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Rapid assessment of disaster damage using
social media activity
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James Fowler,4,9 Manuel Cebrian1,3,10*
Could social media data aid in disaster response and damage assessment? Countries face both an increasing
frequency and an increasing intensity of natural disasters resulting from climate change. During such events,
citizens turn to social media platforms for disaster-related communication and information. Social media im-
proves situational awareness, facilitates dissemination of emergency information, enables early warning
systems, and helps coordinate relief efforts. In addition, the spatiotemporal distribution of disaster-related
messages helps with the real-time monitoring and assessment of the disaster itself. We present a multiscale
analysis of Twitter activity before, during, and after Hurricane Sandy. We examine the online response of 50
metropolitan areas of the United States and find a strong relationship between proximity to Sandy’s path and
hurricane-related social media activity. We show that real and perceived threats, together with physical disaster
effects, are directly observable through the intensity and composition of Twitter’s message stream. We dem-
onstrate that per-capita Twitter activity strongly correlates with the per-capita economic damage inflicted by
the hurricane. We verify our findings for a wide range of disasters and suggest that massive online social net-
works can be used for rapid assessment of damage caused by a large-scale disaster.
INTRODUCTION

Natural disasters are costly. They are costly in terms of property, po-
litical stability, and lives lost (1–3). Unfortunately, as a result of climate
change, natural disasters, such as hurricanes, floods, and tornadoes,
are also likely to become more common, more intense, and subse-
quently more costly in the future (4–7). Developing rapid response
tools that are designed to aid in adapting to these forthcoming changes
is critical (8).

As society faces this need, the use of social media on platforms like
Facebook and Twitter is on the rise. Unlike traditional media, these
platforms enable data collection on an unprecedented scale, docu-
menting public reaction to events unfolding in both virtual and phys-
ical worlds. This makes social media platforms attractive large-scale
laboratories for social science research (9–11). Opportunities provided
by social media are used in various domains, including the economic
(12), political (13–16), and social (14, 17–21) sciences, as well as in pub-
lic health (22, 23).

Because of the potential of social media, the use of massive online
social networks in disaster management has attracted significant public
and research interest (24–26). In particular, the microblogging platform
Twitter has been especially useful during emergency events (27–29).
Twitter allows its users to share short 140-character messages and
to follow public messages from any other registered user. Such open-
ness leads to a network topology characterized by a large number of
accounts followed by an average user, placing Twitter somewhere in
between a purely social network and a purely informational network
(30). The information network properties of Twitter facilitate and ac-
celerate the global spread of information; its social network properties
ease access to geographically and personally relevant information, and
the message length limit encourages informative exchange. These
factors combine to make Twitter especially well suited for a fast-paced
emergency environment.

Existing research on the use of Twitter in an emergency context is
manifold. Researchers study platform-specific features (retweets and
private messages) of emergency information diffusion (31, 32), the role
of the service in gathering and disseminating news (33, 34), its contri-
bution to situational awareness (35, 36), and the adoption of social
media by formal respondents to serve public demand for crisis-related
information (37, 38). Another branch focuses on the practical aspects
of classifying disaster messages, detecting events, and identifying messages
from crisis regions (39–43). Others use Twitter’s network properties to
devise sensor techniques for early awareness (44), to gauge the dynamics
of societal response (45, 46), and to crowdsource relief efforts (47).

More recently, researchers have begun using social media platforms
to derive information about disaster events themselves. For instance,
the number of photographs uploaded to Flickr was shown to correlate
strongly with physical variables that characterize natural disasters (at-
mospheric pressure during Hurricane Sandy) (48). Although it is un-
clear what causes the link (external information, network effects, or
direct observer effects), the correlation suggests that digital traces of
a disaster can help measure its strength or impact. On the basis of a
similar concept, other studies verify the link between the spatio-
temporal distribution of tweets and the physical extent of floods (49)
and the link between the prevalence of disaster-related tweets and the
distribution of Hurricane Sandy damage predicted frommodeling (50).
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Here, we present a hierarchical multiscale analysis of disaster-
related Twitter activity. We start at the national level and progres-
sively use a finer spatial resolution of counties and zip code tabulation
areas (ZCTAs). First, we examine how geographical and sociocultural
differences across the United States manifest through Twitter activ-
ity during a large-scale natural disaster (that is, Hurricane Sandy).
We investigate the response of cities to the hurricane and identify
general features of disaster-related behavior at the community level.
Second, we study the distribution of geo-located messages at the
state level within the two most affected states (New Jersey and
New York) and, for the first time, analyze the relationship between
Twitter activity and the ex-post assessment of damage inflicted by
the hurricane. We verify the external validity of our findings across
12 other disaster events.
RESULTS

Context of the study
Hurricane Sandy was the largest hurricane of the 2012 season and
one of the costliest disasters in the history of the United States. Sandy
was a late-season hurricane that formed on 22 October 2012 south-
west of Jamaica, peaked in strength as a Category 3 hurricane over
Cuba, passed the Bahamas, and continued to grow in size while moving
northeast along the United States coast. The hurricanemade its landfall
on the continental United States at 23:30 UTC on 29 October 2012
near Brigantine, NJ, with winds reaching 70 knots and with the storm
surge reaching as high as 3.85 m. According to the National Hurricane
Center (51), Sandy caused 147 direct fatalities and is responsible for
damage in excess of $50 billion, including 650,000 destroyed or da-
maged buildings and more than 8.5 million people left without power—
some of them for weeks.

Both broadcast and online media extensively covered Hurricane
Sandy, generating a large volume of Twitter messages that became
the basis for this study. Our raw data include hurricane-related mes-
sages (see table S1 for hurricane-related keywords and Materials and
Methods for description of data) posted between 15 October and 12
November 2012, in a period that precedes the formation of the hur-
ricane and extends beyond its dissipation. In total, we have 52.55 million
messages from 13.75 million unique users. Because we are interested in a
spatiotemporal analysis of Twitter activity, we focus exclusively on mes-
sages and users with known locations, which limits the data to 9.7 mil-
lion geo-coded tweets from 2.2 million unique user accounts.

We perform the analysis at the national and state levels. At the
national level, we use cities as a natural (in terms of spatial extent
and population size) basis for aggregation and comparison. Cities
are important because of their dominant (52, 53) and increasing
(54, 55) socioeconomic role in all aspects of human life (56–58), both
in the real world and online. In addition, similarities or differences in
the way cities react to a major natural disaster, like Sandy, are of in-
terest to social scientists and climate adaptation policy-makers alike
(8, 59). Our analysis covers the 50 most populous urban areas ac-
cording to the 2010 U.S. Census. At the state level, we progressively
use a finer spatial resolution of counties and ZCTAs to analyze the
local distributions of Twitter activity and hurricane damage. At every
level of spatial resolution, we aggregate messages that have latitude
and longitude falling within the boundaries of a respective region of
interest (metropolitan area, county, or ZCTA). We use boundaries
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and population estimates of all administrative areas as determined
by the 2010 U.S. Census.

After aggregating the tweets by location, we use time stamps for
temporal analysis. We allocate messages into nonoverlapping bins of
24-hour duration aligned with the time of minimum activity. Com-
parison metrics include the total number of active users, number of
messages posted, classification of these messages into original and re-
tweeted messages (including identification of the source as local or ex-
ternal to a particular community), and sentiment. Because the number
of tweets originating from different urban or zip code areas varies
greatly, we compare characteristics as normalized by the total count
of distinct users for each area who are active during the data collection
period. For consistency, each keyword is considered separately, and
normalization uses the count of users engaged in the activity on a par-
ticular topic to avoid the bias that may arise because of the different
sets of prevalent topics in different cities.

Dynamics of Twitter activity across regions and
hurricane-related topics
The messages studied here cover a range of keywords with varying
relevance to Hurricane Sandy. Because of this, we deal with three
dimensions in our analysis: spatial, temporal, and topical.

Figure 1 illustrates some of the characteristic features of Twitter
activity. The pattern demonstrated by keywords strongly related to
the hurricane (“sandy,” “storm,” “hurricane,” “frankenstorm,” etc.) is
shown in Fig. 1A: the number of messages slowly increases with a
strong peak on the day of hurricane landfall, followed by a gradual
decline in the tweet activity level. Geographically, the trend is similar
almost everywhere, but the magnitude of the normalized response
changes depending on the proximity to the hurricane, determined
through the shortest distance to the path of the hurricane (60).

An alternative way to summarize the activity is shown in Fig. 1B,
where the normalized activity is presented as a two-dimensional heat-
map. We rank cities by their proximity to the hurricane, and we rank
words by the average normalized activity. At the peak of the disaster,
event-related keywords rank higher and activity increases with prox-
imity. Consequently, we see that the upper-left corner of our city/topic
matrix shows a high level of activity. In summary, as the disaster
approaches and peaks in intensity, so does the normalized local Twit-
ter response. In addition, the content of the message stream changes,
and keywords most associated with the event dominate the agenda.

When we aggregate our data over the period between 20 October
and 12 November 2012, we find that tweet activity declines with in-
creasing distance from the hurricane path up to 1500 km and is nearly
constant for all places farther away. These features are summarized
in Fig. 2A and fig. S1 (for all keywords). This relationship between
proximity and activity level is a dominant feature, accompanied by two
other relationships. The first one is an inverse relationship between
activity on the topic and originality of the content expressed through
the fraction of retweets, which reflects the balance between content
creation and consumption. The areas directly hit by, or close to, the
disaster show a lower ratio of retweets (more original content) in the
stream of messages generated, as can be seen in Fig. 2B and fig. S2.
The second relationship is between the activity and the global pop-
ularity of local messages (defined as the count of messages that get
retweeted, normalized by the local user count), with content from af-
fected areas attracting higher attention elsewhere, as shown in Fig. 2C
and fig. S3. The activity-popularity relationship (and, to a lesser degree,
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Fig. 1. Example of the spatiotemporal evolution of Twitter activity across keywords. (A) Geographical and topical variation of normalized activity (the
number of daily messages divided by the number of local users active on the topic during the observation period). The horizontal axis is an offset (in hours)
with respect to the time of hurricane landfall (00:00 UTC on 30 October 2012). Activity on hurricane-related words like “sandy” increases and reaches its peak
on the day of landfall and thengradually falls off. Qualitatively similar trends are observed everywhere, with distance to the path of the hurricane affecting the
strength of the response (compare magnitudes of activity peaks between New York, Chicago, and Miami). Different temporal patterns are exhibited by
different keywords: “gas”-related discussion peaks with delay corresponding to posthurricane fuel shortages, and activity on “storm” has a secondary spike
attributable to November “Nor’easter” storm. (B) Summary of activities by topic and location. Color corresponds to the level of normalized activity (blue, low;
red, high). In columns, places are ranked according to their proximity to the path of the hurricane (closest on the left; farthest on the right). In rows, words are
ranked according to the average activity on the topic. Evolution of the event brings disaster-related words to the top of the agenda, with the northeast
showing the highest level of activity.
Fig. 2. Characteristic featuresof Twitter activity across locations (labeledby color according tohurricaneproximity; blue, farther fromthedisaster;
red, closer to the disaster). In all panels, the primary plot shows results for messages with keyword “sandy” and an inset for keyword “weather” to contrast
behaviors between event-related and neutral words. (A) A primary feature is the sharp decline in normalized activity as the distance between a location and
the path of the hurricane increases. After the distance exceeds 1200 to 1500 km, its effect on the strength of response disappears. This trendmay be caused
by a combination of factors, with direct observation of disaster effects andperception of risk both increasing the tweet activity of the East Coast cities. Anxiety,
anticipation, and risk perception evidently contribute to themagnitude of response becausemany of the communities falling into the decreasing trendwere
not directly hit or were affected only marginally, whereas New Orleans, for example, shows a significant tweeting level that reflects its historical experience
with damaging hurricanes like Katrina. (B) The retweet rate is inversely related to activity, with affected areas producing more original content. (C) The
popularity of the content created in the disaster area is also higher and therefore increases with activity as well. None of the features discussed above
are present for neutral words (see the insets in all panels).
Kryvasheyeu et al. Sci. Adv. 2016; 2 : e1500779 11 March 2016 3 of 11
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activity-originality relationship) is very strong for the event-related key-
words but virtually absent for neutral or more general keywords. We
illustrate this in Fig. 2 inset plots for the keyword “weather”—a general
word that is used frequently and is not necessarily associated with ex-
treme weather events, even when such events take place.

The direct relationship between online activity and proximity to
the hurricane naturally raises the question of factors that stimulate
such an activity. Is it extensive media coverage, perception of risk,
or witnessing the hurricane’s meteorological effects (winds, precipita-
tion, and storm surge) and damage (power and fuel shortages,
flooding, loss of personal property, and casualties)? The latter, es-
pecially the extent to which quantifiable properties of online activity
(recorded during and shortly after the disaster) reflect the severity of
disaster-related damage, is especially interesting from the point of view
of disaster management. Real-time analysis of online activity as a pre-
dictor of damage would be a valuable tool for optimizing the allocation
of limited emergency and recovery resources, and may complement
other predictive models used in the joint assessment and recovery of
damaged infrastructures (61). Therefore, we investigate whether dam-
age to property across the most severely hurricane-affected regions cor-
relates with the recorded Twitter activity.

Damage assessment: Hurricane Sandy
Because the hurricane damage was mostly confined to several states,
we perform damage analysis at finer spatial granularity by looking at
counties and ZCTAs. We examine both aggregation levels to deter-
mine the limits of spatial resolution achievable with such a technique.

Two primary data sources contribute to our estimate of damage.
The first data source are Federal Emergency Management Agency
(FEMA) household assistance grants to homeowners and renters
(62). These grants are provided to relieve the hardship of households
exposed to disasters and to enable bringing the original property back
to a habitable condition. The second data source are insurance claims
associated with Hurricane Sandy (63, 64), including National Flood
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Insurance, residential, commercial, vehicle, and marine insurance
claims. We use these indicators because both are expressed in mone-
tary terms and are reported by individuals, rather than by administra-
tive entities like municipalities. A more holistic index of community
hardship [like the one by Halpin (65)] could be developed, taking into
account other metrics: the number of people served in shelters, effects
of power loss (using as proxy the number of days schools were closed),
gas shortages (the number of calls to the State Emergency Hotline
from gas stations), and FEMA public assistance grants to help with
municipal infrastructure. Although suchmethodology gives a broader
picture of the hardship on the ground, themetrics involved do not have
a standard way of measurement and do not share a common unit to be
integrated together. To avoid this ambiguity, we only include the data
reported by individuals and measured directly as monetary loss.

We analyze the damage estimates, aggregated within either counties
or ZCTAs, against Twitter activity in the same boundaries. The available
data on damage allow us to look at several aspects, including the total
damage claimed, the total damage covered by FEMA and insurance, the
number of applications and successful applications, and severity catego-
ries based on the cost. We look at the relationship between normalized
quantities (per-capita Twitter message count and per-capita damage) to
avoid correlations artificially induced by population counts (more pop-
ulous areas produce higher message counts and experience greater
damage). To determine whether activity quantitatively reflects the se-
verity of the disaster, we test the independence of two distributions:
activity versus damage. We consider activity on the core set of mes-
sages strongly associated with the hurricane (see table S2 for the rank-
ings and table S3 for the results across all keywords).

The estimate of damage is a snapshot from November 2014,
whereas activity varies significantly over the data collection period.
In the interest of capturing predictive capacity, and in a practical
attempt to determine the best analysis window to get the stron-
gest predictive effect, we calculate the correlations on a daily basis be-
tween 22 October and 12 November. In addition to examining the
Fig. 3. Predictive capacity of Hurricane Sandy’s digital traces. The horizontal axis is an offset (in hours) with respect to the time of hurricane landfall
(00:00 UTC on 30 October 2012). (A) The number of messages as a function of time (labeled on the secondary y axis on the right) and the number of
“active” (with at least onemessage posted) ZCTAs (labeled on the primary y axis on the left). (B) Evolution of the rank correlation coefficients between the
normalized per-capita activity (number of original messages divided by the population of a corresponding ZCTA) and per-capita damage (composed of
FEMA individual assistance grants and Sandy-related insurance claims). In addition, the dashed trend shows Kendall rank correlations between average
sentiment and per-capita damage. The correlation increases from the prelandfall stage to the postlandfall stage of the hurricane, with a drop on the day of
hurricane landfall. We conclude that the postdisaster stage, or persistent activity on the topic in the immediate aftermath of an event, is a good predictor
of damage inflicted locally. The strengthof the average sentiment of tweets does not seem tobe a goodpredictor, at least at this level of spatial granularity
(ZCTA resolution).
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activity-damage correlation, we also check the sentiment-damage corre-
lation. Previous studies (44) suggested that a drop in the average senti-
ment in an area may indicate an emergency, and we aim to verify
whether the sentiment also serves as a quantitative predictor of damage.

Correlation coefficient dynamics is presented in Fig. 3. Because we
discard inactive areas (ZCTAs with no messages posted during an
analysis period), the length of vectors subject to an independence test
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varies over time, and we chose to discard correlation coefficients ear-
lier than 22 October and later than 11 November. Within this period,
we have, on average, hundreds of active ZCTAs (see Fig. 3A). Figure
3B shows that the rank correlation coefficients are moderately positive,
indicating a weak correlation.

The correlation is present for several days before the landfall, which
might reflect a priori knowledge of local hurricane vulnerability based
Fig. 4. Spatial distributions andmutual correlations betweenHurricane Sandy damage, Twitter activity, and average sentiment of tweets. Correla-
tions between per-capita Twitter activity and damage are illustrated at the ZCTA level for New Jersey (A) and at the county level for New Jersey andNewYork
(B). The difference in geographic coverage is dictated by the quality of data: no insurance data are available for New York at the ZCTA level. Spatial distribu-
tions show that both variables reach their highest levels along the coast and in densely populated metropolitan areas around New York City. Normalized
activity and damage both follow a quasi log-normal distribution [see the histograms along the axes of the scatter plot in (A)]. A moderately strong positive
correlation between postlandfall activity and damage is observed, especially for fine-resolution analysis [see inset tables in the scatter plots in (A) and (B) for
exact statistics and P values]. Sentiment-versus-damage (S-D) analysis is underpowered at the ZCTA level (t = −0.031, P = 0.29), but county-level analysis
shows that negative sentiment correlates with damage (t = −0.28, P = 0.018).
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on historical experience within particular areas and obvious risk fac-
tors such as proximity to the shoreline. This positive correlation de-
creases on the day of landfall across all correlation measures. Despite
the highest total count of messages, the peak of the disaster has the
weakest damage-predictive power. However, in the following 2 days,
the activity-damage correlation steadily increases. From the third day
onward, it fluctuates around a moderate level (Kendall t = 0.25 to 0.3;
Spearman r = 0.35 to 0.45). We examined these trends by combining
all data, as well as by examining different keywords separately, without
much of a difference in the pattern or magnitude of coefficients.

Arguably, this trend (a drop on the day of the hurricane, followed
by a steady increase in the relationship between activity and damage)
could be explained by the universally high tweet activity on the day of
hurricane landfall, fueled not only by the severity of the storm but also
by the widespread coverage of the hurricane in all forms of media. In
places that were spared significant consequences of the hurricane, the
interest of the public quickly diminishes. However, in affected areas, the
topic persistently remains at the top of the agenda, making postevent
activity an indicator of the damage caused by the hurricane.

Focusing on the period in which the relationship between activity
and damage is strongest (between 31 October and 12 November), we
measure rank correlation coefficients for all ZCTAs inNew Jersey and
for selected counties in New Jersey and New York. Results are sum-
marized in Fig. 4 and fig. S4. ZCTA-based distributions of per-capita
activity and per-capita damage are approximately log-normal, with
histograms shown in Fig. 4A. The Kendall rank correlation reaches
0.39, the Spearman rank correlation reaches 0.55, and the Pearson cor-
relation coefficient approaches 0.6. Analysis by county (Fig. 4B) reveals
similar results: Kendall t = 0.34, Spearman r = 0.49, and Pearson r =
0.49 for 34 counties across New Jersey and New York. All measures are
statistically significantwithP< 0.05, indicating amoderate positive cor-
relation between damage and tweet activity. Spatial distributions con-
firm the relationship, with a pronounced concentration of both damage
and normalized activity along the coastline of New Jersey. Alternative
normalization (by Twitter user count instead of actual population) does
not alter the strength of the correlation (see table S4). Using geo-
enriched data instead of natively geo-coded data produces similar
results, with ZCTA-level analysis giving a slightly weaker correla-
tion but with county-based analysis unaffected (see fig. S5).

Following Guan and Chen (50), we also analyze the relationship
between Twitter activity and damage estimates produced by the
FEMA Modeling Task Force (based on the Hazus-MH model of hur-
ricane wind and storm surge damage to housing and infrastructure).
This approach results in somewhat weaker correlations (Kendall t =
0.28, Spearman r = 0.44, and Pearson r = 0.33), suggesting that online
response better reflects the actual damage (ex-post assessment instead
of modeling predictions). Comparison of alternative damage estimates
and their effects on the strength of the observed activity-damage cor-
relation is summarized in tables S5 and S6.

Our previous study (44) suggested that the negative average sen-
timent may indicate an emergency situation based on the fact that
the sentiment experiences a drop for a sustained period of time
before and after the landfall of Hurricane Sandy. Here, we reexamine
the sentiment-damage relationship and find that daily ranking cor-
relation coefficients oscillate around zero for the entire observation
period (see Fig. 3B). Within the most favorable prediction window
(31 October to 12 November), Kendall t = −0.031 (P = 0.294), suggest-
ing independence of the underlying distributions or that analysis at
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ZCTA resolution is underpowered. Change in spatial resolution from
ZCTAs to counties results in a more definitive relationship (t = −0.28,
P = 0.018), and normalization by Twitter user count yields more signif-
icant results (t = −0.34, P = 0.005), confirming our previous findings
and making sentiment weakly predictive of damage (see table S7 for
the summary of results).

Verification for other disaster events
To establish that the correlation between damage and social media
activity is sufficiently general, we test it for other events. We look at
all major disasters declared by FEMA in 2013 and 2014, for which
individual assistance data are publicly available. In total, 12 separate
events of different nature were noted: five large-scale floods, five
storms with tornadoes, a mudslide, and an earthquake.

We present the analysis based on damage estimates that include
only FEMA individual assistance grants, without insurance data. Most
of the states’ financial regulatory departments declined our requests
for insurance information on the grounds that data were not available
at the ZCTA level, whereas Arkansas provided county-based estimates
(see table S8 for details). We conclude that the quality of data collected
by the New Jersey State Department of Banking and Insurance is an
exception to the standard practice likely because of the severity and
magnitude of damage brought about by Hurricane Sandy.

We follow the same method of tracking the correlations between
daily activity and damage, using the period in which they are strongest
(usually onward from the second or third day after the peak in activ-
ity). Results of the correlation between Twitter activity and damage are
summarized in Table 1.

All disasters exhibit moderate to strong correlations between activ-
ity and damage. Correlations are stronger for low-cost events (as
shown in Fig. 5); with increasing scale and cost of damage, coefficients
drop to an approximately constant level regardless of event type. Sev-
eral events have an exceptionally strong relationship: the South Napa
earthquake and the Oso mudslide. Both of these events are epicentric
in nature: a landslide, which affected a single community, and an
earthquake, which had a strength that quickly falls with distance.
Our main findings for Hurricane Sandy (when FEMA data alone
are used as estimates of damage) are comparable in strength with sim-
ilar events [large-scale storms and floods (DR-4116)].

One event where the correlation could not be reliably assessed is
Alaska floods (DR-4122). It lacks data: Twitter activity in the region is very
sparse, and we only detected 22 topical tweets across the disaster region.
Thosemessages are in twoZCTAs, and the onewith higher activity does
suffer greater damage—still in agreement with our observations.

Our results for Hurricane Sandy indicate that when components
of damage (FEMA grants and insurance payouts) are considered sep-
arately, insurance data appear more important. The total amount of
payouts is higher ($5.3 billion in insurance claims against $0.4 billion
in FEMA grants for New Jersey; $3.7 billion in insurance claims
against $1 billion in FEMA grants for the State of New York), and
the correlation with social media activity is stronger. It is likely be-
cause FEMA individual grants are designed just to provide urgent
help to restore properties to basic livable conditions, and they may
not reflect the full scale of damage. The fact that we see comparable
(with Sandy) or stronger correlations in all additional events, de-
spite the lack of insurance data, means that one may expect even
stronger results with complete data (Kendall t > 0.4 and Pearson
r > 0.6).
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DISCUSSION

We found that Twitter activity during a large-scale natural disaster—in
this instance Hurricane Sandy—is related to the proximity of the region
to the path of the hurricane. Activity drops as the distance from the
hurricane increases; after a distance of approximately 1200 to 1500 km,
the influence of proximity disappears. High-level analysis of the com-
position of the message stream reveals additional findings. Geo-
enriched data (with location of tweets inferred from users’ profiles)
show that the areas close to the disaster generate more original content,
characterized by a lower fraction of retweets. This extends the previous
understanding of retweeting behavior in crisis (31, 32) and confirms
other studies (41). Finally, we find that messages from disaster regions
generate more interest globally, with a higher normalized count of re-
tweet sources.

In the first study of its kind, based on the actual ex-post damage
assessments, we demonstrated that the per-capita number of Twitter
messages corresponds directly to disaster-inflicted monetary damage.
The correlation is especially pronounced for persistent postdisaster ac-
tivity and is weakest at the peak of the disaster. We established that
per-capita activity and per-capita damage both have an approximately
log-normal distribution and that the Pearson correlation coefficient
between the two can reach 0.6 for a carefully selected observation pe-
riod in the aftermath of the landfall. This makes social media a viable
platform for preliminary rapid damage assessment in the chaotic time
immediately after a disaster. Our results suggest that, during a disaster,
officials should pay attention to normalized activity levels, rates of
original content creation, and rates of content rebroadcast to identify
the hardest hit areas in real time. Immediately after a disaster, they
should focus on persistence in activity levels to assess which areas
are likely to need the most assistance.

We tested the sensitivity of our technique to variations in normal-
ization strategies (Census population estimates versus Twitter user
Kryvasheyeu et al. Sci. Adv. 2016; 2 : e1500779 11 March 2016
count), the volume and quality of underlying geo-coded data (natively
geo-coded versus geo-enriched), and the methodology of damage as-
sessment (multihazard modeling versus ex-post assessment). We also
minimized potential intervening effects of media coverage by exclud-
ing tweets from media accounts, together with the associated retweets,
and by filtering all messages using several activity thresholds (see table S9).
Table 1. Activity-damage correlation (Kendall t, Spearman r, and Pearson r) for additional events. Disasters are sorted in order of increasing
strength of the Pearson correlation coefficient. All disasters demonstrate moderate to strong levels of statistically significant correlations (P < 0.05)
[with the exception of Alaska floods (DR-4122)].
Event ID
 Type
 Kendall t
 P
 Spearman r
 P
 Pearson r
 P
DR4116
 Floods
 0.15
 9.04 × 10−5
 0.21
 1.87 × 10−4
 0.18
 9.71 × 10−4
DR4117
 Tornadoes
 0.17
 0.05
 0.26
 0.05
 0.24
 0.06
DR4176
 Tornadoes
 0.18
 8.92 × 10−3
 0.28
 6.68 × 10−3
 0.27
 9.60 × 10−3
Sandy
 Hurricane
 0.16
 3.30 × 10−13
 0.24
 5.04 × 10−13
 0.30
 5.99 × 10−20
DR4145
 Floods
 0.33
 3.54 × 10−8
 0.47
 2.42 × 10−8
 0.45
 1.08 × 10−7
DR4177
 Floods
 0.36
 4.44 × 10−4
 0.52
 2.33 × 10−4
 0.45
 1.53 × 10−3
DR4175
 Tornadoes
 0.34
 0.02
 0.46
 0.03
 0.46
 0.03
DR4195
 Floods
 0.32
 1.28 × 10−8
 0.47
 3.35 × 10−9
 0.46
 6.32 × 10−9
DR4174
 Tornadoes
 0.56
 5.24 × 10−3
 0.69
 6.07 × 10−3
 0.68
 6.93 × 10−3
DR4157
 Tornadoes
 0.51
 9.70 × 10−4
 0.71
 2.38 × 10−4
 0.72
 1.71 × 10−4
DR4168
 Mudslide
 0.44
 0.04
 0.59
 0.03
 0.86
 1.84 × 10−4
DR4193
 Earthquake
 0.74
 3.80 × 10−5
 0.90
 7.50 × 10−7
 0.88
 3.92 × 10−6
DR4122
 Floods
 1.00
 —
 1.00
 —
 1.00
 —
Fig. 5. Distribution of activity-damage correlations (Pearson correla-
tion coefficients) across all disasters considered in the study. In terms
of damage, disasters appear to group according to their type, with cost
increasing from tornado storms, to floods, and eventually to hurricanes.
The correlation between activity and damage is very strong for small-scale
(low-cost) disasters, then it weakens and remains, on average, at the same
level across moderate-cost to high-cost events.
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Our results qualitatively hold in every case, noting the strongest rela-
tionship when we use native Twitter data, reliable Census population
estimates, and comprehensive ex-post damage estimates.

The role of proximity as the primary factor explaining activity sug-
gests that individuals realistically assess danger based on personal
experiences (66) and that their level of interest is moderated accord-
ingly. The cutoff in the activity-distance relationship is on the same
order of magnitude as the footprint of a large atmospheric system,
indicating that once people feel safe where they are, the level of en-
gagement is uniform and most likely depends on the intensity of
media coverage. Activity within the zone of the disaster sharply rises
with proximity to its epicenter, possibly attributable to a combination
of factors, including heightened anxiety, sense of direct relevance, and
observation of the associated effects (wind, precipitation, and physical
damage). Our findings echo other studies, such as the study on the
correlation of the number of Flickr photos tagged “#sandy” with at-
mospheric pressure over New Jersey, emphasizing that online activity
increases with the intensity of the event (48). However, what is striking
with all of the different factors that motivate people to tweet is that a
simple normalized measure of this activity—per-capita number of
messages—serves as an efficient assessment tool for measuring the
physical damage caused by the disaster.

The method for the assessment of the damage distribution pro-
posed here offers a range of advantages to complement traditional al-
ternatives (modeling, postdisaster surveying, and collection of data
from multiple institutions): the advantages of fine spatial resolution,
speed, low cost, and simplicity. For instance, damage forecasts issued
by the FEMA Modeling Task Force rely on the sophisticated multi-
hazard modeling. Although these forecasts are timely (generated
before or immediately after a disaster), their verification with aerial
imagery and physical site inspections is resource- and time-consuming.
Social media damage assessment provides an additional low-cost tool
in the arsenal of authorities to expedite the allocation of relief funds.
Fine spatial resolution and speed of preliminary assessment can also
be used to inform stochastic optimization algorithms for the joint as-
sessment and repair of complex infrastructures, like power systems
(61). In the long term, the technique can be used to check the integrity
of the damage assessment process itself, especially in light of pro-
tracted settlement time frames and allegations of irregularities that re-
cently prompted a blanket review of all insurance claims by FEMA (67).
In addition, for disasters that affect multiple jurisdictions (states), the
method mitigates the issue of local differences in assessment practices.

The correlation that we observed is not uniformly definitive in its
strength for all events, and care should be taken in the attempt to de-
vise practical applications. Moreover, an indirect and potentially non-
stationary relationship between social media signals and real-world
phenomena, compounded by changing social norms in the use of par-
ticular online platforms, calls for caution in developing predictive tools
based on Big Data analysis (68). However, we believe that the method
can be fine-tuned and strengthened by combination with traditional
approaches like multihazard modeling. More robust estimates of dam-
age through other data sources—for instance, the inclusion of munic-
ipal losses and nonmonetary indicators such as statistics on power
losses and emergency shelters (65)—may reinforce the relationship.
Composite metrics that combine per-capita activity with other prop-
erties of Twitter’s message stream [for example, fraction of disaster-
related tweets (50) and sentiment (provided that activity is high and
the volume of data is sufficient for sentiment to be predictive)] may
Kryvasheyeu et al. Sci. Adv. 2016; 2 : e1500779 11 March 2016
prove to be even more sensitive to damage. Moreover, data from other
social media, such as Facebook, Instagram, and Flickr, may be included
to complement Twitter activity.

Finally, with continued monitoring of social media over time, we
can potentially devise disaster-specific predictive models once a suf-
ficient number of events of similar nature are available for the anal-
ysis against social media data. More broadly, our study suggests that
the distribution of per-capita online activity on a specific topic has
the potential to describe and quantify other natural, economic, or
cultural phenomena.
MATERIALS AND METHODS

Raw Twitter data
The raw data for Hurricane Sandy comprise two distinct sets of mes-
sages.We obtained the data sets through the analytics companyTopsy
Labs. The first set consists of messages with the hashtag “#sandy”
posted between 15 October and 12 November 2012. The data include
the text of the messages and a range of additional information, such as
message identifiers, user identifiers, follower counts, retweet statuses,
self-reported or automatically detected location, time stamps, and sen-
timent scores. The second data set has a similar structure and was
collected within the same time frame; however, instead of a hashtag,
it includes all messages that contain one or more instances of specific
keywords that are considered to be relevant to the event and its conse-
quences (“sandy,” “hurricane,” “storm,” “superstorm,” “flooding,” “black-
out,” “gas,” “power,” “weather,” “climate,” etc.; see table S1 for the full
list). In total, for Hurricane Sandy, we have 52.55 million messages
from 13.75 million unique users.

Data for the additional disasters were obtained in two ways. For
the disasters that occurred during 2013, the data were purchased from
Gnip, a Twitter subsidiary data reseller. For each disaster, we used the
geographic boundary of the affected region and collected all messages
that contained a preselected set of keywords (“storm,” “rain,” “flood,”
“wind,” “tornado,” “mudslide,” “landslide,” “quake,” “fema”). Data for the
events from 2014 are extracted from continuously collected geo-tagged
tweets from the United States via Twitter’s Streaming Application
Programing Interface (API).

Data sets obtained from data providers (Topsy and Gnip) are the
subsets of full historical data (“high fidelity”). Streaming API offers
almost complete coverage because only about 1 to 1.5% of all messages
are geo-enabled and more than 90% of natively geo-coded messages
are captured when geographic boundary is used in a request (69).

Tweets location data
Spatial analysis relies on the location information embedded in a mes-
sage or otherwise inferred. Only a small fraction of messages [in our
Hurricane Sandy data, about 1.2% for the hashtag data set and 1.5%
for the keywords data set (775,000 messages in total)] are geo-tagged
by Twitter. Moreover, if the message is a retweet, it carries no geo-
graphic information of its own but rather contains details of the
source. For this reason, retweet studies usually rely on historic geo-
enabled messages by a user to infer the location of other messages
from the same user (32).

To expand the data available for spatial analysis and to enable anal-
ysis of the stream composition (fraction of retweets), we performed
geo-enrichment of raw data. We parsed location strings from user
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profiles and assigned coordinates when a profile-listed location re-
turned a match against the U.S. Census Bureau Topologically Integrated
Geographic Encoding and Referencing (TIGER) database. In Hurricane
Sandy data, this results in the geo-enriched set of 9.7 million tweets
from 2.2 million unique accounts.

National-scale analysis used geo-enriched data and would other-
wise be impossible for many keywords because of the lack of data
in some places. For damage analysis at the state level, we used both
natively geo-coded messages (as a geographically more reliable set)
and geo-enriched data to test the effects of enrichment on the strength
of correlation.

Filtering
Two potential issues may arise when collecting and analyzing geo-
coded messages.

The first issue is an artificial clustering of messages at arbitrary
virtual locations, which may happen with external applications like
Foursquare. Foursquare check-in “@Frankenstorm Apocalypse” cre-
ated several clusters of messages in Lower Manhattan, East River,
and Bayside areas of New York City. Three of these clusters signifi-
cantly skewed the local message count of corresponding ZCTAs.

The second issue is also associated with stationary clusters of
messages—those produced by institutional accounts that issue or
distribute weather forecasts and emergency warnings. Such accounts
often operate automatically and publish frequent updates at regular
intervals. In the course of the data collection period, they may produce
tens or hundreds of messages, similarly inflating the local count of
messages.

We rectified both issues by implementing filtering that detects
clusters of colocated messages. We checked each cluster individually
to ensure that it fell into one of the two categories mentioned above
and discarded all corresponding messages if that was the case.

Sentiment
The objective of sentiment analysis is to assign a measure of emotion
or mood expressed in the text and to classify the text accordingly as
positive, negative, or neutral. Sentiment in Twitter has been studied
and demonstrated to reflect temporal (19, 70) and geographical (71)
mood variations. In the context of natural disasters, we previously ob-
served (44) that sentiment is sensitive to large-scale disasters. Here, we
aimed to investigate further whether the signal carried by sentiment
was indicative of damage.

Sentiment analysis usually relies on a lexicon of words that are
classified as positive or negative and analyzes the text for the frequency
of the occurrence of suchwords. An output could be the rate of positive/
negative terms or (if the lexicon assigns the strength to each word on a
certain scale) an absolute total or word-count normalized score.

Our rawdata obtained from the data provider Topsy have sentiment
scores assigned to every message. The algorithm of classification is pro-
prietary, and the lexicon is unavailable for open access. Three versions
of the score are provided: total absolute score, word-count normalized
score (relative score), and trinary classification (+1,−1, and 0). From the
distribution of scores in the data set, we concluded that the method was
lexicon-based, with the weights of dictionary words falling within the
range from −5 to +5. Because Topsy’s algorithm is proprietary, we ver-
ified it with two alternative methods: Linguistic Inquiry and Word
Count (LIWC), which is a frequency-based tool with unweighted lexi-
con that is widely used in psychological research (72), and SentiStrength
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(73), which uses a weighted lexicon and takes into account certain
features that are prevalent in short messages (emoticons, standard ab-
breviations, slang, “booster,” and negation lexical constructs).

We find that, at the level of individual messages, all metrics are
correlated: strongly correlated for Topsy versus LIWC, moderately
correlated for LIWC versus SentiStrength, and somewhat weakly
correlated for Topsy versus SentiStrength (see table S10 for correlation
coefficients). The temporal trends in the average sentiment of mes-
sages aggregated hourly for all three metrics closely follow each other
(see fig. S6), suggesting that all classification techniques are compara-
ble and robust, especially in aggregate analysis. We also separately ana-
lyzed the frequencies of the words that were most prevalent among
positive and negative messages (see table S11). Our selection key-
words, such as “hurricane,” “power,” and “storm,” are featured equally
in both groups. However, apart from these terms, the rest of the top-
ranking positive words are clearly positive emotion terms; for the neg-
ative group, they are negative emotions, profanities, and event-related
words (“emergency”).

Given that all metrics perform adequately, we use native Topsy
sentiment because it returns the highest statistically significant sentiment-
damage correlation (see table S12). We used the relative score, which
reflects both the polarity and the strength of emotions in a principled
manner, taking into account the length of a message. The mean sen-
timent score was calculated for all messages within a particular area of
interest (ZCTA or county), and the distribution of sentiment was analyzed
against the distribution of damage.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/3/e1500779/DC1
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