CNA) predicts rigid and flexible regions within a biomolecule,
which allows linking these static characteristics to the molecule’s stability and function [17,21].
CNA has been described in detail in refs. [17,21,35,76]. The approach has been used previously
to predict the (thermodynamic) thermostability of proteins and to identify weak spot residues
that, when mutated, are likely to improve thermostability [16,18,19].

In CNA, a protein is modeled as a body-and-bar network of bodies (atoms) and bars (cova-
lent and noncovalent interactions). Each atom has six degrees of freedom, and each bar removes
one degree of freedom [22]. An interaction between two atoms can be modeled as any number
of bars between one and six depending on the strength of the interaction. Here, single covalent
bonds (double and peptide bonds) were modeled as five (six) bars, hydrogen bonds and salt
bridges (together referred to as “hydrogen bonds”) as five bars, and hydrophobic interactions as
two bars. For hydrogen bonds a hydrogen bond energy Eyp is computed by a modified version
of the potential by Mayo and coworkers [77] as described in ref. [26]. By successively removing
noncovalent constraints from a network, a thermal unfolding of the protein is simulated
[16,18,19,26]. Hydrogen bonds are removed from the network in increasing order of their
strength [77], i.e., hydrogen bonds with an energy Eyp > E.+(0) are discarded from the network
of state o. In the present study, E,, values ranging from —0.1 kcal mol™" to —6.0 kcal mol ™" with
a step size of 0.1 kcal mol ™" were used. E can be converted to a temperature using a linear rela-
tion introduced by Radestock and Gohlke [16,18], according to which the range of E;; used in
this study is equivalent to increasing the temperature of the system from 302 K to 420 K with a
step size of 2 K. The rigidity of each network state o during the thermal unfolding simulation is
analyzed by the pebble game algorithm [23,24] as implemented in the FIRST program [25].
From these analyses, the change in the global rigidity characteristics is monitored by the cluster
configuration entropy Hyype, [76]. Finally, a phase transition temperature T, is identified as the
temperature when a largely rigid network becomes largely flexible. We showed that T}, can be
used for predicting the thermodynamic thermostability of and identifying structural weak spots
in a protein [16,18,19]. Usually, multiple phase transitions occur during the thermal unfolding
of a protein because of its modular architecture, i.e., secondary structure elements can segregate
from the largest rigid cluster as a whole [18].

Constraint Network Analysis: Local rigidity indices

In contrast to global indices, local indices monitor rigidity at a residue level. One such index,
the rigidity index r;, is defined for each covalent bond i between two atoms as the E_ value
during the thermal unfolding simulation at which the bond changes from rigid to flexible [76].
For a C, atom-based representation, the average of the two r; values of the two backbone bonds
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is taken. As a two-dimensional itemization of r;, a stability map rc;; indicates for all residue
pairs the E, value at which a rigid contact between the two residues i, j is lost, i.e., when the
two residues stop belonging to the same rigid cluster [76]. From rc;;, a rigid cluster decomposi-
tion, i.e., a set of rigid clusters and flexible links in between, can be computed for each network
state o during the thermal unfolding simulation.

When the stability map rc;; is filtered such that only rigid contacts between residues that are
at most 5 A apart from each other (measured as the distance between the closest atom pair of
the two residues) are considered, a neighbor stability map results. This map helps focusing on
short-range rigid contacts that can be directly modulated by mutagenesis with the aim to stabi-
lize them for improving the overall stability of a protein.

In this study we use neighbor stability maps to analyze the (local) effect of mutations on the
stability of rigid contacts of neighboring residues (S4 Fig). The increase in the strength of rigid
contacts is calculated as the average over differences in rc;; of the variant versus WT for all
neighboring residue pairs (lower triangles in S4 Fig). The increase in the strength is measured
in K.

Generation of a structural ensemble of wild-type BsLipA

Rigidity analyses using CNA are sensitive with respect to the input structure [45,78]. One way
to improve the robustness is to carry out CNA on a structural ensemble derived from molecu-
lar dynamics (MD) simulations; then results (T}, values and stability maps) are averaged [19].
In the present study, MD simulations of WT BsLipA were performed using the GPU acceler-
ated version of PMEMD [79] of the AMBER 11 suite of programs [80,81] together with the
{f99SB force field [82]. The X-ray crystal structure of BsLipA with the highest resolution (PDB
ID: 1ISP; resolution 1.3 A) was used as input structure [83]. Hydrogen atoms were added using
the REDUCE program [84] during which side-chains of Asn, Gln, and His were flipped if nec-
essary to optimize the hydrogen bond network. Then, the system, neutralized by addition of
sodium counter-ions, was solvated by a truncated octahedral box of TIP3P [85] water such that
a layer of water molecules of at least 11 A width covers the protein surface. The particle mesh
Ewald method [86] was used with a direct-space non-bonded cutoff of 8 A. Bond lengths
involving hydrogen atoms were constrained using the SHAKE algorithm [87], and the time
step for the simulation was 2 fs. After equilibration, a production run of unrestrained MD in
the canonical ensemble (NVT) was performed to generate a trajectory of 100 ns length, with
conformations extracted every 40 ps from the last 80 ns resulting in a structural ensemble of
2000 conformations. The ensemble was used to predict weak spot residues on BsLipA.

Strategy for predicting thermostabilzing mutations on BsLipA

According to our strategy (Fig 1), the structural ensemble of 2000 conformations of WT
BsLipA (Fig 1a) was initially submitted to CNA for weak spot identification and prioritization.
An average stability map was generated from individual stability maps for each conformation
in the ensemble. A thermal unfolding trajectory showing average rigid cluster decompositions
during the thermal unfolding simulation was reconstructed from the average stability map
(Figs 1b and S7). For this we exploited that rigid cluster decompositions can be reconstructed
from stability maps as the latter store E_ (or temperature, according to the above mentioned
linear relation) values for all residue pairs at which these residues cease to be in one rigid cluster
during the thermal unfolding. The thermal unfolding trajectory was visually inspected for iden-
tifying transitions at which the rigidity of WT BsLipA is substantially reduced using
VisualCNA [88]. The inspection was done with a view that rigidifying contacts between the
largest rigid cluster and residues that segregate at these substantial phase transitions should
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improve the thermostability of the protein by delaying the disintegration of the largest rigid
cluster. Accordingly, at every transition, residues that are in the neighborhood of, and whose
side-chains point towards the largest rigid cluster from which they segregated, were identified
as potential weak spots (Fig 1c). Weak spot residues that showed a high sequence conservation
(> 80% identity) in a multiple sequence alignment of 296 lipase class 2 sequences obtained
from the Pfam database [89] were not considered further (Fig 1d).

Next, for modeling single-point site-saturation mutations, structures of all possible muta-
tions at each weak spot residue were generated by the SCWRL program [50] using WT BsLipA
(PDB ID: 1ISP) as a template (Fig 1e). Conformations of side-chains of all residues within 8 A
of a mutated residue were re-predicted in order to allow for a local structural relaxation. The
goodness of fit of the mutated side-chain in its environment was assessed using the ANOLEA
server [51,52]. A variant was discarded if its average ANOLEA energy of the neighboring resi-
dues (< 5 A of the mutation) is higher than the average energy of the same residues in WT
by > 2 kcal mol™. For all variant structures, hydrogen atoms were added using REDUCE [84]
in an identical way as done for WT BsLipA (see section “Generation of a structural ensemble of
WT BsLipA” for details). The structures were minimized by 2000 steps of conjugate gradient
minimization (including an initial steepest descent minimization for 100 steps) or until the
root mean-square gradient of the energy was < 1.0°10™* kcal mol™ A™". The energy minimiza-
tion was carried out with Amber11 [80] using the ff99SB force field [82] and the GBOBC gener-
alized Born model [90].

Finally, the generated variant structures were subjected to thermostability prediction and
prioritization. In order to circumvent compute-intensive MD simulations for generating struc-
tural ensembles of each of the BsLipA variants, the more efficient ENT"™N approach [35] was
used in connection with thermal unfolding simulations by CNA [21]. Ensembles of 1000 net-
work topologies of all single point variants of BsLipA were analyzed; for consistency, the WT
BsLipA structure was treated in the same way (including an energy minimization as described
above). For each variant and WT, T}, was identified as the inflection point of the sigmoid with
the larger change in Hyy,e, using a double sigmoid function [19] fitted to Hyype, vs. T curves.
That way, in most cases, a late transition involving the final decay of the largest rigid cluster is
identified as T, [18] except when a very large loss of rigidity occurs during an early transition.
Based on ensemble-averaged T,, (Fig 1f), variants were selected for experimental characteriza-
tion of their thermostability and Michaelis-Menten kinetics. See S1 Text for details. Table 4
summarizes the required computing times.

Supporting Information

S1 Fig. Map of AT}, = T}, (variant) — T}, (wt) values for each mutation (abscissa) at each
weak spot residue (ordinate) identified by CNA in WT BsLipA. Weak spot residues are
grouped by the major transition at which they are identified (Table 1 and Fig 2 in the main
text). Mutations are colored according to thermostabilizing (red) or thermodestabilizing (blue)
effects: Of the 239 single point mutations at the 13 weak spots identified from early transitions
at low temperatures (T1 and T2), only four resulted in a higher T}, than WT BsLipA; two of
these increases were statistically significant (p < 0.05 according to Welch’s t-test [91]). At five
weak spots identified at transition T3, seven mutations resulted in higher T}, values than WT
BsLipA,; three of these increases were statistically significant. The most pronounced predicted
thermostabilization both in terms of the number of variants showing increased T, values (55,
of which 27 were significant) and the magnitude of the T, increase was observed for mutations
at the nine weak spots identified at transition T4. Finally, nine mutations at four weak spot resi-
dues identified at the last transition T5 resulted in an increase in T, compared to WT BsLipA;
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six of these increases were significant. Weak spot residues that are highly conserved in the mul-
tiple sequence alignment of the lipase family (see the main text) are shown in gray. Mutations
that led to energetically unfavorable structures as calculated by the ANOLEA server are shown
as white stripes on gray color. Experimentally tested variants are marked by a black box.

(TTF)

S2 Fig. Specific activities of BsLipA variants between temperatures 40 and 60°C. The BsLipA
variants and the pNPP substrate solutions were incubated for 5 min at the indicated tempera-
tures, and then the activity was measured at these temperatures. Variants G104I and I87W
were inactive at these temperatures.

(TIF)

S3 Fig. Specific activities of BsLipA variants between temperatures 40 and 60°C. The BsLipA
variants and the pNPP substrate solutions were incubated for 30 min at the indicated tempera-
tures, and then the activity was measured at these temperatures. Variants G1041, G104L, and
I87W were inactive at these temperatures.

(TIF)

S4 Fig. Differences in the stability of rigid contacts between WT and variants of BsLipA:
V54H (a), F58I (b), V96S (b). In the map, a red (blue) color indicates that a rigid contact in
the variant is more (less) stable than in the WT (see color scale). The upper triangle shows dif-
ferences in the stability values for all residue pairs; the lower triangle shows differences in the
stability values only for residue pairs that are within 5 A of each other, with values for all other
residue pairs colored grey. Secondary structure elements as computed by the DSSP program
[92,93] are indicated on both abscissa and ordinate and are labeled: o-helix (red rectangle), B-
strand (green rectangle), loop (black line). Mutated residues are indicated by arrows. Blow-ups
for secondary structure pairs of F58I described in the main text are shown.

(TIF)

S5 Fig. Blow-ups of Fig 4d in the main text showing differences in the stability of “rigid
contacts” between variant F581 and WT depicted on the variant structure: aB/loop f4-aB
(a); aA/p strands 3,4,5 (b); aB/aC (c); loop aB-p5/loop aC-$6 (d); loop aC-B6/loop aD-p7
(e). Two residues form a “rigid contact” if they belong to one rigid cluster. A red (blue) stick
connecting C,, atoms of two residues indicates that a rigid contact in the variant is more (less)
stable than in the WT (see color scale). Only those contacts of variant F58I that are stabilized
or destabilized by > 2 K are shown for clarity; for the same reason, contacts between two resi-
dues of the same secondary structure element are not shown. Note that the blow-ups shown
here are related to the blow-ups shown in S4b Fig.

(TIF)

S6 Fig. Scatter plot of predicted AT, values for all variants except the eight small-to-large
residue mutations and the two mutations in the active site versus the experimental change
in thermostability.

(TIF)

S7 Fig. Construction of average rigid cluster decompositions from using a structural
ensemble. The input structure (1) is subjected to MD simulations for generating a structural
ensemble (2). Stability maps are generated for each conformation in the ensemble using CNA
(3). From all individual maps, an average stability map is generated (4). A trajectory showing
the average rigid cluster decomposition during the thermal unfolding is then reconstructed
from the average stability map (5).

(TIF)
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S8 Fig. SDS-PAGE of all variants and the WT that were purified using a N-terminal his-tag
and the Ni-NTA purification method. After purification the samples were desalted and stored
in 10 mM glycine buffer pH 11. The variant I87W was in all biological replicates not expressed

properly and could only be purified in small amounts.

(TTF)

S1 Table. BsLipA variants with negative AT, characterized experimentally.
(PDF)

S2 Table. Confusion matrix for two possible outcomes AT > 0 and AT < 0 for classifying
22 (15) BsLipA variants with respect to predicted and experimental changes in thermosta-
bility related to WT BsLipA.

(PDF)

$3 Table. BsLipA variants and mutagenesis primer sequences.
(PDF)

S1 Text. Experimental characterization of thermostability and Michaelis-Menten kinetics.
(PDF)

$2 Text. Mann-Whitney U test.
(PDF)
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