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The nephron in the kidney regulates its fluid flow by several autoregulatory mechanisms. Two pri-
mary mechanisms are the myogenic response and the tubuloglomerular feedback (TGF). The myogenic
response is a property of the pre-glomerular vasculature in which a rise in intravascular pressure elic-
its vasoconstriction that generates a compensatory increase in vascular resistance. TGF is a negative
feedback response that balances glomerular filtration with tubular reabsorptive capacity. While each
nephron has its own autoregulatory response, the responses of the kidney’s many nephrons do not act
autonomously but are instead coupled through the pre-glomerular vasculature. To better understand the
conduction of these signals along the pre-glomerular arterioles and the impacts of internephron coupling
on nephron flow dynamics, we developed a mathematical model of renal haemodynamics of two neigh-
bouring nephrons that are coupled in that their afferent arterioles arise from a common cortical radial
artery. Simulations were conducted to estimate internephron coupling strength, determine its dependence
on vascular properties and to investigate the effect of coupling on TGF-mediated flow oscillations. Sim-
ulation results suggest that reduced gap-junctional conductances may yield stronger internephron TGF
coupling and highly irregular TGF-mediated oscillations in nephron dynamics, both of which experimen-
tally have been associated with hypertensive rats.

Keywords: haemodynamics; tubuloglomerular feedback; myogenic response; afferent arteriole; non-
linear dynamics.

1. Introduction

The fundamental role of the kidney is to remove metabolic waste from the body while maintaining a
balance of volume, electrolytes and acid–base (Eaton & Pooler, 2004). That balance is achieved, in
large part, by processes that take place in the individual functional unit of the kidney, the nephron.
Each nephron consists of a filtering component, termed glomerulus and a renal tubule. A single afferent
arteriole delivers blood to the glomerulus. About one-fifth of the blood plasma is filtered through the
glomerular capillaries to become filtrate that enters the renal tubule. The epithelial transport processes
along the tubule continuously modify the composition of the filtrate, such that eventually most of the fil-
tered water and electrolytes are reabsorbed and returned to general circulation. The number of nephrons
in a kidney depends on body size. A rat kidney is composed of ∼30,000–40,000 nephrons (Han et al.,
1992); a human kidney contains up to a million nephrons (Nyengaard & Bendtsen, 1992).
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Epithelial transport and tubular luminal fluid composition are influenced substantially by fluid flow,
which is in turn determined, in part, by the glomerular filtration rate (GFR). Thus, regulation of the GFR
is essential for proper kidney function. One regulatory mechanism is the myogenic response, in which
the afferent arteriolar muscles respond to perturbations in intraluminal pressure or stretch with active
force development, thereby enabling the arteriole to constrict, reducing glomerular blood delivery and
the GFR (Holstein-Rathlou & Marsh, 1994; Just, 2007).

Another contributing mechanism is a negative feedback system, termed tubuloglomerular feedback
(TGF), by which the nephron controls incoming blood flow and the GFR by responding to variations in
the ionic composition of loop of Henle outflow (Holstein-Rathlou & Marsh, 1994; Just, 2007). A spe-
cialized cluster of cells, termed macula densa (MD), senses the Cl− concentration in the tubular fluid
flowing past that area and generates a signal that adjusts the GFR by changing the afferent arteriole
smooth muscle tone. Taken in isolation, a higher GFR results in a higher tubular fluid Cl− concen-
tration. The MD cells respond by inducing a constriction of smooth muscles in the afferent arteriole
to increase vascular resistance, thereby lowering blood flow and thus the GFR. Conversely, the TGF
system responds to a low [Cl−] by dilating the afferent arteriole to increase blood flow and the GFR.

In a series of studies, we developed a detailed mathematical model of renal haemodynamics (Chen
et al., 2011; Sgouralis & Layton, 2012, 2014a,b). The model by Sgouralis & Layton (2014b) represents
an afferent arteriole, glomerular filtration, Cl− transport along the proximal segments of a short-loop
nephron and TGF. The model afferent arteriole is myogenically active and represents smooth mus-
cle membrane potential and gap-junctional coupling. The activity of non-selective cation channels is
assumed to be shifted by changes in intravascular pressure, and thus the smooth muscle membrane
depolarizes with increasing intravascular pressure, such that elevation in pressure induces vasoconstric-
tion which increases resistance to blood flow. We used that model to assess the individual contributions
of TGF and myogenic response to GFR regulation in the rat kidney.

The model by Sgouralis & Layton (2014b) represents an isolated nephron with the associated vas-
culature, whereas, as noted above, ∼30,000–40,000 nephrons are packed inside a rat kidney. Indeed,
experimental observation in rats has indicated that individual nephrons do not operate independently
but interact constantly with the neighbouring nephrons. This coupling effect is mediated by the prop-
agation of TGF-induced electrotonic signals along the pre-glomerular vasculature (Holstein-Rathlou,
1987; Källskog & Marsh, 1990; Yip et al., 1992). For instance, if two afferent arterioles associated with
two nephrons are fed by a common cortical radial artery, then the contraction of one nephron’s afferent
arteriole likely causes the other afferent arteriole to contract too.

Results of previous modelling studies have suggested that internephron coupling may have a signif-
icant impact on the TGF-mediated dynamics of nephron flow and other variables (Pitman et al., 2004;
Layton et al., 2006, 2009, 2011). While those studies represent Cl− transport along the thick ascending
limb in detail, the afferent arteriole is not represented explicitly, and the conduction of the TGF signal
via the coupled afferent arterioles is represented only phenomenologically. A goal of this study is to
better characterize the coupling, in the context of TGF, between two neighbouring nephrons.

To that end, we extend the renal haemodynamics model of Sgouralis & Layton (2014b) to a pair
of nephrons whose afferent arterioles arise from the same cortical radial artery. We use the coupled
nephron model to study the conduction of TGF signals along the afferent arterioles, and we investigate
how TGF-mediated tubular flow dynamics is impacted by internephron coupling.

2. Mathematical model

A schematic diagram of the coupled-nephron model is given in Fig. 1. The model represents a connect-
ing artery that branches off the cortical radial artery and divides into a pair of afferent arterioles. Model
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Fig. 1. Schematic representation of the coupled nephrons model. Both afferent arterioles are shown, while glomerulus and tubular
segments are shown only for one of the paired nephrons. Q, fluid flow; R, tubular or vascular radius; P, fluid pressure. Subscripts
‘CA’ denote connecting artery; ‘AA’, afferent arteriole; ‘EA’, efferent arteriole; ‘GL’, glomerulus; ‘F’, proximal tubule entrance;
‘TB’, renal tubule. CMD, tubular fluid [Cl−] at the macula densa.

geometry is based on anatomic findings by Casellas et al. (1994). Each afferent arteriole is connected
to a model glomerulus and a short-loop nephron segment. The representation of model components is
based on our previous work (Sgouralis & Layton, 2014b). Below we describe the vascular and tubular
components. The two nephrons are indexed by j, where j = 1 or 2.

2.1 Vascular submodel

The jth model afferent arteriole consists of a series of smooth muscle cell models (Sgouralis & Layton,
2012, 2014a,b), electrically coupled via gap-junctions and via an endothelial layer. The cellular ionic
transport dynamics of each smooth muscle cell, influenced by the autoregulatory mechanisms, deter-
mine the local vascular tone. The resulting vascular resistance is the main determinant of blood flow
and single-nephron glomerular filtration rate (SNGFR).

Each smooth muscle cell model incorporates cell membrane potential, transmembrane ionic trans-
port, cytosolic Ca2+ regulation and muscle contraction. The interactions between the Ca2+ and K+

fluxes, which are mediated by voltage-gated and voltage–calcium-gated channels, respectively, give rise
to the development of spontaneous oscillations in membrane potential. This in turn results in oscilla-
tions in cytoplasmic Ca2+ concentration and muscle tone. Details of the ionic transport, Ca2+ dynamics,
crossbridges phosphorylation and muscle mechanics can be found in Chen et al. (2011), Sgouralis &
Layton (2012) and Sgouralis & Layton (2014a,b). Below we summarize key model components.
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2.1.1 Smooth muscle cell membrane potential. The smooth muscle cells that form the jth afferent
arteriole are indexed by i, where i = 1 and i = Nj

AA denote the cells closest to the connecting artery
(z = 0) and glomerulus (z = Lj

AA), respectively. The associated endothelial compartments are indexed
analogously. Throughout this study, let subscripts m and e denote the muscle and endothelial cells,
respectively. The rate of change of the membrane potentials of the ith smooth muscle and endothelial
cells, denoted by vi,j

m and vi,j
e , respectively, are given by

Cj
m

dvi,j
m

dt
= −Ii,j

L − Ii,j
K − Ii,j

Ca + Ii,j
mm + Ii,j

me + Ii,j
MR + Ii,j

TGF, (2.1)

Cj
e

dvi,j
e

dt
= −Ii,j

me + Ii,j
ee, (2.2)

where Cj
m and Cj

e denote cellular capacitances, assumed spatially independent but may differ between
arterioles. By Ii,j

L Ii,j
K , and Ii,j

Ca we denote transmembrane leak current, potassium current and calcium
current, respectively; Ii,j

mm, Ii,j
me and Ii,j

ee are gap-junctional currents; and Ii,j
MR and Ii,j

TGF are myogenic- and
TGF-induced currents.

The transmembrane currents are given by

Ii,j
L = gj

L(vi,j
m − vj

L), (2.3)

Ii,j
K = gj

Kni,j(vi,j
m − vj

K), (2.4)

Ii,j
Ca = gj

Cami,j(vi,j
m − vj

Ca), (2.5)

where ni,j and mi,j denote the fraction of open K+ and Ca2+ channels, respectively. The model assumes
that ni,j depends on vi,j

m as well as on cytosolic [Ca2+], whereas mi,j depends only on vi,j
m . For details see

Chen et al. (2011) and Sgouralis & Layton (2014a). The remaining currents, Ii,j
MR and Ii,j

TGF, arise from
the operation of the myogenic response and TGF (see below).

Neighbouring afferent arteriole smooth muscle cells communicate via homocellular and heterocel-
lular gap-junctions (Brink, 1998; Wagner, 2008). We consider gap-junctional currents passing between
smooth muscles, denoted by Ii,j

mm, between smooth muscles and the endothelium, denoted by Ii,j
me, and

between endothelial cells, denoted by Ii,j
ee. (Recall subscripts m and e indicate smooth muscle and

endothelial cells, respectively.) The smooth muscle–endothelium gap-junction current in Equation (2.2)
is given by Ohm’s law

Ii,j
me = gj

me(v
i,j
e − vi,j

m). (2.6)

Similarly, away from the boundaries, i.e. for i = 2, . . . Nj
AA − 1, the gap-junction currents Ii,j

mm and Ii,j
ee

are, respectively, given by

Ii,j
mm = gj

mm(vi−1,j
m − 2vi,j

m + vi+1,j
m ), (2.7)

Ii,j
ee = gj

ee(v
i−1,j
e − 2vi,j

e + vi+1,j
e ). (2.8)

To implement electrotonic coupling of the two nephrons, we assume that, at the junction with the
connecting artery (i = 1), the two afferent arterioles are attached to a common node with potentials v∗

m
and v∗

e , with gap-junctional conductances denoted by g∗
mc and g∗

ec, respectively; see Fig. 2. (The subscript
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Fig. 2. Equivalent circuit of intercellular coupling near the vascular junction. For simplicity, only gap-junctional currents are
shown. Both homocellular and heterocellular interfaces are represented.

c indicates ‘connection’.) This yields the boundary conditions

I1,j
mm = gj

mm(v2,j
m − v1,j

m ) + g∗
mc(v

∗
m − v1,j

m ), (2.9)

I1,j
ee = gj

ee(v
2,j
e − v1,j

e ) + g∗
ec(v

∗
e − v1,j

e ). (2.10)

In the base case, g∗
mc = gmm and g∗

ec = gee.
The boundary condition at i = Nj

AA, which represents current leakage out of the vessel, can be found
in Sgouralis & Layton (2012, 2014a).

2.1.2 Myogenic response. We assume that the activity of non-selective cation channels responds to
changes in intravascular pressure, such that elevations in intravascular pressure depolarize the smooth
muscle membrane and vice versa. To induce pressure-dependent changes in membrane potential, we
apply a current Ii,j

MR in Equation (2.1), which is described by

d

dt
Ii,j
MR =

⎧⎪⎪⎨
⎪⎪⎩

−kj
inc(I

i,j
MR(t) − Ī i,j

MR(Pi,j
AA(t))) if

d

dt
Pi,j

AA(t − τ j
m) � 0,

−kj
dec(I

i,j
MR(t) − Ī i,j

MR(Pi,j
AA(t))) if

d

dt
Pi,j

AA(t − τ j
m) < 0,

(2.11)

where Pi,j
AA denotes the intravascular pressure. Equation (2.11) describes a rate-dependent myogenic

response, in which dIi,j
MR/dt at time t depends on the direction that Pi,j

AA is changing at an earlier time
t − τ j

m, as indicated by experimental observations (Loutzenhiser et al., 2002, 2004). The asymmetric
rate constants kj

inc and kj
dec are set to 0.55 and 0.13 s−1 for both nephrons, consistent with experimental

measurements (Loutzenhiser & Loutzenhiser, 2000). Similarly, the response delay τ j
m of both nephrons

is set to 0.3 s for pressure increases and to 1 s for pressure decreases (Loutzenhiser et al., 2002, 2004).
To represent a depolarizing current at elevated blood pressure, we assume that the target current Ī ij,

MR
is an increasing function of luminal pressure having the saturable form

Ī i,j
MR(Pi,j

AA) = Ij
MR,min + Ij

MR,max − Ij
MR,min

1 − (Ij
MR,max/Ij

MR,min) exp(−sj
MR(Pi,j

AA(t − τ
j
m) − P̄i,j

AA))
. (2.12)

The reference pressure P̄i,j
AA is chosen such that at baseline perfusion pressure Ī i,j

MR is zero.
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2.1.3 Tubuloglomerular feedback. The TGF current is applied to the smooth muscles spanning only
the distal 60 µm of the afferent arterioles (Christensen & Bohle, 1978). The current Ii,j

TGF is assumed to
exhibit a sigmoidal dependence on intratubular macula densa [Cl−] (denoted by Cj

MD),

Ii,j
TGF(C

j
MD) = Ij

TGF,min + Ij
TGF,max − Ij

TGF,min

1 − (Ij
TGF,max/Ij

TGF,min) exp(−sj
TGF(C

j
MD − C̄j

MD))
, (2.13)

where C̄j
MD denotes the operating macula densa [Cl−], set to 32 mM for both nephrons (Layton et al.,

1991). The parameters Ij
TGF,max, Ij

TGF,min and sj
TGF determine the dynamic range and open-loop gain of

TGF; for details see Sgouralis & Layton (2014b).

2.1.4 Connecting artery. Representation of the connecting artery follows that of the afferent arteri-
ole. Smooth muscle membrane and endothelium potentials are given by

C0
m

dvi,0
m

dt
= −Ii,0

L − Ii,0
K − Ii,0

Ca + Ii,0
mm + Ii,0

me + Ii,0
MR, (2.14)

C0
e

dvi,0
e

dt
= −Ii,0

me + Ii,0
ee , (2.15)

where j = 0 denotes the connecting artery. At the junction with the arterioles (i = NCA), muscle and
endothelial potentials are connected to v∗

m and v∗
e with conductances gmc = 2gmm and gec = 2gee, respec-

tively; see Fig. 2. The values of v∗
m and v∗

e are determined by conservation of current

gmc(v
∗
m − vNCA,0

m ) = g∗
mc(v

1,1
m − v∗

m) + g∗
mc(v

1,2
m − v∗

m), (2.16)

gec(v
∗
e − vNCA,0

e ) = g∗
ec(v

1,1
e − v∗

e) + g∗
ec(v

1,2
e − v∗

e). (2.17)

2.1.5 Blood flow. Blood enters the cortical radial artery at the renal perfusion pressure PRA, which is
assumed known a priori and is given by

PRA = Pm + Pp sin(2π ft), (2.18)

where Pm = 100 mmHg is the mean arterial pressure, Pp = 20 mmHg is the pulse amplitude and
f = 6 Hz is the heart rate typical of a rat. The pulse amplitude Pp is chosen to be smaller than the heart
beat amplitude to reflect the damping that occurs upstream of the connecting artery and the afferent
arterioles.

We assume simple Poiseuille flow so that blood flow can be computed from the pressure drop along
the vessel and the vascular resistance. Let QCA and Qj

AA denote blood flow along the connecting artery
and the jth afferent arteriole, respectively. Then

Qj
AA = Pj

AA(t, 0) − Pj
AA(t, Lj

AA)

Ω
j
AA

, (2.19)
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where Pj
AA(t, z) is the pressure profile along the jth afferent arteriole. Conservation of mass implies

QCA = Q1
AA + Q2

AA. (2.20)

The overall resistance of each afferent arteriole is computed from the radius profile

Ω
j
AA = 8μ

π

∫ Lj
AA

0

dz

Rj
AA(t, z)4

, (2.21)

where Rj
AA denotes arteriolar radius and μ denotes the apparent blood viscosity.

We assume that each model afferent arteriole is connected in series to a post-glomerular resistor Ω
j
EA

at the end of which pressure is PEA,end = 0 mmHg. Post-glomerular blood flow is given by the difference
between arteriolar flow Qj

AA and SNGFR (denoted by Qj
F), and is related to pressure drop and vascular

resistance according to

Qj
AA − Qj

F = Pj
GL − PEA,end

Ω
j
EA

, (2.22)

where Pj
GL is the blood pressure at the end of the glomerular capillary. The relation between Pj

AA and
Pj

GL can be found in Sgouralis & Layton (2014b). The values of Ω
j
EA are chosen such that, in the base

case, they account for 47% of the pressure drop between Pm and PEA,end.
The pressure gradient along the vascular lumens is given by the Poiseuille equation

dPCA(t, z)

dz
= − 8μ

π(RCA(t, z))4
QCA(t), 0 < z < LCA, (2.23)

dPj
AA(t, z)

dz
= − 8μ

π(Rj
AA(t, z))4

Qj
AA(t), 0 < z < LAA, (2.24)

where PCA(t, z) is the pressure along the connecting artery. Before entering the connecting artery, blood
is assumed passing through a fixed resistor ΩRA, thus pressure at the connecting artery’s inlet is given
by P0 = PRA − QCAΩRA. The value of ΩRA is chosen such that at baseline it accounts for a pressure
drop of 5 mmHg, (Sgouralis & Layton, 2014b). At the vascular junction, continuity of blood pressure
implies PCA(t, LCA) = Pj

AA(t, 0) for j = 1 and 2.
To represent the differences in the geometric dimensions between the afferent arterioles and the

connecting arteries, as seen in Casellas et al. (1994) and Wagner et al. (1997), the baseline vascular
tone of the smooth muscles forming the connecting artery is adjusted to yield a baseline luminal radius
that is 20% larger than that of the arterioles.

2.2 Tubule submodel

The tubule model represents a proximal tubule followed by a short-loop of Henle, extending from x = 0
(connection with the glomerulus) to x = Lj

TB (site of the macula densa). The model predicts intratubular
pressure (Pj

TB), water flow rate (Qj
TB) and Cl− concentration (Cj

TB). Tubular walls are assumed to be
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compliant, with a radius that depends passively on the transmural pressure gradient

Rj
TB = α

j
TB(Pj

TB − Pext) + β
j
TB, (2.25)

where α
j
TB characterizes tubular compliance and β

j
TB is the unpressurized radius.

2.2.1 Water transport. Tubular water flow is assumed to be pressure driven. The proximal tubule and
the initial segment of the descending limb of Henle’s loop are water permeable. Taking the transmural
water flux Φ

j
TB into account, pressure and flow rate along the model nephron are, respectively, given by

∂Pj
TB(t, x)

∂x
= − 8μTB

π(Rj
TB(t, x))4

Qj
TB(t, x), (2.26)

∂Qj
TB(t, x)

∂x
= −2πRj

TB(t, x)
∂Rj

TB(t, x)

∂t
− Φ

j
TB(t, x). (2.27)

At its outlet (site of the macula densa), the model tubule is connected to a resistance Ω
j
DT, at the end

of which pressure is assumed to be fixed at PDT,end = 2 mmHg. Thus, tubular outlet pressure and flow
are related by

Pj
TB(t, LTB) = PDT,end + Qj

TB(t, Lj
TB)Ω

j
DT. (2.28)

For details see Sgouralis & Layton (2014b).
Transmural water flux depends on the SNGFR:

Φ
j
TB = SGTB(Qj

F)Φ
j
TB,base, (2.29)

where Φ
j
TB,base is the baseline water flux profile. The factor SGTB is a dimensionless scaling that models

glomerulotubular balance (Thomson et al., 2001; Thomson & Blantz, 2008), which is given by

SGTB(Qj
F) = 1

1 + 0.7(Q̄j
F/Qj

F − 1)
, (2.30)

where Q̄j
F is the operating point, set to 30 nl/min for both nephrons.

2.2.2 Chloride transport. Chloride concentration along the tubule is given by conservation of mass

∂

∂t
(π(Rj

TB)2Cj
TB) = − ∂

∂x
(Qj

TBCj
TB) − 2πRj

TB,ss

(
V j

maxCj
TB

Kj
M + Cj

TB

+ κ
j
TB(Cj

TB − CTB,ext)

)
, (2.31)

where Rj
TB,ss is the steady-state tubular radius. Interstitial Cl− concentration, denoted by CTB,ext, is set

to 115 mM in the cortex and increases to 275 mM at the outer–inner medullary boundary (Layton et al.,
1991). The first term in the last pair of parentheses corresponds to active solute transport characterized
by Michaelis–Menten-like kinetics, and the second term represents transepithelial diffusion with trans-
mural permeability κ

j
TB. Strictly speaking, Na+ ion is actively transported via the Na+/K+-ATP pump,
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with Cl− ion transported passively through the basolateral membrane. On the apical side, the NKCC2
transporter binds one Na+ ion for each K+ or NH+

4 ion plus two Cl− ions. Thus, the Michaelis–Menten
term in Equation (2.31) is an approximation and appears to be sufficient. At the entrance of the proximal
tubule (x = 0), tubular fluid [Cl−] is set to 115 mM.

The proximal tubule exhibits glomerulotubular balance, whereby NaCl and water reabsorption along
the proximal tubular varies in tandem. To represent glomerulotubular balance, we assume that, along
the proximal tubule, maximum active Cl− transport V j

max exhibits an analogous dependence upon the
SNGFR as the transmural water flux Φ

j
TB. That dependence is given by

V j
max = (1 + 0.65(SGTB(Qj

F) − 1))V j
max,base, (2.32)

where V j
max,base is the baseline maximum transport rate along the proximal tubule. Note that the above

relation applies only along the proximal tubule, not the downstream segments.

2.3 Model parameters

The model involves a large number of parameters, which have been adopted from Sgouralis & Layton
(2014b) unless specified otherwise. A list of selected key parameter values can be found in Table 1.

3. Results

3.1 Effect of coupling on TGF-mediated dynamics

We first consider two isolated nephrons. The goal is to understand the behaviours of blood flow and
solute transport in the absence of internephron coupling, and how those behaviours are affected by TGF.
Similar to previous modelling studies, the afferent arterioles are assumed to be 303 µm long (Sgouralis
& Layton, 2012, 2014a,b). The connecting artery is not represented; instead, perfusion pressure PRA is
applied at the entrance of separate pre-arteriolar resistors Ω1

RA and Ω2
RA, with each one having half the

baseline value of ΩRA. With this configuration, the nephrons are fed by non-overlapping vasculatures,
and thus each one operates independently of the other.

In nephron 1, the TGF parameter s1
TGF is set to 0. This corresponds to an open-loop gain of 0,

and thus complete absence of TGF. SNGFR and macula densa luminal [Cl−] time courses, shown in
Fig. 3(A1 and A2) (blue line), exhibit limit-cycle oscillations at a frequency of ∼170 mHz. Those oscil-
lations arise from the spontaneous vasomotion of the afferent arteriole, which, in turn, results from the
interactions between cellular ionic fluxes and membrane potential (for a detailed explanation of the ori-
gin of the spontaneous vasomotion, see Chen et al., 2011). Spontaneous vasomotion yields oscillations
in arteriolar resistance, and thus the SNGFR.

In nephron 2, s2
TGF is set to 0.16 mM−1, which gives an open-loop gain of 3.1. At this gain, TGF-

mediated oscillations in blood flow and related variables emerge, at a frequency of ∼28 mHz; see
Fig. 3(A1 and A2) (red line).

Another frequency signature (6 Hz) in the blood flow arises from the heart beat (Equation (2.18)).
Those oscillations are significantly attenuated by the glomerular filtration process, and then further
damped by the compliance of the renal tubule. As a result, oscillations at heart rate are distinguishable
only at the SNGFR (Fig. 3A1) and entirely removed from the time courses at the site of the macula
densa (Fig. 3A2).

In the next set of simulations, the two nephrons are connected to a common connecting artery, as
shown in Fig. 1. The SNGFR and the macula densa [Cl−] of each nephron are shown in Fig. 3(B1 and
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Table 1 Baseline parameter values. Superscripts 0, 1, 2 refer to connecting artery, afferent arteriole
1 and afferent arteriole 2, respectively. References: 0present study, 1Casellas et al. (1994), 2Chilton et
al. (2008), 3Sgouralis & Layton (2014b), 4Sgouralis & Layton (2012), 5Sgouralis & Layton (2014a),
6Chen et al. (2011)

Description Parameter Value Units j

Afferent arteriole size0 Nj
AA 81 — 1, 2

Connecting artery size0 NCA 20 — —

Afferent arteriole length0 Lj
AA 243 µm 1, 2

Connecting artery length1 LCA 60 µm —

Muscle membrane capacitance2 Cj
m 6.5 pF 0, 1, 2

Endothelium compartment capacitance3,4,5 Cj
e 0.41 pF 0, 1, 2

Muscle–muscle gap-junctional conductance3,4,5 gj
mm 6175 pS 0, 1, 2

Muscle–endothelium gap-junctional conductance3,4,5 gj
me 553 pS 0, 1, 2

Endothelium–endothelium gap-junctional conductance3,4,5 gj
ee 12350 pS 0, 1, 2

Whole muscle leak conductance3,4,5,6 gj
L 6.5 pS 0, 1, 2

Whole muscle potassium conductance3,4,5,6 gj
K 26 pS 0, 1, 2

Whole muscle calcium conductance3,4,5,6 gj
Ca 13 pS 0, 1, 2

Leak reversal potential3,4,5,6 vj
L −70 mV 0, 1, 2

Potassium reversal potential3,4,5,6 vj
K −95 mV 0, 1, 2

Calcium reversal potential3,4,5,6 vj
Ca 80 mV 0, 1, 2

Myogenic response minimum current3 Ij
MR,min −32 fA 0, 1, 2

Myogenic response maximum current3 Ij
MR,max 195 fA 0, 1, 2

Myogenic response sensitivity3 sj
MR 0.06 mmHg−1 0, 1, 2

Tubuloglomerular feedback minimum current3 Ij
TGF,min −80 fA 1, 2

Tubuloglomerular feedback maximum current3 Ij
TGF,max 60 fA 1, 2

Tubuloglomerular feedback sensitivity3 sj
TGF 0.16 mM−1 1, 2

B2). The oscillating TGF signal in nephron 2 propagates along the two arterioles and drives nephron 1,
whose TGF has been inhibited, to oscillate too.

The propagation of the TGF signal is mediated by two pathways: (i) electrotonic conduction along
the smooth muscle and endothelium layers of the arteriolar walls, and (ii) blood flow hydrodynamics.
Electrotonic conduction (i) induces simultaneous vasoconstriction in both nephrons, whereas, owing
to mass conservation, hydrodynamic coupling (ii) induces opposing changes in the two nephrons. Both
pathways are represented in Fig. 3(B1 and B2). Synchronicity of the oscillations suggests the dominance
of the electrotonic pathway over hydrodynamics. To further clarify the importance of electrotonic con-
duction, we set g∗

mc and g∗
ec to zero, thereby completely disabling pathway (i). The resulting SNGFR and

macula densa [Cl−] are shown in Fig. 3(C1 and C2). The TGF-mediated macula densa [Cl−] oscillations
become out of phrase and significantly weaker relative to those in Fig. 3(B1 and B2).
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A1 A2

B1 B2

C1 C2

Fig. 3. Effect of internephron coupling on SNGFR and macula densa [Cl−]. TGF is disabled in nephron 1; TGF gain is set
to 3.1 in nephron 2. (A1 and A2) Isolated nephrons. TGF-mediated oscillations are seen in nephron 2. (B1 and B2) Fully
coupled nephrons show synchronization of myogenic and TGF-mediated oscillations. (C1 and C2) Electrotonic conduction
disabled. Oscillations in nephron 1 are induced by hydrodynamic coupling and are much weaker compared with the fully coupled
case (B1 and B2).

3.2 Estimation of internephron coupling coefficient

In the next set of simulations, we determine φ, which quantifies the ability of one nephron to influence
the other nephron’s SNGFR via TGF. To that end, we disable TGF in nephron 2 (by fixing C2

MD at
32 mM), vary C1

MD values from 30 to 34 mM, and compute changes in the two nephrons’ SNGFR. As
previously noted, even in the absence of TGF, tubular flow and other variables exhibit oscillations owing
to the spontaneous vasomotion and, to a lesser extent due to heart beat. Thus, to estimate internephron
coupling strength, we use time-averaged SNGFR values for each nephron. The predicted SNGFR of
both nephrons, as functions of C1

MD, are shown in Fig. 4(A). Owing to the decay of the electrotonic
signal along the afferent arterioles, perturbations in Q̄2

F are smaller than in Q̄1
F. Fig. 4(B) shows the

ratio of these perturbations. This ratio provides an estimation of the internephron coupling coefficient
φ, which is defined as this ratio evaluated at the operating macula densa [Cl−], i.e.

φ = ∂Q̄2
F/∂C1

MD

∂Q̄1
F/∂C1

MD

∣∣∣∣∣
C1

MD=C̄1
MD

. (3.1)

The baseline coupling coefficient is φ = 0.17, which is consistent with experimental observation (Chen
et al., 1995).
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A B

Fig. 4. Open-loop simulations to estimate internephron coupling coefficient. (A) SNGFR for the two nephrons as a function of
C1

MD, with C2
MD set to 32 mM. (B) Corresponding coupling coefficient, given by the ratio of the two SNGFR values.

Fig. 5. Internephron coupling coefficient as a function of total arteriolar length. Dependence is approximately linear.

3.2.1 Effect of afferent arteriole length on internephron coupling. Because the electrotonic sig-
nal decays along the afferent arterioles, φ is expected to be a decreasing function of vessel length.
Figure 5(A) shows φ as a function of total afferent arteriole length (sum of the lengths of the two arte-
rioles). These results were obtained with the assumption that the two model arterioles are of identical
length. Anatomic findings have yielded a range of afferent arteriole lengths, ∼ 200–500 µm (Casellas
et al., 1994; Nordsletten et al., 2006). Given these estimates, our model suggests that φ ranges in an
approximately linear fashion, from nearly 90% at a total arteriolar length of 300 µm, to nearly 0 at
600 µm. It is interesting that for sufficiently long arterioles, φ becomes negative, which indicates a shift
in the dominant pathway from electrotonic conduction to hydrodynamics.

3.2.2 Internephron coupling sensitivity on gap-junctions. Electrotonic signal propagation between
the two nephrons is mediated by gap-junctions developed at the interfaces of smooth muscle and
endothelium cells. Each interface is associated with a different conductance, and thus impacts φ dif-
ferently. To assess the impact of these conductances on φ, we conducted simulations where we sep-
arately varied each conductance by ±20% of its baseline value. Results, which are summarized in
Fig. 6, indicate that φ is most sensitive to gmm and gee. In contrast, φ appears relatively insensitive
to conductances developed near the vascular junction (i.e. gmc, gec, g∗

mc, g∗
ec). This suggests that geo-

metric considerations near the vascular junction do not have a significant impact on overall coupling
strength.
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Fig. 6. Percentage changes in coupling coefficient changes as gap-junctional parameters are varied by ±20% from baseline values.
Coupling strength is most sensitive to gmm and gee.

Fig. 7. Internephron coupling coefficient φ as a function of scaling applied to either gmm or gee.

Fig. 8. Time average smooth muscle and endothelium potential profiles under maximal stimulation of TGF at nephron 1. Circles
denote the TGF application site. Length constant of depolarization is longer in endothelium than in smooth muscle.

Next we compare the relative contributions of the smooth muscle and endothelial pathways in the
conduction of the TGF signal. To that end, we individually vary gmm and gee, from 10% to about 200%
its baseline value, and compute the resulting coupling coefficient φ. As can be observed from Fig. 7,
the dependence of φ on gee is significantly stronger than that on gmm. This implies the majority of the
TGF signal is conducted via the endothelial layer. This is further illustrated in Fig. 8, which shows
the membrane potential of the smooth muscle and endothelial cells along the arterioles, as well as the
connecting artery, under maximal stimulation of TGF. One can see that the signal decays more rapidly
along the smooth muscle layer, owing to its lower gap-junctional conductance, relative to the endothelial
layer.
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A

B

Fig. 9. Proximal tubule pressure oscillations for baseline (A) and reduced (B) gap-junctional conductances. Irregular oscillations
are obtained for the lower conductances.

3.3 Effect of gap-junctions on TGF responses

As noted above, the baseline model exhibits regular oscillations with key frequencies at ∼170 mHz
and ∼30 mHz (Fig. 3), which correspond to oscillations mediated by spontaneous ionic fluxes and
TGF, respectively. Those oscillations are transmitted to blood and solute flows through the contractile
mechanics of the vascular smooth muscles of the arteriolar walls. Fluctuations in the myogenic tone of
a given smooth muscle is initiated by changes in its membrane potential, which is coupled to that of the
neighbouring smooth muscles via the gap-junctions.

Gap-junctional coupling is known to be altered in hypertension (Rummery & Hill, 2004; Figueroa
et al., 2006; Wagner, 2008; Brisset et al., 2009; Figueroa & Duling, 2009), and blood flow in sponta-
neously hypertensive rats has been observed to exhibit highly irregular oscillations (Holstein-Rathlou
& Marsh, 1994). Thus, we seek to investigate the role of gap-junctional coupling in maintaining or dis-
rupting the regularity of flow oscillations. To that end, we computed the time courses of proximal tubule
pressure for a range of gap-junctional conductance values. Two selected cases are shown in Fig. 9: (A)
corresponds to baseline gmm, gee, gme, and (B) to the same parameters reduced by 55% of the baseline
values. As can be seen, the lower conductances yield highly irregular oscillations. In none of the sim-
ulations with conductances higher than baseline did we observe similarly irregular oscillations (results
not shown).

The spontaneously hypertensive rats that exhibit irregular oscillations (Holstein-Rathlou & Marsh,
1994) have also been found to exhibit stronger vasomotor coupling among neighbouring nephrons
(Wagner et al., 1997). To better understand the relation between gap-junctional conductance and vaso-
motor coupling strength, we conducted open TGF-loop simulations for conductances at baseline values
and reduced by 55%, as above. In both simulations, C2

MD was kept at 32 mM, and C1
MD was chosen to

yield a local vasoconstriction of ∼20%. Figure 10 shows the resulting profiles of time-averaged mus-
cle potential and vasoconstriction along the afferent arterioles. Reduced gap-junctional conductances
appear to yield stronger conducted responses in both membrane potential and vasoconstriction.

To understand the above predictions, which may appear counter-intuitive, we revisit the spontaneous
limit-cycle oscillations of the smooth muscle membrane potential, which arise from the interactions

100



TUBULOGLOMERULAR FEEDBACK SIGNALS IN COUPLED NEPHRONS

A B

Fig. 10. (A) Time-averaged muscle potential profiles for baseline gmm, gee, gme values, and for conductances reduced by 55%.
Circles denote TGF application sites. Stimulated nephron is shown on the right (positive distance); paired nephron on the left
(negative distance). Dotted line indicates the location of the vascular junction. (B) Corresponding vasomotor responses. Reduced
conductances yield stronger coupling.

BA

Fig. 11. (A) Limit cycles of muscle potential and K+ channels opening of afferent arteriole smooth muscle cells located 200 µm
upstream of the TGF application site. Trajectories are counterclockwise for both cycles. (B) Time courses of net gap-junctional
current Ii,j

mm + Ii,j
me (solid lines) and fraction of open K+ channels (dashed lines).

between the membrane potential, and the voltage-gated Ca2+ and K+ channels (Equations (2.4) and
(2.5)). Figure 11(A) shows the limit cycles of the smooth muscle located 200 µm upstream of the TGF
application site, for the simulations with baseline and reduced conductances. Each cycle can be divided
into four regions, according to the open state of the Ca2+ and K+ channels: A→B, where Ca+ channels
close and K+ channels open; B→C, where Ca+ and K+ channels close; C→D, where Ca+ channels
open and K+ channels close; D→A, where Ca+ and K+ channels open. Clearly, the electrotonic influ-
ence is stronger along A→B→C, which is associated with the closing of K+ channels, than along
C→D→A, which is associated with the opening of K+ channels. Owing to the gap-junctional commu-
nications among the smooth muscles, different conductances yield different deformations of the limit
cycles. In particular, the reduced conductances case yield a smaller limit cycle. How does this explain
the stronger vasoconstriction?

To answer this question, we consider the net gap-junctional currents (between two smooth mus-
cle cells, and between smooth muscle and endothelial cells, Ii,j

mm + Ii,j
me). As shown in Fig. 11(B), the

reduced conductance values yield smaller currents than the base case (compare maximum currents at
11.3 (reduced) versus 17.2 mV/s (baseline), minimum currents at −26.8 (reduced) versus −27.0 mV/s
(baseline)). This is to be expected and does not explain the stronger coupling in the reduced conductance
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case. However, consider point B, which marks the beginning of the closing of the K+ channels. Coinci-
dentally, B is close to the peaks of Ii,j

mm + Ii,j
me in both cases. That current is depolarizing, which opposes

the closing of the K+ channels. Thus, the stronger the current, the slower is the closing of K+ channels.
Because Ii,j

mm + Ii,j
me is stronger with the baseline conductances, K+ channels are prone to slower closing.

To quantify these observations, we compute the time-averaged fraction of open K+ channels n̄i,j by

n̄i,j = Ī i,j
K

gi,j
K (v̄i,j

m − vi,j
K)

, (3.2)

where v̄i,j
m and Ī i,j

K are the corresponding time averages of vi,j
m and Ii,j

K . For the muscles shown in Fig. 11,
n̄i,j = 12.6% and 11.2% for baseline and reduced conductances, respectively. Consequently, the time-
averaged membrane potentials are v̄i,j

m = −38.1 and −36.2 mV, respectively. That is, the reduced con-
ductances result in a larger degree of depolarization, and a stronger vasoconstrictive response (radius
9.3 µm compared with 9.6 µm in the base case).

4. Discussion

We have extended our previous detailed model of renal haemodynamics (Sgouralis & Layton, 2014b)
to represent two coupled nephrons. The resulting coupled nephron model is used to study electrotonic
conduction of TGF signal between coupled nephrons, factors that impact the coupling strength, and the
effect of internephron coupling on TGF-mediated dynamics.

4.1 Comparison with previous modelling studies

In a series of studies (Layton et al., 2009, 2011; Ryu & Layton, 2014), we have previously used mathe-
matical models to investigate the effects of internephron coupling on TGF-mediated dynamics. A major
difference between the present study and the previous studies is that the latter represent only electrical
coupling, whereas by including the afferent arterioles and connecting artery, the present study represents
both hydrodynamic and electrical coupling.

Another major difference is that the previous models (Layton et al., 2009, 2011; Ryu & Layton,
2014) do not explicitly incorporate the afferent arterioles. Instead, internephron coupling is represented
by applying a fraction (determined by a coupling parameter, φ) of the TGF signal of the initiating
nephron to its paired nephron. This implies that the coupling strength is known a priori. In contrast, the
present model explicitly represents two paired afferent arterioles, along which the TGF signal propa-
gates. This allows us to determine the internephron coupling strength. The base case coupling strength,
φ = 0.17, agrees well with values assumed in our previous studies (Layton et al., 2009, 2011; Ryu &
Layton, 2014).

In a pioneering study, Marsh et al. (2013) published a similarly comprehensive model of a
nephrovascular network that incorporates a large number of afferent arterioles, loops of Henle and TGF.
In that model, each afferent arteriole is represented by only two myogenically active segments. Thus,
each submodel represents a rather long segment along the afferent arteriole, whereas in the present study,
each afferent arteriolar cell submodel has the dimensions of a renal smooth muscle cell (Loutzenhiser &
Loutzenhiser, 2000). Also, the model of Marsh et al. (2013) uses a phenomenological representation of
TGF signal propagation; the TGF input is applied to both arteriolar segments with a predefined decay
based on the distance from the glomerulus. In contrast, in the current model TGF input is applied only to
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the distal smooth muscles of each arteriole and the signal propagates along the arterioles via electronic
conduction.

4.2 Internephron coupling and hypertension

In the cardiovascular system, gap-junctions are made up of one or more of four connexin proteins: Cx37,
Cx40, Cx43 and Cx45. Changes in Cx expression in hypertensive animal models have been reported,
although those results are not always consistent. Cx40 and Cx45 are consistently reduced in endothelial
cells, but results for Cx43 are mixed (Haefliger et al., 2000; Yeh et al., 2006). An interesting and likely
relevant observation is that normalization of blood pressure in the spontaneously hypertensive rats using
an angiotensin-converting enzyme inhibitor or candesartan restores endothelial connexin expression to
normal in parallel with the normalization of blood pressure (Kansui et al., 2004; Rummery et al., 2005).

Our simulation results suggest that a reduction in gap-junctional conductances elevates internephron
coupling, in the sense that it yields a stronger conducted TGF response (Fig. 11). This rather surprising
prediction is a result of the interactions between the gap-junctional voltage signal and the K+ channels.
Assuming that gap-junctional conductances are indeed reduced in spontaneously hypertensive rats, our
result may explain the observed stronger TGF coupling (Wagner et al., 1997). There is experimental evi-
dence which suggests that gap-junctional conductances may vary in different disease states (Heberlein
et al., 2009). The relation between gap-junctional conductances and TGF coupling strength predicted by
the present model can be tested provided these quantities can be measured in health and disease states.

Additionally, our simulation results suggest that reduced conductances give rise to irregular TGF-
mediated oscillations in nephron flows and related variables (Fig. 9). Similar patterns have been
observed in spontaneously hypertensive rats (Holstein-Rathlou & Marsh, 1994). This prediction is also
consistent with findings by de Wit et al. (2003), which indicate that the absence of vascular Cx40 is
associated with hypertension and irregular vasomotion. In particular, de Wit et al. reported diameter
fluctuations reaching as low as ∼ 0 µm in Cx40−/− arterioles. Similarly, our model predicts fluctuations
reaching near complete occlusion when gap-junctional conductances are reduced to <40% of baseline
values (results not shown).

Note, however, that we have limited our consideration to the effects of altered gap-junctional con-
ductances. Other differences between hypertensive and normotensive animals, e.g. perfusion pressure,
TGF gain (Dilley & Arendshorst, 1984), pressure natriuretic and diuretic responses (Granger et al.,
2002; Beard & Mescam, 2012), etc. have not been incorporated. These factors will be considered in a
future, more comprehensive study that focuses on autoregulation in a hypertensive kidney.

4.3 Myoendothelial gap-junction expression

The proper conduction of vasomotor responses relies on a high density of myoendothelial gap-junctions,
which provide electrical communication between endothelial cells and smooth muscle cells. The expres-
sion of myoendothelial gap-junctions have been reported to be heterogeneous, among different vascular
beds, with density inversely related to arteriolar size (Sandow et al., 2012). In a modelling study, Hald et
al. (2014) show that heterogeneous distributions of myoendothelial gap-junction properties may have a
profound impact on system behaviour. However, spatial heterogeneity in myoendothelial gap-junction
expression within a given afferent arteriole has yet to be demonstrated, and direct measurements of
myoendothelial gap-junction conductances do not exist. Given these uncertainties, we have assumed
constant gap-junction conductances in the present model. Nonetheless, the impact of heterogeneous
myoendothelial gap-junction distributions is a worthwhile consideration in a future study.
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