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Effects of conservation policy on China’s
forest recovery
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Forest loss is one of the most pervasive land surface transformations on Earth, with drastic effects on global climate,
ecosystems, and humanwell-being. As part of biodiversity conservation and climate changemitigation efforts, many
countries, including China, have been implementing large-scale policies to conserve and restore forests. However,
little is known about the effectiveness of these policies, and information on China’s forest dynamics at the national
level has mainly relied on official statistics. In response to international calls for improved reliability and transparency
of information on biodiversity conservation and climate changemitigation efforts, it is crucial to independently verify
government statistics. Furthermore, if forest recovery is verified, it is essential to assess the degree towhich this recovery
is attributable to policy, within the context of other relevant factors. We assess the dynamics of forest cover in China
between 2000 and 2010 and evaluate the effectiveness of one of the largest forest conservation programs in the
world—the Natural Forest Conservation Program (NFCP). Results indicate that forest cover has significantly increased in
around1.6%ofChina’s territory and that theareasexhibiting forestgainexperiencedacombined increase innetprimary
productivity (ca. 0.9 Tg of carbon). Among the variables evaluated at county level, the NFCP exhibited a significantly
positive relation with forest gain, whereas reduction in rural labor showed a negative relationship with both forest loss
and gain. Findings such as these have global implications for forest conservation and climate changemitigation efforts.
INTRODUCTION

Human activities have transformed up to half of Earth’s land surface,
particularly through the often intertwined processes of agricultural ex-
pansion and deforestation (1, 2). Because forests provide crucial ser-
vices to society, including soil and water conservation, climate regulation,
and carbon storage, among many others (3, 4), degradation and out-
right conversion of forests constitute some of the most detrimental an-
thropogenic land surface processes (5). Yet, although degradation of
forests continues in many parts of the world, an opposite trend has also
emerged. This “forest transition” from loss to gain at the national level
began to occur during the 18th century in Western Europe (6) and has
since emerged in other developed (7) and developing (8) countries
around the world. Forest scarcity and economic development are con-
sidered two of the most common pathways to forest recovery (9). The
former involves the planting of trees in response to a demand for timber
and other forest products, whereas the latter is associated not only with
industrialization leading to the concentration of population in urban
centers and consequent rural depopulation and spatial contraction of
increasingly intensive agricultural production, but also with changing
ecological or aesthetic goals, as wealthy societies come to value natural
landscapes and can afford to invest in biodiversity conservation (10).
The forest transition literature also recognizes the important role of gov-
ernment policy, particularly in developing countries (11). The challenge is
quantifying the actual role of government programs against the
backgroundof other (for example, social, economic, and ecological) factors.

The fate of forests in China, the most populous nation on Earth, has
global consequences by virtue of the country’s sheer magnitude and the
rapidity of its development (12). According to Chinese government sta-
tistics, the country’s forests have been recovering over the past three
decades (13, 14). This has taken place in the context of exceptionally
rapid economic growth over the same time period (15), which suggests
that China is on the economic development pathway to the forest tran-
sition (because harvests from many of these forests are not currently al-
lowed, the forest scarcity pathway is not a sufficient explanation in this
case). However, during the same period, the Chinese government also
implemented other environmental programs (16). In particular, since
the beginning of the 21st century, China has been implementing one
of the largest forest conservation and restoration programs in the
world—the Natural Forest Conservation Program (NFCP). This program
bans logging in many natural forests and supports monitoring activ-
ities to prevent illegal harvesting. In the first decade of implementa-
tion, total investment in the NFCP exceeded 93 billion yuan (US$1 =
6.8 yuan in 2010) (17). Although this program was largely motivated by
the need to control soil erosion following massive floods in 1998, the con-
sequent increase in forest cover also has important implications for
other ecosystem services such as carbon sequestration. In fact, China’s
president pledged to increase forest cover by 40 million hectares by
2020 (from the 2005 level), and the NFCP is a key measure for ful-
filling the country’s commitment to global climate change mitigation
(18). Although widespread environmental and socioeconomic benefits
are anticipated from program implementation (17, 19), actual benefits
have so far only been assessed in a few localized areas (20, 21), and
not on a national scale. This study evaluates the effectiveness of the
NFCP on a national scale during the first decade of the 21st century
and its contribution to changes in net primary productivity (NPP).
RESULTS
Over the 2000–2010 period, around 1.6% (ca. 157,315 km2) of China’s
territory displayed a significant gain in percent tree cover, whereas ca.
0.38% (ca. 37,268 km2) experienced a significant loss (Fig. 1). Among the
areas exhibiting gains and losses, the average percent tree cover in the
year 2000 was 24.81% (SD, 12.76%) and 53.57% (SD, 12.94%), respectively
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(fig. S1), suggesting that forest gain tends to occur more often in areas of
lower initial tree cover, whereas forest loss tends to occur more often in
areas of higher initial tree cover.

Stepwise multilevel models show that, at the pixel level, the initial
percent tree cover, elevation, and total annual precipitation were sta-
tistically significant in the forest loss model (Table 1), whereas northing,
distance to main roads, gridded population density in 2000, elevation,
mean annual temperature, and the compound topographic index
(CTI) were statistically significant in the forest gain model (Table 2).
At the county level, the NFCP evidenced a statistically significant
(P < 0.001) positive relationship with forest gain, whereas change in
rural labor between 2000 and 2010 exhibited a statistically significant
negative relation with both forest loss (P < 0.05) and forest gain (P <
0.01) (Table 3). The gross domestic product (GDP) per capita exhibited
Viña et al. Sci. Adv. 2016; 2 : e1500965 18 March 2016
a statistically significant (P < 0.05) positive relation with forest loss
(Table 3).

Among the pixels exhibiting a gain in forest cover, the average
per-pixel relative NPP gain over the 2000–2010 period was 14.7%
(SD, 17.4%) (Fig. 2). NPP accumulated across all pixels exhibiting a sig-
nificant gain in forest cover rose by a total of ca. 0.91 Tg (that is, from
45.12 Tg in 2000 to 46.03 Tg in 2010).
Fig. 1. Forest coverdynamics inChina. (A) Pixel-based (250 m per pixel)
percent tree cover across China in 2000. The map was derived from the
VCF tree cover product based on surface reflectance data collected by
MODIS. Polygons correspond to county boundaries. (B) Pixels exhibiting
a significant gain or loss in percent tree cover [that is, changes higher
than or equal to |20%| and with statistically significant (P < 0.05) positive
and negative monotonic trends in percent tree cover] between 2000
and 2010. Polygons correspond to province boundaries.
Table 1. Coefficients of the pixel-based forest loss model. Maximum
likelihood estimates of the coefficients of the predictor variables ob-
tained in a logistic regression model to assess the probability of forest
loss during the 2000–2010 period. See Materials and Methods for details
on the logistic regression models developed in the study.
Parameter
 Estimate
 SE
 Wald c2
 P > c2
Intercept
 −11.1959
 3.0388
 13.5744
 0.0002
Easting
 2.997 × 10−7
 2.66 × 10−7
 1.2701
 0.2598
Northing
 3.768 × 10−7
 5.27 × 10−7
 0.5113
 0.4746
Initial tree cover
 0.0534
 0.00614
 75.4652
 <0.0001
Distance to main roads
 −0.00233
 0.00275
 0.7168
 0.3972
Population density in 2000
 0.000012
 7.466 × 10−6
 2.7208
 0.0991
CTI
 0.0591
 0.0597
 0.9814
 0.3219
Elevation
 −0.00019
 0.000086
 4.9686
 0.0258
Slope
 0.000960
 0.0205
 0.0022
 0.9627
Aspect
 −0.00111
 0.0179
 0.0038
 0.9506
Precipitation
 0.0275
 0.00846
 10.5727
 0.0011
Temperature
 −0.0876
 0.0682
 1.6494
 0.1990
Table 2. Coefficients of the pixel-based forest gain model. Maximum
likelihood estimates of the coefficients of the predictor variables ob-
tained in a logistic regression model to assess the probability of forest
gain during the 2000–2010 period. See Materials and Methods for de-
tails on the logistic regression models developed in the study.
Parameter
 Estimate
 SE
 Wald c2
 P > c2
Intercept
 1.2464
 1.1394
 1.1966
 0.2740
Easting
 1.528 × 10−7
 1.02 × 10−7
 2.2462
 0.1339
Northing
 −5.61 × 10−7
 1.652 × 10−7
 11.5298
 0.0007
Initial tree cover
 0.00415
 0.00295
 1.9723
 0.1602
Distance to main roads
 −0.00488
 0.00174
 7.8691
 0.0050
Population density in 2000
 −0.00005
 0.000015
 10.4924
 0.0012
CTI
 −0.2077
 0.0349
 35.4714
 <0.0001
Elevation
 −0.00023
 0.000044
 27.1876
 <0.0001
Slope
 −0.00523
 0.00781
 0.4485
 0.5031
Aspect
 0.0114
 0.00830
 1.8695
 0.1715
Precipitation
 −0.00257
 0.00405
 0.4027
 0.5257
Temperature
 0.0743
 0.0216
 11.7815
 0.0006
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Table 3. Coefficients of county-based spatial autoregressive models. Estimates of the coefficients of the spatial autoregressive models devel-
oped to assess the relationship between county-based independent variables and significant gain and loss of forest cover [presented as coefficient
(SE)]. See Materials and Methods for details on these spatial autoregressive models.
Parameter
Viña et al. Sci. Adv. 2016; 2 : e1500965 18 March 2016
Forest loss
 Forest gain
R2
 0.478
 0.742
Intercept
 2.61 × 10−5 (0.0006)
 −0.0004 (0.0019)
NFCP
 −0.0007 (0.0004)
 0.0070* (0.0015)
GDP per capita in 2000
 0.0014† (0.0005)
 −0.0023 (0.0018)
Change (2010–2000) in GDP
 −2.04 × 10−7 (6.109 × 10−7)
 1.36 × 10−7 (2.02 × 10−6)
Grain production in 2000
 4.01 × 10−6 (1.91 × 10−5)
 −1.10 × 10−5 (6.32 × 10−5)
Change (2010–2000) in grain production
 8.43 × 10−7 (2.20 × 10−6)
 −2.77 × 10−6 (7.18 × 10−6)
Meat production in 2000
 −2.29 × 10−5 (0.0001)
 6.21 × 10−5 (0.0003)
Change (2010–2000) in meat production
 −2.17 × 10−6 (1.73 × 10−6)
 4.10 × 10−6 (5.72 × 10−6)
Total population in 2000
 1.34 × 10−5 (2.13 × 10−5)
 8.30 × 10−5 (7.03 × 10−5)
Change (2010–2000) in total population
 4.47 × 10−7 (1.48 × 10−5)
 −3.10 × 10−5 (4.88 × 10−5)
Rural labor in 2000
 −3.94 × 10−5 (4.00 × 10−5)
 −0.0002 (0.0001)
Change (2010–2000) in rural labor
 −1.31 × 10−6‡ (6.21 × 10−7)
 −6.45 × 10−6† (2.05 × 10−6)
Spatial autoregressive term
 0.6922* (0.0195)
 0.8493* (0.0122)
*P < 0.001. †P < 0.01. ‡P < 0.05.
Fig. 2. NPP dynamics. Per-pixel relative (that is, percent) change in NPP between 2000 and 2010 among pixels exhibiting a significant gain in
forest cover (Fig. 1B). Insets: Areas that exhibited particularly wide-ranging positive/negative trends.
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DISCUSSION

Our results suggest that, among the factors considered at the county
level and after accounting for pixel-level biophysical and demographic
variables, the implementation of the NFCP exhibited a significant relation-
ship with forest gain in China during the first decade of the 21st century.
This significant relationship suggests that government intervention—in
the form of logging bans and monitoring activities to prevent illegal
logging—was instrumental in enhancing forest recovery. Other conser-
vation policies implemented at the national level (such as the Grain-
to-Green Program, which encourages farmers to convert steep hillside
cropland into forest by providing cash, grain, and tree seedlings) (17, 22),
as well as other forest management measures (for example, fire preven-
tion and stand thinning), may also have had significant effects on China’s
forest cover (for example, promotion of forest regeneration). However,
they were not evaluated because their implementation generally
concerns small cropland parcels (usually <1 ha) that may be difficult
to detect at the 250-m resolution of the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor and because 10 years may not be
sufficient to detect their effects owing to the longer time required for
trees to establish sufficient canopies from seeds or seedlings (21).

Many of the areas that exhibited significant gains in forest cover con-
stituted some of the most recently logged areas and thus may be showing
the most dramatic responses to NFCP implementation. For instance, an
area exhibiting prominent gains in forest cover in central China [located
between the Qinling Mountains (in Gansu and Shaanxi provinces to the
north) and the DabaMountains (in Sichuan province to the south)] (Fig.
1B) was the locus of major timber extraction activities before the year
2000. In fact, Sichuan and Gansu provinces exhibited some of the high-
est rates of deforestation during the 1990s (23). With the implementation
of the NFCP, thousands of people employed by the timber industry were
laid off and sought alternative employment opportunities. Dramatic
abandonment of rural livelihood activities had also been spurred by
new employment opportunities in urban centers such as Chengdu in
Sichuan province and Xi’an in Shaanxi province. Thus, economic growth
(as exemplified by the change in rural labor between 2000 and 2010)
may have played a significant role in forest recovery. Nevertheless, the
effects of economic growth are not completely clear, given that the other
metric of economic growth used in the study (that is, GDP per capita)
showed a significant positive relationship with forest loss.

Previous studies have shown that the forest recovery observed dur-
ing the last two decades of the 20th century had significant effects on
standing biomass and NPP in the forests of China (24, 25), but the
effects of forest recovery during the first decade of the 21st century
are not clear. We analyzed the change in NPP in the pixels exhibiting
significant forest recovery, and our results showed a significant increase
in NPP across all pixels exhibiting a significant gain in forest cover.
Thus, in addition to the local and regional benefits it may accord
the country in terms of soil and water conservation, the NFCP seems
to significantly contribute to carbon sequestration in China’s forested
areas, with potentially important effects on global carbon budgets.

Although China’s forest conservation policy may exert positive
effects on China’s forests, it may exert negative effects on other forested
areas around the world. At the same time that China’s conservation
policy bans logging of natural forests, China has become one of the
world’s leading timber importers and has also been importing more
food and other agricultural products (13). Thus, China’s conservation
policy may be exacerbating forest degradation (through both legal and
illegal logging) in other regions such as Southeast Asia, Africa, and
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Northern Eurasia from which China has been importing forest and ag-
ricultural products (13, 26). For example, between 2000 and 2010, China
imported forest products from Vietnam (ca. US$695 million), Burma
(ca. US$62 million), Indonesia (ca. US$880 million), Madagascar (ca.
US$18 million), and Russia (ca. US$887 million) (27). Therefore, at
least some of the carbon sequestration in China’s forested areas may
have come at the cost of carbon emissions elsewhere (3, 28). In addi-
tion, if the associated forest cover losses elsewhere occur in areas with
high biodiversity, the expansion of forests in China may also be entailing
a significant net loss of biodiversity. These considerations pose impor-
tant challenges for current territory-based strategies for global climate
change mitigation and biodiversity conservation. A systems approach
that simultaneously considers the tradeoffs and synergies among conser-
vation, production, and consumption in both importing and exporting
countries (29) is urgently needed to address these challenges.
MATERIALS AND METHODS

Forest cover dynamics
Although some authors deem necessary the use of medium spatial res-
olution imagery acquired by satellite sensors such as Landsat TM, Land-
sat ETM+, or SPOT (Satellite Pour l’Observation de la Terre) for forest
cover change assessments (30), many areas around the world experience
frequent cloud cover. Thus, insufficient cloud-freemedium spatial resolu-
tion imagery is available for forest change assessments (31,32), particularly
when evaluating the effects of conservation policy implementation over
short temporal windows. In addition, Landsat-based products, such as
the Global Forest Change 2000–2013 (3), map forest cover as an inter-
nally homogeneous land cover type, which is inadequate for asses-
sing forest cover dynamics that do not necessarily correspond with
complete land surface transformations (that is, from forest to nonfor-
est or vice versa). Therefore, we assessed the spatiotemporal dynamics
of China’s forest cover using the annual Vegetation Continuous Fields
(VCF) tree cover product derived from surface reflectance data acquired
by NASA’s MODIS (33). This product represents the percentage of an-
nual per-pixel tree cover at a spatial resolution of approximately 250 m
and has successfully been used to quantify forest cover dynamics, exhi-
biting results comparable with those derived using medium spatial reso-
lution imagery (for example, Landsat-based) (34).

Using the MODIS VCF, we evaluated changes in forest cover from
2000 to 2010. We chose this period to capture the first decade of NFCP
implementation and to match the availability of relevant socioeconomic
data. Because changes in forest cover at a MODIS VCF pixel may not
necessarily account for actual changes in forest cover on the ground, we
performed two different procedures to assess the change in forest cover,
which were later combined to produce a final change output.

In the first procedure, we assessed the change in forest cover by thresh-
olding the VCF to separate forest from nonforest pixels and estimated
the minimum magnitude of the percent change required to assess a sig-
nificant change in forest cover. To find the optimal VCF threshold to
separate forest from nonforest pixels and to validate the MODIS VCF
tree cover product, we developed a data set of 4000 “ground-truth” poly-
gons of the same size as a MODIS pixel (ca. 0.0625 km2), randomly
distributed throughout China. Within each of these polygons, we ran-
domly distributed 25 points. Using the high spatial resolution imagery
available in Google Earth, we visually ascertained the number of points
per polygon coinciding with a tree canopy. The horizontal positional
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accuracy of Google Earth’s high-resolution imagery has been established
to vary between 0.4 and 171.6 m, with average accuracies of 24.1 m in
developed countries and 44.4 m in developing countries (35). Such
horizontal positional accuracies are much lower than the spatial reso-
lution of a MODIS pixel (ca. 250 m per pixel) and thus are suitable for
assessing the classification accuracy of the MODIS VCF product.

We considered a polygon to be forested if three or more points
(that is, >10%) coincided with a tree canopy, on the basis of the clas-
sification of forested areas established by the United Nations Food and
Agriculture Organization (36). To assess the reliability of the inter-
pretation of the Google Earth imagery, two image interpreters indepen-
dently performed the point counts for each polygon. The average point
count between the two interpreters was obtained, and only those poly-
gons exhibiting a point count difference of less than 20% between the
two interpreters were used in the validation. Google Earth imagery
acquired between 2000 and 2005 was used to validate the 2000 MODIS
VCF data set, whereas Google Earth imagery acquired between 2006
and 2010 was used to validate the 2010 MODIS VCF data set. Thus,
given that not all of China’s territory is covered by Google Earth high-
resolution imagery, not all polygons were used in the validation. In
addition, because high-resolution image availability between 2000 and
2005 is considerably lower than that between 2006 and 2010, the final
number of ground-truth polygons used in the validation was 569
(14.2% of the polygons) for the 2000 MODIS VCF data set and 1973
(49.3% of the polygons) for the 2010 MODIS VCF data set (fig. S2).

With these data, we conducted threshold-dependent and threshold-
independent validation procedures. The threshold-dependent procedure
was the k statistic, which is a chance-corrected measure of agreement (37).
Using equality in sensitivity and specificity as a criterion (reported to be
the most reliable criterion for cumulative threshold selection) (38), we
found that a percent tree cover of 24 and 23% in the 2000 and 2010
MODIS VCF data sets, respectively, constitutes the optimal threshold for
separating forest from nonforest pixels, and we obtained k coefficients
of 0.64 (overall accuracy, 90%) and 0.60 (overall accuracy, 87%) for the
2000 and the 2010 MODIS VCF data sets, respectively. The threshold-
independent procedure was the area under the receiver operating char-
acteristic curve (AUC) (39). The AUC ranges from 0 to 1, where a score
of 1 indicates perfect discrimination, a score of 0.5 is expected from a
random prediction, and a score lower than 0.5 indicates discrimination
that is worse than random. The AUC values obtained were ca. 0.94 for
both the 2000 and the 2010 MODIS VCF data sets (fig. S3), which were
significantly different (P < 0.0001) from 0.5 (that is, a random predic-
tion). Both of these validation procedures (that is, threshold-dependent
and threshold-independent) demonstrate that the MODIS VCF tree
cover product constitutes an accurate depiction of forest cover in China.

The per-pixel change in forest cover was then obtained by calculating
the D in the VCF tree cover between 2000 and 2010 (that is, Tree Cover
D2010–2000 = Tree Cover2010 − Tree Cover2000). To validate this change,
we used the D in the percent tree cover of the ground-truth polygons,
obtained using Google Earth. Validation of the change in forest cover
was based on the threshold-dependent k statistic, which suggested a
percent change in tree cover of ±20% as the optimal threshold for de-
tecting changes in percent tree cover. The k coefficients obtained were
0.39 (overall accuracy, 68.2%) and 0.40 (overall accuracy, 69.8%) for
forest recovery and forest loss, respectively.

In the second procedure, we assessed per-pixel annual trends in the
VCF percent tree cover over the decade (that is, 2000–2010). This was
performed not only because a change in forest cover in a MODIS VCF
Viña et al. Sci. Adv. 2016; 2 : e1500965 18 March 2016
pixelmaynot necessarily represent the same areal change in forest cover
on the ground but also because the values of the VCF tree cover product
may change from year to year as a result of changes in climate conditions
accumulated over time (for example, annual precipitation and incoming
radiation). To assess the significance of per-pixel trends (monotonic in-
creases and decreases in the VCF between 2000 and 2010), we used the
Spearman rank correlation coefficient. The significance of the Spearman
rank correlation coefficient was determined through a permutation anal-
ysis in which the order of the ranks was randomly permuted 99 times.
The significance measure corresponds to the number of times the cor-
relation coefficient of the permuted data set exceeded the original (that
is, nonpermuted) coefficient. When fewer than 5 of 99 permutations
yielded higher correlation coefficients, these pixels were determined
to exhibit significant positive (for r > 0) or negative (r < 0) trends.

Finally, we combined the two procedures to assess the number of
pixels that exhibited a significant change (that is, gain or loss) in forest
cover. To this effect, among the pixels exhibiting an absolute change in
percent forest cover equal to, or larger than, 20% (assessed through the
validation of the change in percent tree cover) between 2000 and 2010,
we only selected those exhibiting significant positive/negative trends based
on the significance of the Spearman rank correlation coefficient. Although
the combination of these two procedures noticeably reduced the number
of pixels considered to exhibit significant positive and negative changes in
forest cover, it was preferred because it reduces the potential effects of the
coarse pixel resolution of the MODIS VCF and accounts for the effects of
accumulated climate conditions on the MODIS VCF tree cover product.
Our estimates of forest cover dynamics are therefore conservative but
reduce potential overestimations of forest gain or loss, yielding more
robust analytical findings. The use of such combination of approaches
to assessing changes in forest cover takes advantage of the fuzzy clas-
sification nature of the VCF tree cover product, together with its annual
frequency. This constitutes an alternative to recent procedures designed
to incorporate land cover classification errors into areal estimates of land
cover change (40). Figure 3 shows a summary of the procedures used.

Dynamics of NPP
To assess the changes in NPP between 2000 and 2010 among the pix-
els exhibiting a significant gain in forest cover, we used the Terra/
MODIS NPP MOD17A3 product, which was obtained through the on-
line data pool at the NASA Land Processes Distributed Active Archive
Center, U.S. Geological Survey/Earth Resources Observation and
Science Center, Sioux Falls, SD (https://lpdaac.usgs.gov/data_access).
This data set was resampled and coregistered to the MODIS VCF
product (that is, 250 m per pixel). Pixels exhibiting a significant
gain in forest cover between 2000 and 2010 were evaluated to deter-
mine whether they exhibited significant (P < 0.01) trends in decadal
(2000–2010) NPP values. Pixels with no significant NPP trends were
assumed not to have changes inNPP between 2000 and 2010. Accumu-
lated NPP per year in all pixels exhibiting a significant gain in forest
cover was obtained as the cumulative sum of NPP gain across space.

Statistical analyses
To assess the relationship between forest loss or gain and the imple-
mentation of the NFCP, we used a stepwise multilevel approach,
which accommodates data acquired at different scales. Figure 3 shows
a summary of the procedures used. In the first step, we developed lo-
gistic regression models (41) to assess the probability of forest loss and
gain at the pixel level during the 2000–2010 period. We randomly
5 of 7
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selected 30,000 pixels across China that have a minimum sampling
distance of 5 km to limit potential spatial autocorrelation effects. Two-
thirds of these pixels were used to calibrate a pair of logistic regression
models (41), whereas the remainder were reserved for validating them.
The dependent binary variable (either forest loss or gain) was set to 1 if
the pixel exhibited a significant positive (or negative) change [that is, a
percent tree cover D equal to, or higher than, 20% (equal to, or lower
than, −20%) and with significant positive (negative) trends in percent
tree cover] and to 0 if the pixel exhibited significant negative (or positive)
change or no change. Biophysical and demographic factors that were
shown to be strongly correlated with forest cover dynamics in previous
spatially explicit models [for example, Rudel et al. (9), Geist and Lambin
(42), and Rudel (43)] were selected for use as predictor variables. These
included the geographic position of each pixel (that is, easting and
northing), elevation, slope, aspect [converted into soil moisture classes
(44)], and the CTI [a measure of soil water accumulation (45)] derived
from a digital elevation model constructed from data acquired by the
Shuttle Radar Topography Mission (46), initial tree cover (that is, VCF
in 2000), distance to main roads [obtained from the Digital Chart of the
World Dataset (47)], gridded population density in 2000 (48), and mean
annual temperature and total annual precipitation in grid format obtained
from the WorldCLIM database (49). We acknowledge that, like almost
all other data sets, these global data sets have limitations (for example,
Viña et al. Sci. Adv. 2016; 2 : e1500965 18 March 2016
lack of uniformity across different regions) that may reduce their re-
liability. However, given that standardized procedures have been applied
in their production and that they are publicly available, their use not
only allows replication and verification but also allows rapidly updates to
the analyses as more data become available. As a result, such data sets
have been widely used in numerous publications over the last several
years [for example, Yang et al. (50), Zheng et al. (51), and Zhang et al.
(52)]. All grids were resampled and coregistered to match the MODIS
VCF product (that is, 250mper pixel).Model validationwas conducted
using the AUC procedure (39). These logistic regression models regis-
teredAUC scores of 0.71 and 0.67, respectively, whichwere significantly
different (P < 0.0001) from 0.5 (that is, a random prediction). Using the
coefficients obtained in these logistic regression models, we calculated
the probability of forest loss and gain for all pixels comprisingmainland
China. Logistic regression model residuals were then obtained by sub-
tracting these probability values from the observed forest loss and gain
values, with the latter expressed in binary format [that is, 1 for any sig-
nificant negative (positive) change and 0 for any significant positive (neg-
ative) change or no change] (fig. S4). These pixel-level residuals represent
the unexplained variance of the logistic regression models.

In the second step, we obtained aggregate model residual values on a
per-county basis by averaging the pixel-level residuals (both positive and
negative) within the county divisions (including city districts) of China
(Fig. 1). These per-county aggregate residuals (county-based aggregate
of the unexplained variance of the logistic regression models) were used
as the dependent variables in spatial autoregressive models (53, 54).
Independent predictor variables included implementation of the NFCP
[expressed in binary format; that is, 1 for counties where the NFCP was
implemented and 0 for counties where it was not (17)], county-based
per-capita GDP for 2000, change in county-based per-capita GDP (that
is, GDP 2010−GDP2000), agricultural production (in the form of total
grain andmeat production) for 2000 and its change (that is, 2010 − 2000),
total population in 2000 and its change (that is, 2010 − 2000), and rural
labor in 2000 and its change (that is, 2010 − 2000). These data were ob-
tained from the ChinaData Center (55). Spatial weightingmatrices at the
county level were created, defining a neighbor based on both the Queen
and the Rook contiguity approaches (56). We report results obtained
using the Queen contiguity approach, although results using the two
approaches were similar. Using these data, we developed lag and error
spatial autoregressive models (53, 54) for each dynamic (that is, forest
loss and gain, respectively). We report the results of the lag model for
both forest loss and gain (Table 1) because these exhibited the best (that
is, lowest) Akaike information criterion values (53, 54).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/3/e1500965/DC1
Fig. S1. Histogram of dynamic pixels.
Fig. S2. Distribution of validation polygons.
Fig. S3. Validation of the MODIS VCF.
Fig. S4. Distribution of model residuals.
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